US3541845A - Method for testing the strength of the material of cast structures,particularly concrete structures - Google Patents

Method for testing the strength of the material of cast structures,particularly concrete structures Download PDF

Info

Publication number
US3541845A
US3541845A US718077A US3541845DA US3541845A US 3541845 A US3541845 A US 3541845A US 718077 A US718077 A US 718077A US 3541845D A US3541845D A US 3541845DA US 3541845 A US3541845 A US 3541845A
Authority
US
United States
Prior art keywords
piston
strength
structures
concrete
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US718077A
Inventor
Peter Kierkegaard-Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETER KIERKEGAARD HANSEN
Original Assignee
PETER KIERKEGAARD HANSEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETER KIERKEGAARD HANSEN filed Critical PETER KIERKEGAARD HANSEN
Application granted granted Critical
Publication of US3541845A publication Critical patent/US3541845A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • G01M5/005Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress

Definitions

  • a counter-pressure member is placed to rest on said surface and coaxially to the piston.
  • a force is exerted towards the exterior following the axis of the two pieces, the dimensions of which are such and the spacing between them is such that the force of extraction of the piston causes the concrete to fracture forming a frusto-conical face, the piston and the counter-pressure member forming the small and the large base, respectively, of the truncated cone.
  • the invention relates to a method which can be employed for the determination and control of characteristic physical properties of the material in cast structures, in particular concrete structures.
  • the methods commonly used in performing such tests rely on separate specimens cast simultaneously with the casting of the structure and subsequently subjected to tests carried out in accordance with specific rules.
  • the tests concern primarily the determination or the checking of the compressive strength of the material, which, as a rule, is being determined by axial crushing of cylindrical specimens of given dimensions, however, the tensile strength as well as the shear strength of the material is also tested by means of appropriate methods.
  • a proposal for the determination of the shear strength has also become known based on extracting a piston cast into the concrete through a coaxial cylinder likewise cast into the concrete and having an inner diameter corresponding to the outer diameter of the piston.
  • this method is connected with great practical difiiculties,
  • the present method is of the type in which the test is performed by outwards pull on a piston embedded in the material towards the adjacent surface of the structure and the novelty of the invention consists in that the reaction of the force of this pull is transmitted to the structure by means of a counter-pressure member abutting against the surface in question with an area surrounding the projection of the piston on the surface in the direction of the force and which delineates an area of this surface which is several times larger than the projection of the piston.
  • the surface upon which the forces, affecting the part of the material of the structure influenced by the test act will be precisely defined, so that a well-defined stress distribution is obtained as well as a fracture face, the shape and size of which can be selected at discretion by coordinating the relative dimensions of the piston, the counter-pressure member and the spacing between them.
  • the dimensions of the piston and of the counterpressure member are selected in such a manner in relation to each other and to the spacing between same in the direction of the pull that together they define a truncated cone with a vertical angle of about 60, a frusto-conical fracture face will ensue with the counter-pressure member and the piston as the large and the small base, respectively, and with a half apex angle of approximately 30, i.e. fracture face, which corresponds wholly to the shape of the fracture face, produced in the axial crushing of a cylindrical specimen for the determination of the compressive strength of the material. Comparative tests have demonstrated that the requisite force of extraction in these circumstances is so close to being proportional to the compressive strength determined by the cylinder compressive strength test that the force of extraction can serve as a measure of the compressive strength of the material.
  • piston and counter-pressure memher are coordinated in such a way, that piston and counter-pressure member together define a frusto-conical surface with a very large apex angle, i.e. an apex angle of at least such a fiat fracture is formed when the piston is being extracted that the force of extraction constitutes a useful measure of the tensile strength of the material.
  • a counter-pressure member the diameter of which is only slightly larger than that of the piston, can entail forces of extraction that constitute useful measures for the strength of the material determined by means of triaxial tests.
  • 1 designates a part of the concrete structure, the surface of which is designated with 2.
  • a pull rod has been inserted through this hole and screwed down in the piston 3 and is during the test subjected to a tractional force T, which is directed in an outward direction.
  • a counter-pressure member 6 in the form of a ring is arranged, the end face of which tests on the surface of the concrete 2 and the inner diameter of which is adapted to the diameter of the piston 3 as Well as to the depth, at which same is embedded in the concrete, so that the fracture face, which is determined by the circumference of the piston 3 and the inscribed circle of the counter-pressure member 6, assumes the shape of a truncated cone, half of the apex angle of which measures about 30.
  • the fracture faces attain substantially the same shape as one half of the well-known hour-glass-shaped fracture faces, which are produced in compressive strength tests of cylindrical specimens, and tests have shown that the tractional force T required for causing the fracture in these circumstances, is in the main proportional to the compressive strength determined in such a compressive strength test of cylindrical specimen of the same concrete. It is in this connection of importance that the reaction R of the force of traction is defined exactly with regard to the piston 3 by means of the counter-pressure member 6, whereby the specific desired stress distribution, which, at the instant of fracture leads to the shown frusto-conical shaped fracture face is positively enforced.
  • the shape and size of the fracture face can be varied considerably by varying the absolute and relative values for the size of the piston 3, the counter-pressure member 6 and the spacing between these; it is only important that these dimensions be kept within such limits that a stress distribution is developed, which, at the instant of grafure leads to a fracture face which is determined by the circumference of the piston and the inner circumference of the counterpressure member.
  • the piston, the counter-pressure member and the direction of the pull should of course be coaxial as far as possible, it has, however, turned out that the requirements for accuracy in this respect are no greater than can be easily fulfilled in practice on the building site.
  • the simplest shape of the piston and of the counterpressure member is the circular one, dispensing with any need for relatively orientating the piston and the counter-pressure member, yet nothing prevents the piston and the counter-pressure member from having another shape, e.g. square, rectangular or any other polygonal shape.
  • the method can be carried out, as indicated in the drawing, also in its application in practice up to the complete fracture, since the craters produced are of no importance to the strength of the entire structure and since they can easily be filled in. In practice, it is thus possible to work with a piston diameter and an embedding depth of only approximately 25 mm. and a diameter of the counter-pressure member of approximately 55 mm.
  • Apparatus for testing the strength of structures cast from material such as concrete comprising in combination, a piston adapted to be embedded in cast material whose strength is to be tester, a pull member having one end adapted to be connected to said piston for purposes of applying a pulling force on said piston along the axial direction of said piston and pull member, and an annular counter pressure member adapted to be applied against a surface of a structure to be tested around said pull member to act an an abutment opposing the force on the structure exerted *by the piston as a result of the pulling force through said pull member, said annular counter pressure member enclosing an area several times larger than the area on the face of said piston, and being axially spaced from said piston when in use such that they define a truncated cone having an apex angle of at least about 60.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

N v- 1970 P. KlERKEGAARD-HANSEN 3, 8
METHOD FOR TESTING THE STRENGTH OF THE MATERIAL OF CAST STRUCTURES, PARTICULARLY CONCRETE STRUCTURES Filed April 2, .1968
" INVENTOR RETER MIG-RKE-GAARD- ANSEN BY A s fl g Ewe/1.1a!
ATTORNEYS United States Patent Oifice 3,541,845 Patented Nov. 24, 1970 METHOD FOR TESTING THE STRENGTH OF THE MATERIAL F CAST STRUCTURES, PARTICU- LARLY CONCRETE STRUCTURES Peter Kierkegaard-Hansen, Nordahl Griegs Vej 16, Soborg, Denmark Filed Apr. 2, 1968, Ser. No. 718,077 Int. Cl. GOln 3/08 U.S. Cl. 73-95 4 Claims ABSTRACT OF THE DISCLOSURE In a concrete structure, in which the test is to take place, a metal piston, for instance in the shape of a cylindrical block, is embedded in the concrete near one of the structures surfaces. A counter-pressure member is placed to rest on said surface and coaxially to the piston. A force is exerted towards the exterior following the axis of the two pieces, the dimensions of which are such and the spacing between them is such that the force of extraction of the piston causes the concrete to fracture forming a frusto-conical face, the piston and the counter-pressure member forming the small and the large base, respectively, of the truncated cone.
SUMMARY OF INVENTION The invention relates to a method which can be employed for the determination and control of characteristic physical properties of the material in cast structures, in particular concrete structures.
The methods commonly used in performing such tests rely on separate specimens cast simultaneously with the casting of the structure and subsequently subjected to tests carried out in accordance with specific rules. The tests concern primarily the determination or the checking of the compressive strength of the material, which, as a rule, is being determined by axial crushing of cylindrical specimens of given dimensions, however, the tensile strength as well as the shear strength of the material is also tested by means of appropriate methods.
The circumstance that these testing procedures operate with separately produced specimens is disadvantageous and has an inherent uncertainty, since these specimens, during their manufacture, may easily acquire properties that dilfer from those of the actual structure and besides, are also liable to being mistaken for others and to similar errors. Accordingly, suggestions have been put forward, which aim at the requisite tests being carried out on the completed structure itself. Thus, it was proposed to test the tensile strength of the material by means of casting spherical bodies into the structure together with the concrete and to extract them again after the setting of the concrete. The force required for the extraction was then to be taken as a measure of the concretes tensile strength. It has been proved, however, that it is not possible in this manner to obtain a useful correlation between the traction used and the tensile strength of the concrete determined by other methods, which is presumably connected with the circumstance that the area of fracture produced by the extraction of the spherical body varies greatly from test to test in both shape and size, with the result that the stresses become an undefined composition of tensile and shear stresses.
A proposal for the determination of the shear strength has also become known based on extracting a piston cast into the concrete through a coaxial cylinder likewise cast into the concrete and having an inner diameter corresponding to the outer diameter of the piston. However, this method is connected with great practical difiiculties,
since a high degree of accuracy is required when centering the piston with regard to the cylinder and when centering the line of application of force. Moreover, tests show that the values for the shear strength of the concrete measured according to this method lie considerably higher than the values determined in other ways. Presumably, the cause for this lies in the circumstance that the plug to be extracted from the concrete expands when being axially compressed in the hole.
So far as is known, no testing method yielding a reliable measure for the perhaps most important strength property of the materials in question, viz. the compressive strength, other than those involving the testing of separately produced specimen, has so far been available.
It is the purpose of the invention to provide a method based on the resistance of the material against destruction and which can be carried out easily on the very material of the structure, and which hereby renders reliable measures for or check on the most important strength properties of this material, the compressive strength in particular. Furthermore, the method can be carried out simply and inexpensively in practice.
The present method is of the type in which the test is performed by outwards pull on a piston embedded in the material towards the adjacent surface of the structure and the novelty of the invention consists in that the reaction of the force of this pull is transmitted to the structure by means of a counter-pressure member abutting against the surface in question with an area surrounding the projection of the piston on the surface in the direction of the force and which delineates an area of this surface which is several times larger than the projection of the piston. Hereby is achieved that the surface upon which the forces, affecting the part of the material of the structure influenced by the test act, will be precisely defined, so that a well-defined stress distribution is obtained as well as a fracture face, the shape and size of which can be selected at discretion by coordinating the relative dimensions of the piston, the counter-pressure member and the spacing between them. Thus, it is possible to direct the fracture in such a way that the tractional force required for producing the fracture becomes an exponent for a certain property of the material and can be used directly as a measure of same.
Thus, if the dimensions of the piston and of the counterpressure member are selected in such a manner in relation to each other and to the spacing between same in the direction of the pull that together they define a truncated cone with a vertical angle of about 60, a frusto-conical fracture face will ensue with the counter-pressure member and the piston as the large and the small base, respectively, and with a half apex angle of approximately 30, i.e. fracture face, which corresponds wholly to the shape of the fracture face, produced in the axial crushing of a cylindrical specimen for the determination of the compressive strength of the material. Comparative tests have demonstrated that the requisite force of extraction in these circumstances is so close to being proportional to the compressive strength determined by the cylinder compressive strength test that the force of extraction can serve as a measure of the compressive strength of the material.
If, according to another embodiment of the invention, the dimensions of piston and counter-pressure memher and the spacing between these are coordinated in such a way, that piston and counter-pressure member together define a frusto-conical surface with a very large apex angle, i.e. an apex angle of at least such a fiat fracture is formed when the piston is being extracted that the force of extraction constitutes a useful measure of the tensile strength of the material. Conversely, a counter-pressure member, the diameter of which is only slightly larger than that of the piston, can entail forces of extraction that constitute useful measures for the strength of the material determined by means of triaxial tests.
In the following the invention is described in greater detail while referring to the drawing, which shows partly diagrammatically a sectional view of a concrete structure which is being tested by the method according to the invention.
In the drawing, 1 designates a part of the concrete structure, the surface of which is designated with 2. A piston 3, which is shaped like a cylindrical metal block and which in the centre is provided with a tapped hole, is cast into the concrete, the piston having been secured to the form by means of a filling body, which, after the forms removal has been screwed out of the piston and which left a hole 4. A pull rod has been inserted through this hole and screwed down in the piston 3 and is during the test subjected to a tractional force T, which is directed in an outward direction.
Around the rod 5 and approximately coaxially with same a counter-pressure member 6 in the form of a ring is arranged, the end face of which tests on the surface of the concrete 2 and the inner diameter of which is adapted to the diameter of the piston 3 as Well as to the depth, at which same is embedded in the concrete, so that the fracture face, which is determined by the circumference of the piston 3 and the inscribed circle of the counter-pressure member 6, assumes the shape of a truncated cone, half of the apex angle of which measures about 30. On account of this, the fracture faces attain substantially the same shape as one half of the well-known hour-glass-shaped fracture faces, which are produced in compressive strength tests of cylindrical specimens, and tests have shown that the tractional force T required for causing the fracture in these circumstances, is in the main proportional to the compressive strength determined in such a compressive strength test of cylindrical specimen of the same concrete. It is in this connection of importance that the reaction R of the force of traction is defined exactly with regard to the piston 3 by means of the counter-pressure member 6, whereby the specific desired stress distribution, which, at the instant of fracture leads to the shown frusto-conical shaped fracture face is positively enforced.
As already indicated, the shape and size of the fracture face can be varied considerably by varying the absolute and relative values for the size of the piston 3, the counter-pressure member 6 and the spacing between these; it is only important that these dimensions be kept within such limits that a stress distribution is developed, which, at the instant of fragture leads to a fracture face which is determined by the circumference of the piston and the inner circumference of the counterpressure member.
By variation of these dimensions, as explained above, measures of other properties of the material than the pure compressive strength can be obtained.
The piston, the counter-pressure member and the direction of the pull should of course be coaxial as far as possible, it has, however, turned out that the requirements for accuracy in this respect are no greater than can be easily fulfilled in practice on the building site.
The simplest shape of the piston and of the counterpressure member is the circular one, dispensing with any need for relatively orientating the piston and the counter-pressure member, yet nothing prevents the piston and the counter-pressure member from having another shape, e.g. square, rectangular or any other polygonal shape. i l
The method can be carried out, as indicated in the drawing, also in its application in practice up to the complete fracture, since the craters produced are of no importance to the strength of the entire structure and since they can easily be filled in. In practice, it is thus possible to work with a piston diameter and an embedding depth of only approximately 25 mm. and a diameter of the counter-pressure member of approximately 55 mm.
If it is only desired to check whether the material satisfies a specified requirement as to its strength, it is sufficient to lead to a pull up to the corresponding force of traction. When using statistical quality control, it is also possible to operate with a pull smaller than the one corresponding to the specified strength and thus to avoid a fracture of the material in most cases. Incidentally, it is thus possible to repeat the check at later dates, e.g. for the purpose of testing the durability of the material.
What I claim is:
1. Apparatus for testing the strength of structures cast from material such as concrete, the apparatus comprising in combination, a piston adapted to be embedded in cast material whose strength is to be tester, a pull member having one end adapted to be connected to said piston for purposes of applying a pulling force on said piston along the axial direction of said piston and pull member, and an annular counter pressure member adapted to be applied against a surface of a structure to be tested around said pull member to act an an abutment opposing the force on the structure exerted *by the piston as a result of the pulling force through said pull member, said annular counter pressure member enclosing an area several times larger than the area on the face of said piston, and being axially spaced from said piston when in use such that they define a truncated cone having an apex angle of at least about 60.
2. The apparatus defined in claim 1 further including means on said one end of said pull member and on said piston for releasably securing said pull member to said piston.
3. Apparatus defined in claim 2 wherein said last defined means includes screw threads.
4. In the combination including a cast structure of concrete or the like having a piston embedded therein and a pull member fixed centrally to said piston and projecting generally normally therefrom beyond a surface of said cast structure; the improvement comprising an annular counter pressure member secured against said surface of the structure concentrically about said .pull member to act as an abutment opposing forces on the structure resulting from pulling the piston outwardly through said pull member, said annular counter pressure member surrounding and defining an area on said surface of said structure several times larger than the projected area of said piston, and being axially spaced from said piston when in use such that they define a truncated cone having an apex angle of at least about 60.
References Cited UNITED STATES PATENTS 3,182,493 5/1965 Patterson et al. 73-95 FOREIGN PATENTS 1,215,958 5/1966 Germany.
JERRY W. MYRACLE, Primary Examiner U.S. Cl. X.R, 73101
US718077A 1968-03-29 1968-04-02 Method for testing the strength of the material of cast structures,particularly concrete structures Expired - Lifetime US3541845A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB05355/68A GB1214932A (en) 1968-03-29 1968-03-29 Improvements in and relating to methods for testing the strength of the material of cast structures, such as concrete structures
CH493668A CH484423A (en) 1968-03-29 1968-04-01 Method and device for testing the material strength of cast structures, in particular concrete structures
US71807768A 1968-04-02 1968-04-02
FR146892 1968-04-03
NL6804733A NL6804733A (en) 1968-03-29 1968-04-04

Publications (1)

Publication Number Publication Date
US3541845A true US3541845A (en) 1970-11-24

Family

ID=27509222

Family Applications (1)

Application Number Title Priority Date Filing Date
US718077A Expired - Lifetime US3541845A (en) 1968-03-29 1968-04-02 Method for testing the strength of the material of cast structures,particularly concrete structures

Country Status (5)

Country Link
US (1) US3541845A (en)
CH (1) CH484423A (en)
FR (1) FR1574024A (en)
GB (1) GB1214932A (en)
NL (1) NL6804733A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861201A (en) * 1972-06-12 1975-01-21 Richards Owen Method and apparatus for early strength testing of in-place concrete
US4501153A (en) * 1981-02-23 1985-02-26 Ferenc Mehes Test machine for determining concrete strength
US5592283A (en) * 1995-04-03 1997-01-07 Westinghouse Hanford Company Testing of concrete by laser ablation
US6510743B2 (en) 2000-04-13 2003-01-28 Mcafee Ralph Glenn Reusable in situ concrete test specimen apparatus and method
US7621186B2 (en) * 2007-01-31 2009-11-24 Halliburton Energy Services, Inc. Testing mechanical properties
US8601882B2 (en) 2009-02-20 2013-12-10 Halliburton Energy Sevices, Inc. In situ testing of mechanical properties of cementitious materials
US8783091B2 (en) 2009-10-28 2014-07-22 Halliburton Energy Services, Inc. Cement testing
US8794078B2 (en) 2012-07-05 2014-08-05 Halliburton Energy Services, Inc. Cement testing
US8960013B2 (en) 2012-03-01 2015-02-24 Halliburton Energy Services, Inc. Cement testing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO751978L (en) * 1975-06-05 1976-10-11 Sintef Procedure for in situ determination of concrete strength.
IT1181003B (en) * 1984-08-03 1987-09-23 Fiorenzo Meneghetti PROCEDURE FOR THE ON-SITE ANALYSIS OF THE QUALITY OF CONCRETE AND MEANS TO IMPLEMENT THE PROCEDURE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3182493A (en) * 1962-06-19 1965-05-11 Patterson Wilhelm Apparatus for measuring the tensile strength of green sand
DE1215958B (en) * 1964-01-25 1966-05-05 Franz Kaindl Dipl Ing Method and device for quality testing of concrete u. like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3182493A (en) * 1962-06-19 1965-05-11 Patterson Wilhelm Apparatus for measuring the tensile strength of green sand
DE1215958B (en) * 1964-01-25 1966-05-05 Franz Kaindl Dipl Ing Method and device for quality testing of concrete u. like

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861201A (en) * 1972-06-12 1975-01-21 Richards Owen Method and apparatus for early strength testing of in-place concrete
US4501153A (en) * 1981-02-23 1985-02-26 Ferenc Mehes Test machine for determining concrete strength
US5592283A (en) * 1995-04-03 1997-01-07 Westinghouse Hanford Company Testing of concrete by laser ablation
US6510743B2 (en) 2000-04-13 2003-01-28 Mcafee Ralph Glenn Reusable in situ concrete test specimen apparatus and method
US7621186B2 (en) * 2007-01-31 2009-11-24 Halliburton Energy Services, Inc. Testing mechanical properties
US8601882B2 (en) 2009-02-20 2013-12-10 Halliburton Energy Sevices, Inc. In situ testing of mechanical properties of cementitious materials
US8783091B2 (en) 2009-10-28 2014-07-22 Halliburton Energy Services, Inc. Cement testing
US9594009B2 (en) 2009-10-28 2017-03-14 Halliburton Energy Services, Inc. Cement testing
US8960013B2 (en) 2012-03-01 2015-02-24 Halliburton Energy Services, Inc. Cement testing
US9500573B2 (en) 2012-03-01 2016-11-22 Halliburton Energy Services, Inc. Cement testing
US8794078B2 (en) 2012-07-05 2014-08-05 Halliburton Energy Services, Inc. Cement testing

Also Published As

Publication number Publication date
NL6804733A (en) 1969-10-07
FR1574024A (en) 1969-07-11
GB1214932A (en) 1970-12-09
CH484423A (en) 1970-01-15

Similar Documents

Publication Publication Date Title
US3541845A (en) Method for testing the strength of the material of cast structures,particularly concrete structures
US3799108A (en) Strain indicator and method
CN107687973B (en) Method for testing dynamic point load strength of rock material by using Hopkinson pressure bar
US3640126A (en) Testing of concrete
Brace Behavior of rock salt, limestone, and anhydrite during indentation
FI73080B (en) PROVANING FOER BESTAEMNING AV HAOLLFASTHETEN HOS BETONG.
US2578031A (en) Apparatus for transversely testing cylindrical members
XU et al. Experimental study of generalized stress relaxation of rock based on 3D-DIC technology
US3610031A (en) Combined load testing device
RU2620782C1 (en) Testing method of cowl ceramic shells
Masoumi et al. A modification to radial strain calculation in rock testing
US3111840A (en) Hydraulic tensile tester for ring structures
JPH0579928A (en) Residual stress measuring method and device
DE1273865B (en) Device for measuring the tensile strength of molding sands
EP0188586A1 (en) METHOD OF $g(IN SITU) TESTING CONCRETE FOR QUALITY, AND MEANS FOR IMPLEMENTING THE METHOD
US2341270A (en) Hydraulic testing machine and method of testing
US1998722A (en) Stabilometer
RU2660313C2 (en) Test bench for simulation of the soil deformation process around the expanding well
CN107558990B (en) Testing device for high-gas soft coal drilling slag yield and drilling deformation
US7240538B1 (en) Hydro test apparatus and method for ammunition
Stables et al. An improved load measuring device for underground mining standing supports
US2030475A (en) Penetrator-stem for hardnessindicating apparatus
US3517551A (en) Tensile test device
US11761864B2 (en) Thick-wall cylinder experiment setup for wellbore stability analysis
NO812550L (en) PROCEDURE FOR AA TESTING MATERIAL HARDNESS AND A PRESSURE BODY FOR AA EXECUTE THE PROCEDURE