US3554918A - Azeotropic composition - Google Patents

Azeotropic composition Download PDF

Info

Publication number
US3554918A
US3554918A US677715A US3554918DA US3554918A US 3554918 A US3554918 A US 3554918A US 677715 A US677715 A US 677715A US 3554918D A US3554918D A US 3554918DA US 3554918 A US3554918 A US 3554918A
Authority
US
United States
Prior art keywords
solvent
azeotropes
azeotropic
tetrachlorodifluoroethane
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US677715A
Inventor
John Allan Schofield
Roger A Delano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Application granted granted Critical
Publication of US3554918A publication Critical patent/US3554918A/en
Assigned to MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MORGAN BANK ( DELAWARE ) AS COLLATERAL ( AGENTS ) SEE RECORD FOR THE REMAINING ASSIGNEES. reassignment MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MORGAN BANK ( DELAWARE ) AS COLLATERAL ( AGENTS ) SEE RECORD FOR THE REMAINING ASSIGNEES. MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: STP CORPORATION, A CORP. OF DE.,, UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,, UNION CARBIDE CORPORATION, A CORP.,, UNION CARBIDE EUROPE S.A., A SWISS CORP.
Assigned to UNION CARBIDE CORPORATION, reassignment UNION CARBIDE CORPORATION, RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN BANK (DELAWARE) AS COLLATERAL AGENT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/028Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons
    • C23G5/02809Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons containing chlorine and fluorine
    • C23G5/02812Perhalogenated hydrocarbons
    • C23G5/02816Ethanes
    • C23G5/02822C2Cl4F2
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/5068Mixtures of halogenated and non-halogenated solvents
    • C11D7/5077Mixtures of only oxygen-containing solvents
    • C11D7/5081Mixtures of only oxygen-containing solvents the oxygen-containing solvents being alcohols only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/028Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons
    • C23G5/02806Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons containing only chlorine as halogen atom

Definitions

  • This invention relates to an azeotropic composition and particularly to the binary and ternary azeotropic mixture of tetrachlorodifiuoroethane and methanol or any one of the isomers, n-butanol or iso-butanol of sec.- butanol.
  • the present invention also relates to ternary azeotropes of tetrachlorodifluoroethane and trichloroethylene with either methanol or ethanol or isopropanol.
  • ternary azeotropes have been discovered comprising tetrachlorodifluoroethane, trichloroethane and either methanol or ethanol or isopropanol.
  • chlorofiuoroethanes have attained widespread use as specialty solvents in recent years, particularly tetrachlorofluoroethant.
  • This is a relatively high melting compound (CCl FCCl F, 24.5 C.), which is nontoxic and nonflammable, and which has satisfactory solvent power for greases, oils, waxes and the like under certain conditions. It has therefore found use in cleaning electric motors, compressors, lithographic plates, typewriters, instruments, gauges, and as non-corrosive brines.
  • Printed circuits are well known in the electronics art; and consist of a circuit formed from a soft metal on a solid, non-conducting surface such as a reinforced phenolic resin. During manufacture, the solid surface is coated with the metal, the desired portion of metal is coated with an impervious coating, and the excess metal is removed by etching with a suitable acid. After the excess metal has been removed, it is necessary to remove the impervious coating because solder joints must be made to the printed circuit and these will not form if the coating is present. After the impervious coating is removed, the circuits are coated with a rosin flux to permit the joints to be soldered, after which the rosin flux must then be removed.
  • the chlorofiuoroethane solvent does not have sufficient solvent power to clean printed circuits; that is, to effectively remove the rosin flux.
  • mixtures of solvents may be used for this purpose they have the disadvantage that they boil over a range of temperatures and consequently undergo fractionation in vapor degreasing or ultrasonic applications which are open to the atmosphere.
  • the solvent When employing either of these cleaning or degreasing methods the solvent must also be both relatively nontoxic and nonflammable for safety reasons.
  • Tetrachlorodifluoroethane is a relatively high boiling fluorocarbon and for this reason is especially advantageous in vapor degreasing applications since at these temperatures the hot vapor has more of a tendency to dissolve high melting greases, or fluxes as well as oil residues and the like.
  • the solvent vapors tend to condense on the article until the articles are heated by the vapors from room temperature up to the temperature of the vapor.
  • the condensation thus formed 3,554,918 Patented Jan. 12, 1971 ice on the articles tends to drip back into the solvent reservoir taking with it some of the soil on the article. For this reason the ability of a cleaning solvent to condense on the surface is especially advantageous.
  • Tetrachlorodifluoroethane also is a better solvent than materials such as trichlorotrifluoromethane, however, it suffers the disadvantage that it is solidus at room temperature whereas the latter is liquidus. Accordingly tetrachlorodifluoroethane is more diflicult to handle than liquid type cleaning solvents.
  • the above object of this invention may be accomplished by a novel binary azeotropic composition of tetrachlorodifiuoroethane (e.g. 1,1,2,2-tetrachloro-1,2-difluoroethane) and either methanol or n-butanol or secondary butanol or iso-butanol; ternary azeotropes of tetrachlorodifluoroethane (e.g., 1,1,2,2-tetrachloro-1,2-difluoroethane) trichloroethylene and either methanol or ethanol or isopropanol; and ternary azeotropes of tetrachlorodifiuoroethane (e.g.
  • 1,1,2,2-tetrachloro 1,Z-difluoroethane 1,1,2,2-tetrachloro 1,Z-difluoroethane
  • trichloroethane e.g. 1,1,1-trichloroethane
  • methanol or ethanol or isopropanol 1,1,2,2-tetrachloro-1,Z-difluoroethane
  • 1,1,2,2-tetrachloro-1,Z-difluoroethane is a preferred tetrachlorodifluoroethane
  • the isomer, 1,l,1,2-tetrachloro-2,2- difluoroethane may be substituted therefore in whole or in part and especially in minor amounts or trace amounts.
  • the preferred trichloroethane comprises the 1,1,1-trichloroethane isomer.
  • All of these mixtures form azeotropes which distill at a constant temperature, the liquid phase and the vapor phase in equilibrium therewith having the same composition.
  • Such mixture is relatively nonflammable and nontoxic in both the liquid phase and the vapor phase.
  • These mixtures are particularly. useful as solvents for greases, oils, waxes, and the like and cleaning electric motors, compressors, lithographic plates, typewriters, precision instruments, gauges, and the like and are particular useful for cleaning printed circuits.
  • the azeotropic mixtures are obtained at approximately 760 mm. Hg a variation in pressure and consequently a change in the compositions and boiling points are also intended to be within the broad scope of the invention.
  • the azeotropes may contain many different proportions of all of the aforementioned components provided a constant boiling mixture is obtained at the various pressures at which the compositions are used. Stated otherwise any pressure may be employed to obtain the azeotropes of this invention as long as a three com ponent or two component constant boiling mixture is obtained, and accordingly the ratio of components of the azeotropes of the invention will also vary.
  • the present invention relates to the aforementioned azeotropes that boil at atmospheric pressure i about 25, especially 1 about 15 mm. Hg.
  • Example IIX The method of Example I is repeated using different mixtures of alcohols and/or 1,1,1-trichloroethane or trichloroethylene and 1,1,2,2-tetrachloro-1,2-difluoroethane, the results of which are as follows:
  • the board is then passed over a molten solder bath, contacting the desired joints with the molten metal, whereby the soldering is effected. After cooling, the excess rosin flux remaining on the board must be removed since, if present in the final assemly, it will lead to corrosion, poor electrical resistance and other deleterious properties.
  • the board is cleaned by placing it in an ultrasonic bath of any of the aforementioned azeotropes and operating at about 32 kilocycles per second at about 1020 F. belowtheboiling point of the particular azeotrope for about one minute.
  • An azeotropic mixture consisting essentially of about 24.3 parts 1,1,2,2-tetrachloro-1,2-di-fluorocthane,
  • Printed circuit boards are usually prepared by impregnating glass cloth, nylon, or paper laminates with a phenolformaldehyde resin or an epoxy resin.
  • Printed circuits are prepared by a variety of methods. In a typical procedure, the board consists originally of a phenolic resin impregnated base to which is bonded a sheet of copper, 2 to 4 mils thick, covering one surface of the board, The desired circuit is drawn on the copper with an asphalt based ink using the silk screen method.
  • excess copper is then removed by etching with a ferric about 30.9 parts i-propanol and about 44.8 parts trichloroethylene on a weight basis.

Abstract

THE DISCLOSURE ALSO RELATES TO TERNARY AZEOTROPES OF TETRACHLORODIFLUOROETHANE AND TRICHLOROETHYLENE WITH ISOPROPANOL.

Description

United States Patent 3,554,918 AZEOTROPIC COMPOSITION John Allan Schofield, Irvington, and Roger A. Delano,
Dobbs Ferry, N.Y., assignors to Union Carbide Corporation, a corporation of New York No Drawing. Filed Oct. 24, 1967, Ser. No. 677,715 Int. Cl. C09d 9/00; Clld 7/50; C23g /02 US. Cl. 252171 1 Claim ABSTRACT OF THE DISCLOSURE The disclosure also relates to ternary azeotropes of tetrachlorodifluoroethane and trichloroethylene with isopropanol.
This invention relates to an azeotropic composition and particularly to the binary and ternary azeotropic mixture of tetrachlorodifiuoroethane and methanol or any one of the isomers, n-butanol or iso-butanol of sec.- butanol. The present invention also relates to ternary azeotropes of tetrachlorodifluoroethane and trichloroethylene with either methanol or ethanol or isopropanol. In a further embodiment ternary azeotropes have been discovered comprising tetrachlorodifluoroethane, trichloroethane and either methanol or ethanol or isopropanol.
Several of the chlorofiuoroethanes have attained widespread use as specialty solvents in recent years, particularly tetrachlorofluoroethant. This is a relatively high melting compound (CCl FCCl F, 24.5 C.), which is nontoxic and nonflammable, and which has satisfactory solvent power for greases, oils, waxes and the like under certain conditions. It has therefore found use in cleaning electric motors, compressors, lithographic plates, typewriters, instruments, gauges, and as non-corrosive brines.
For certain solvent purposes however, the chlorofluoroethanes alone have insufficient solvent power. This is particularly true in the electronic industry during the manufacture of printed circuits. Printed circuits are well known in the electronics art; and consist of a circuit formed from a soft metal on a solid, non-conducting surface such as a reinforced phenolic resin. During manufacture, the solid surface is coated with the metal, the desired portion of metal is coated with an impervious coating, and the excess metal is removed by etching with a suitable acid. After the excess metal has been removed, it is necessary to remove the impervious coating because solder joints must be made to the printed circuit and these will not form if the coating is present. After the impervious coating is removed, the circuits are coated with a rosin flux to permit the joints to be soldered, after which the rosin flux must then be removed.
The chlorofiuoroethane solvent does not have sufficient solvent power to clean printed circuits; that is, to effectively remove the rosin flux. Although mixtures of solvents may be used for this purpose they have the disadvantage that they boil over a range of temperatures and consequently undergo fractionation in vapor degreasing or ultrasonic applications which are open to the atmosphere. When employing either of these cleaning or degreasing methods the solvent must also be both relatively nontoxic and nonflammable for safety reasons.
Tetrachlorodifluoroethane is a relatively high boiling fluorocarbon and for this reason is especially advantageous in vapor degreasing applications since at these temperatures the hot vapor has more of a tendency to dissolve high melting greases, or fluxes as well as oil residues and the like. When articles such as circuit boards are passed through a vapor degreaser, the solvent vapors tend to condense on the article until the articles are heated by the vapors from room temperature up to the temperature of the vapor. The condensation thus formed 3,554,918 Patented Jan. 12, 1971 ice on the articles tends to drip back into the solvent reservoir taking with it some of the soil on the article. For this reason the ability of a cleaning solvent to condense on the surface is especially advantageous. Higher boiling solvents prolong this condensation effect in a continuous degreaser since it takes a greater amount of time to bring the article passing through the degreaser up to the vapor temperature of the solvent. Consequently higher boiling solvents generally have better cleaning power per unit of time in a continuous vapor degreaser than the lower boiling solvents.
Tetrachlorodifluoroethane also is a better solvent than materials such as trichlorotrifluoromethane, however, it suffers the disadvantage that it is solidus at room temperature whereas the latter is liquidus. Accordingly tetrachlorodifluoroethane is more diflicult to handle than liquid type cleaning solvents.
It is an object of this invention to provide a constant boiling or azeotropic solvent that is a liquid at room temperature, will not fractionate and also has the foregoing advantages. Another object is to provide an azeotropic composition which is valuable as a solvent and particularly for cleaning printed circuits. A further object is to provide an azeotropic composition which is both relatively nontoxic and nonflammable both in the liquid phase and in the vapor phase and which at the same time is an excellent solvent for cleaning printed circuits especially by means of a continuous vapor degreasing machine.
The above object of this invention may be accomplished by a novel binary azeotropic composition of tetrachlorodifiuoroethane (e.g. 1,1,2,2-tetrachloro-1,2-difluoroethane) and either methanol or n-butanol or secondary butanol or iso-butanol; ternary azeotropes of tetrachlorodifluoroethane (e.g., 1,1,2,2-tetrachloro-1,2-difluoroethane) trichloroethylene and either methanol or ethanol or isopropanol; and ternary azeotropes of tetrachlorodifiuoroethane (e.g. 1,1,2,2-tetrachloro 1,Z-difluoroethane), trichloroethane (e.g. 1,1,1-trichloroethane) and either methanol or ethanol or isopropanol. Although 1,1,2,2-tetrachloro-1,Z-difluoroethane is a preferred tetrachlorodifluoroethane, the isomer, 1,l,1,2-tetrachloro-2,2- difluoroethane may be substituted therefore in whole or in part and especially in minor amounts or trace amounts. The preferred trichloroethane comprises the 1,1,1-trichloroethane isomer. All of these mixtures form azeotropes which distill at a constant temperature, the liquid phase and the vapor phase in equilibrium therewith having the same composition. Such mixture is relatively nonflammable and nontoxic in both the liquid phase and the vapor phase. These mixtures are particularly. useful as solvents for greases, oils, waxes, and the like and cleaning electric motors, compressors, lithographic plates, typewriters, precision instruments, gauges, and the like and are particular useful for cleaning printed circuits.
Although the azeotropic mixtures are obtained at approximately 760 mm. Hg a variation in pressure and consequently a change in the compositions and boiling points are also intended to be within the broad scope of the invention. Thus the azeotropes may contain many different proportions of all of the aforementioned components provided a constant boiling mixture is obtained at the various pressures at which the compositions are used. Stated otherwise any pressure may be employed to obtain the azeotropes of this invention as long as a three com ponent or two component constant boiling mixture is obtained, and accordingly the ratio of components of the azeotropes of the invention will also vary. The variation of components is thus within the skill of the art and is easily determined once it is known that the halogenated hydrocarbons of this invention will form the aforementioned azeotropes. In a preferred embodiment the present invention relates to the aforementioned azeotropes that boil at atmospheric pressure i about 25, especially 1 about 15 mm. Hg.
EXAMPLE I Composition Boiling point,
percent by F. 760 mm.
Components weight Hg 1,1,2,2-tetraehloro-l,2-dilluoroetltane 69. 3 140 Methanol 30. 7
EXAMPLES IIX The method of Example I is repeated using different mixtures of alcohols and/or 1,1,1-trichloroethane or trichloroethylene and 1,1,2,2-tetrachloro-1,2-difluoroethane, the results of which are as follows:
ing to the circuit. The board is then passed over a molten solder bath, contacting the desired joints with the molten metal, whereby the soldering is effected. After cooling, the excess rosin flux remaining on the board must be removed since, if present in the final assemly, it will lead to corrosion, poor electrical resistance and other deleterious properties.
The board is cleaned by placing it in an ultrasonic bath of any of the aforementioned azeotropes and operating at about 32 kilocycles per second at about 1020 F. belowtheboiling point of the particular azeotrope for about one minute.
When the board is cleaned with the azeotropic mixtures of this invention substantially all of the rosin flux is removed without any detrimental eifect on the board which constitutes the backing of the printed circuit.
Although the invention has been described by reference to some preferred embodiments it is not intended that the broad scope of the novel azeotropic compositions be limited thereby but that certain modifications are intended to be included within the spirit and broad scope of the following claim.
What is claimed is:
1. An azeotropic mixture consisting essentially of about 24.3 parts 1,1,2,2-tetrachloro-1,2-di-fluorocthane,
Components, percent by weight 1,1,1- 1,1,2,2-tetrai- Tritri- Boiling chloro-LZ-di- Metha Ironisehloloehloropoint, Mm. Hg fluoroethane nel Ethanol panol I3 utanol Butauol Butauol ethylene ethane F. pressure Exam 10 No.:
Printed circuit boards are usually prepared by impregnating glass cloth, nylon, or paper laminates with a phenolformaldehyde resin or an epoxy resin. Printed circuits are prepared by a variety of methods. In a typical procedure, the board consists originally of a phenolic resin impregnated base to which is bonded a sheet of copper, 2 to 4 mils thick, covering one surface of the board, The desired circuit is drawn on the copper with an asphalt based ink using the silk screen method. The
excess copper is then removed by etching with a ferric about 30.9 parts i-propanol and about 44.8 parts trichloroethylene on a weight basis.
References Cited UNITED STATES PATENTS 11/1966 Hirsch et al. 252171 OTHER REFERENCES Mellan: Industrial Solvents, Reinhold Publ. Co. (1950) page 75.
Handbook of Chem. & Physics (48 ed.) The Chem. Rubber Co. (1967') page D21.
LEON D. ROSDOL, Primary Examiner W. E. SCHULZ, Assistant Examiner U.S. Cl. X.R.
US677715A 1967-10-24 1967-10-24 Azeotropic composition Expired - Lifetime US3554918A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US67771567A 1967-10-24 1967-10-24
US5408470A 1970-06-02 1970-06-02
US5408570A 1970-06-02 1970-06-02
US5408370A 1970-06-02 1970-06-02
US5408170A 1970-06-02 1970-06-02
US5408270A 1970-06-02 1970-06-02
US5408670A 1970-06-02 1970-06-02
US00255972A US3833507A (en) 1967-10-24 1972-05-23 Azeotropic composition

Publications (1)

Publication Number Publication Date
US3554918A true US3554918A (en) 1971-01-12

Family

ID=27574375

Family Applications (8)

Application Number Title Priority Date Filing Date
US677715D Pending USB677715I5 (en) 1967-10-24
US677715A Expired - Lifetime US3554918A (en) 1967-10-24 1967-10-24 Azeotropic composition
US54082A Expired - Lifetime US3671443A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54086A Expired - Lifetime US3671445A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54081A Expired - Lifetime US3671442A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54084A Expired - Lifetime US3671444A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54085A Expired - Lifetime US3671446A (en) 1967-10-24 1970-06-02 Azeotropic composition
US00255972A Expired - Lifetime US3833507A (en) 1967-10-24 1972-05-23 Azeotropic composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US677715D Pending USB677715I5 (en) 1967-10-24

Family Applications After (6)

Application Number Title Priority Date Filing Date
US54082A Expired - Lifetime US3671443A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54086A Expired - Lifetime US3671445A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54081A Expired - Lifetime US3671442A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54084A Expired - Lifetime US3671444A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54085A Expired - Lifetime US3671446A (en) 1967-10-24 1970-06-02 Azeotropic composition
US00255972A Expired - Lifetime US3833507A (en) 1967-10-24 1972-05-23 Azeotropic composition

Country Status (2)

Country Link
US (8) US3554918A (en)
CA (1) CA955820A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904542A (en) * 1973-03-06 1975-09-09 Phillips Petroleum Co Azeotropic composition of fluorocarbon
US3957530A (en) * 1973-03-06 1976-05-18 Phillips Petroleum Company Ternary azeotropic paint stripping compositions
US4035258A (en) * 1973-08-27 1977-07-12 Phillips Petroleum Company Azeotropic compositions
US4169807A (en) * 1978-03-20 1979-10-02 Rca Corporation Novel solvent drying agent
US6342471B1 (en) * 2000-01-25 2002-01-29 Toney M. Jackson Electrical contact cleaner

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936387A (en) * 1972-02-04 1976-02-03 Phillips Petroleum Company Azeotrope of 1,2-dichloro-1-fluoroethane and methanol
US4023984A (en) * 1973-02-02 1977-05-17 Imperial Chemical Industries Limited Azeotropic solvent composition for cleaning
JPS5958099A (en) * 1982-09-27 1984-04-03 ダイキン工業株式会社 Detergent composition
US4524011A (en) * 1982-11-08 1985-06-18 The Dow Chemical Company Flux removal solvent blend
JPS59113189A (en) * 1982-11-08 1984-06-29 ザ・ダウ・ケミカル・カンパニ− Flux remove solvent mixture
JPS61190596A (en) * 1985-02-20 1986-08-25 ダイキン工業株式会社 Azeotropic composition
DE3702399A1 (en) * 1987-01-28 1988-08-11 Kali Chemie Ag NEW MIXTURES WITH DIFLUORTETRACHLORAETHANE
US5514221A (en) * 1993-04-15 1996-05-07 Elf Atochem North America, Inc. Cold cleaning process
US5552080A (en) * 1993-04-15 1996-09-03 Elf Atochem North America, Inc. Cold cleaning solvents
FR2855069B1 (en) * 2003-05-22 2006-06-16 Solvay PROCESS FOR THE SEPARATION OF AT LEAST ONE ORGANIC COMPOUND

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904542A (en) * 1973-03-06 1975-09-09 Phillips Petroleum Co Azeotropic composition of fluorocarbon
US3957530A (en) * 1973-03-06 1976-05-18 Phillips Petroleum Company Ternary azeotropic paint stripping compositions
US4035258A (en) * 1973-08-27 1977-07-12 Phillips Petroleum Company Azeotropic compositions
US4169807A (en) * 1978-03-20 1979-10-02 Rca Corporation Novel solvent drying agent
US6342471B1 (en) * 2000-01-25 2002-01-29 Toney M. Jackson Electrical contact cleaner

Also Published As

Publication number Publication date
US3671445A (en) 1972-06-20
US3671444A (en) 1972-06-20
CA955820A (en) 1974-10-08
US3671442A (en) 1972-06-20
US3671446A (en) 1972-06-20
US3671443A (en) 1972-06-20
US3833507A (en) 1974-09-03
USB677715I5 (en)

Similar Documents

Publication Publication Date Title
US2999816A (en) Azeotropic composition
US2999815A (en) Azeotropic composition
US3554918A (en) Azeotropic composition
US5445757A (en) Compositions comprising pentafluorobutane and use of these compositions
US5246617A (en) Azeotropic compositions of 1,1-dichloro-1-fluoroethane and methanol/ethanol
US3737389A (en) Azeotropic composition
US3607767A (en) Azeothropic composition of 1,1,2-trifluoroethane,methylene chloride,and cyclopentane
US5824632A (en) Azeotropes of decamethyltetrasiloxane
JPH02258732A (en) Azeotropic or azeotropic-like composition of 1,1,2- trichlorotrifluoroethane and trans-1,2-dichloroethylene with ehtanol,n-propanol,isopropanol or acetone,or with ethanol or acetone and nitromethane
EP0432874A1 (en) Binary azeotropic compositions of 2,3-dichloro-1,1,1,3,3,-pentafluoropropane and methanol
US4045366A (en) Azeotrope-like compositions of trichlorotrifluoroethane, nitromethane and acetone
US4086179A (en) Improved cleaning solvent containing non-azeotropic mixtures of 1,1,1-trichloroethane and n-propanol
US3846327A (en) Azeotropic composition
US3729424A (en) Tertiary azeotropic cleaning solution based on tetrachlorodifluoroethane
US3686131A (en) Azeotropic composition of tetrachlorodifluoroethane isopropanol and water
US4655956A (en) Azeotrope-like compositions of trichlorotrifluoroethane, methanol, nitromethane and hexane
US4812256A (en) Azeotropic compositions of 1,1-difluoro-1,2,2-trichloroethane and methanol, ethanol, isopropanol or n-propanol
US3630926A (en) Azeotropic composition of 1 1 2 2-tetrachloro - 1 2-difluoroethane and trichloroethylene
US3607768A (en) Azeotropic composition
WO1988000624A1 (en) Azeotrope-like compositions of trichlorotrifluoroethane, methanol, nitromethane, acetone, and methyl acetate
US5259983A (en) Azeotrope-like compositions of 1-H-perfluorohexane and trifluoroethanol or n-propanol
US4045365A (en) Azeotrope-like compositions of trichloro-trifluoroethane, acetonitrile and acetone
US3530073A (en) Azeotropic composition
US4810412A (en) Azeotropic compositions of 1,1-difluoro-2,2-dichloroethane and methanol or ethanol
US4936923A (en) Azeotropic compositions of 1,1,2-trichlorotrifluoroethane with cis-1,2-dichloroethylene and n-propanol or isopropanol with or without nitromethane

Legal Events

Date Code Title Description
AS Assignment

Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MOR

Free format text: MORTGAGE;ASSIGNORS:UNION CARBIDE CORPORATION, A CORP.,;STP CORPORATION, A CORP. OF DE.,;UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,;AND OTHERS;REEL/FRAME:004547/0001

Effective date: 19860106

AS Assignment

Owner name: UNION CARBIDE CORPORATION,

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MORGAN BANK (DELAWARE) AS COLLATERAL AGENT;REEL/FRAME:004665/0131

Effective date: 19860925