US3563007A - Fuel vapor control - Google Patents

Fuel vapor control Download PDF

Info

Publication number
US3563007A
US3563007A US765505A US3563007DA US3563007A US 3563007 A US3563007 A US 3563007A US 765505 A US765505 A US 765505A US 3563007D A US3563007D A US 3563007DA US 3563007 A US3563007 A US 3563007A
Authority
US
United States
Prior art keywords
air
engine
fuel
vapors
canister
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US765505A
Inventor
James R Clarke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Motor Co
Original Assignee
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Motor Co filed Critical Ford Motor Co
Application granted granted Critical
Publication of US3563007A publication Critical patent/US3563007A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0872Details of the fuel vapour pipes or conduits

Definitions

  • This invention relates, in general, to an internal combustion engine. More particularly, it relates to an apparatus for controlling the emission of fuel vapors from a fuel tank or reservoir.
  • One of the objects of the invention is to provide an apparatus that is especially useful during the hot soak cycle of an internal combustion engine to absorb excess fuel vapors that may be produced during this time.
  • Another object of the invention is to provide an apparatus that, during the normal running operation of an internal combustion engine, will desorb or purge a device of fuel vapors adsorbed thereby.
  • a further object of the invention is to provide an internal combustion engine with a fuel vapor recovery system that includes an activated carbon bed filter associated with the engine air cleaner hot air supply such that, during a hot soak cycle of the engine, excess fuel vapors given off by the carburetor fuel bowl and vehicle gasoline tank are adsorbed by the activated carbon particles and stored thereon until the engine again begins operating, at which time the flow of warm air through the carbon bed desorbs the fuel vapors therefrom and carries them into the air cleaner to be subsequently burned in the engine.
  • FIG. 1 is a perspective view, with parts broken away and in section, of an apparatus embodying the invention.
  • FIG. 2 is a cross-sectional view of a portion of the FIG. 1 showing.
  • FIG. 1 show, schematically, the air inlet air cleaner portion of an internal combustion engine
  • FIG. 1 shows the cylindrical-like covered housing of an annular air cleaner 10. It is secured over and to the air horn portion of a conventional downdraft type carburetor 12, in a known manner, by a bail member, not shown, and a wing nut 14.
  • the details of construction and operation of the air cleaner per se are not shown since they are known and believed to be unnecessary for an understanding of the invention.
  • the air cleaner could be of the conventional dry element type having an annular ring-like filter element through which air taken into the air cleaner through a snorkel l6 flows on its way into the carburetor inlet.
  • the snorkel-like inlet 16 is open at its outer end to communicate with ambient air in the engine compartment of the motor vehicle, not shown.
  • a flexible duct 18 adapted to contain engine compartment air heated by passage over the engine exhaust manifold.
  • a shroud 20 is adapted to closely surround a portion of the engine exhaust manifold, but is spaced sufficiently therefrom to permit the passage of engine compartment air through the space between the two into the hot air duct 18. The air thus is heated as it passes over the manifold. The heated air then passes into the snorkel 16 on its way into the air cleaner proper.
  • Snorkel 16 in this case contains a flap valve 22 that is pivotally mounted as shown in FIG. 2 for alternate movement between positions closing the ambient air temperature inlet 24 or the hot air duct 18.
  • the door is biased by a spring 26 to the position shown closing inlet 24. It is moved towards the opposite extreme position to close duct 18 either by a thermally sensitive assembly 28 or a vacuum controlled servo 30.
  • a temperature responsive, linearly expandable-contractible member 32 is slidably secured to a projection 34 depending from the flapper valve door, as shown.
  • the thermostatic element is calibrated so that as the temperature increases, the element 32 elongates to move the door 22 towards a position closing the hot air duct.
  • the vacuum controlled motor 30 is an override control.
  • -It consists of a known type of vacuum motor having a central flexible diaphragm that is spring biased to the right with a force sufficient to normally urge the lower extension 34 of flapper door 22 against the force of spring 26 to close the hot air duct :18.
  • the diaphragm divides the servo housing into an atmospheric pressure chamber, and a vacuum chamber.
  • the vacuum chamber is connected to the internal combustion engine intake manifold vacuum by a tube 35 so as to be responsive to the changes thereof. When there is sufficient depression in the intake manifold, corresponding to high load engine operation, the decay in vacuum permits the vacuum motor spring to move the flap door to close hot air duct 18.
  • the vacuum in the intake manifold generally is of a level sufficient to maintain the stem of the servo motor withdrawn so as not to affect the operation of the flapper valve.
  • the hot air duct 18 in this case contains a cylindrical-like canister 36 containing a bed of activated carbon particles 38, as shown. It is filled, for example, with, say 525 grams of activated carbon that is tightly packed between a pair of steel mesh plates 40.
  • the lower portion of the canister is open to the hot air duct 18, and the upper portion, as stated previously, opens into the snorkel 16.
  • the fuelvapors from the carburetor fuel bowl and from the gasoline storage tank or reservoir in this case are directed to the carbon canister through a pair of conduits 42 and 44, as shown.
  • the fuel vapor conduits are shown as being connected to a central portion of the carbon bed; however, it will be clear that they could be connected to any suitable portion of the bed so long as adequate distribution of the fuel vapors among the carbon particles is provided.
  • a thermally sensitive butterfly valve '46 is pivotally mounted in duct 18 between the manifold shroud 20 and canister 36.
  • the valve plate would consist of a bimetallic, thermostatic element. Below a predetermined temperature level, the valve would be rotated to open duct 18 and permit the normal passage of fuel vapors from canister 36. If, for some reason, the temperature at shroud 20 should become excessive, the expansion of one of the bimetallic elements of valve 46 at a faster rate than the other would rotate the valve to shut duct 18 and stop the flow of hot air therethrough.
  • the increased depression in the snorkel 16 would, in this case, cause an opening of flap door 22 by the air pressure at inlet 24, against the force of spring 26.
  • an initial engine start under cold ambient temperature conditions will cause the thermostatic element 28 to move the snorkel flapper door 22 to close the cold or ambient air entrance portion 24 and open wide the hot air duct .18. Accordingly, as soon as the engine is started and air flow occurs past the exhaust manifold shroud 20, hot air in the duct will flow through the canister among the carbon particles and desorb the latter of fuel vapors previously adsorbed by them. This purge flow then passes through the snorkel 16 into the air cleaner proper and from there into the inlet of the carburetor, in a known manner.
  • the thermostatic member 28 in this case including a wax element, will cause the flapper door 22 to move to close off the hot air duct and permit substantially all of the air to enter by the ambient air temperature inlet 24. This provides the air cleaner with less restriction to flow than occurs with flow only through the hot air duct. This results in greater air flow, which is desired for maximum engine performance.
  • the temperature increase at the carburetor fuel bowl and the vehicle gasoline tank or reservoir may be considerable, causing increased fuel vaporization and increased fuel vapor pressure.
  • This causes a flow of fuel vapors through the tubes 42 and 44 to the carbon bed to be adsorbed by the carbon therein. Therefore, during the hot soak cycle, the fuel tank and fuel bowl vapors will not be passed freely into the atmosphere, but are adsorbed in the carbon bed.
  • the flapper valve 22 generally will be closed by means of the wax pellet type thermostatic control 28, so that maximum adsorption efiiciency is obtained by the vapors being contained in the hot air duct 18.
  • vapors that are given off by the fuel tank or reservoir and the carburetor fuel bowl, and any other fuel vapor source flow into the canister 36 containing the carbon bed and are adsorbed thereby; and, that during the normal operation of the engine, the fuel vapors are desorbed from the canister and passed into the air cleaner and therefrom into the engine.
  • the invention provides a simple and economical method of containing fuel vapors vented from the vehicle fuel tank or carburetor fuel bowl. It will also be seen that the invention provides purging of the fuel vapors from the canister containing the carbon granules in a manner that does not interfere with the normal operation of the engine. It will also be seen that loss of engine power due to restriction of air from the carbon bed is eliminated by the function of the manifold vacuum motor 30 bypassing the carbon bed at low manifold vacuum and high volume air intake. It will further be seen that the exhaust manifold heat will optimize desorption of vapors from the activated carbon to maximize the working capacities of the carbon.
  • An apparatus for controlling the emission of vapors from the fuel tank and carburetor fuel bowl of a motor vehicle engine having a source of intake manifold vacuum comprising, an engine air cleaner assembly including a casing having an air inlet having branch first and second air inlet portions operatively connected thereto said first portion comprising a duct containing heated air said second portion comprising an ambient temperature air duct, valve means movably associated with said inlet portions for varying the proportionate flow of air from said ducts into said air cleaner as a function of the position of said valve means, engine intake manifold vacuum responsive means connected to and moving said valve means at times in response to the decay of vacuum to a.
  • fuel vapor adsorption means in said heated air duct comprising a canister containing activated carbon particles and having an air inlet and outlet at opposite ends thereof, and conduit means containing fuel vapors connected to said vapor adsorption means, the desorption of vapors from said adsorption means into said air cleaner occurring in response to the rise of said vacuum above said predetermined level effecting a movement of said valve means to open said heated air duct.
  • An apparatus as in claim 1 including thermostatic means in said heated air duct responsive to a predetermined temperature rise therein for blocking said heated air duct.

Abstract

DURING AN INTERNAL COMBUSTION ENGINE HOT SOAK CYCLE, FUEL TANK AND CARBURETOR BOWL FUEL VAPORS ARE ABSORBED BY CARBON IN A CANISTER LOCATED IN A HOT AIR DUCT PORTION OF THE ENGINE AIR CLEANER, NORMAL ENGINE OPERATION PURGES THE VAPORS FROM THE CANISTER INTO THE AIR CLEANER EXCEPT DURING HIGH LOAD ENGINE OPERATION, WHEN THE HOT AIR DUCT IS CLOSED TO AVOID UNNECESSARY RESTRICTIONS TO AIR FLOW.

Description

1971 J. R. CLARKE FUEL VAPOR CONTROL Filed Oct. '7, 1968 INVENTOR JAMfSR CZA/P/ff M X 7 W ATTORNEYS United States Patent U.S. Cl. 55316 4 Claims ABSTRACT OF THE DISCLOSURE During an internal combustion engine hot soak cycle, fuel tank and carburetor bowl fuel vapors are absorbed by carbon in a canister located in a hot air duct portion of the engine air cleaner; normal engine operation purges the vapors from the canister into the air cleaner except during high load engine operation, when the hot air duct is closed to avoid unnecessary restrictions to air flow.
This invention relates, in general, to an internal combustion engine. More particularly, it relates to an apparatus for controlling the emission of fuel vapors from a fuel tank or reservoir.
One of the objects of the invention is to provide an apparatus that is especially useful during the hot soak cycle of an internal combustion engine to absorb excess fuel vapors that may be produced during this time.
Another object of the invention is to provide an apparatus that, during the normal running operation of an internal combustion engine, will desorb or purge a device of fuel vapors adsorbed thereby.
A further object of the invention is to provide an internal combustion engine with a fuel vapor recovery system that includes an activated carbon bed filter associated with the engine air cleaner hot air supply such that, during a hot soak cycle of the engine, excess fuel vapors given off by the carburetor fuel bowl and vehicle gasoline tank are adsorbed by the activated carbon particles and stored thereon until the engine again begins operating, at which time the flow of warm air through the carbon bed desorbs the fuel vapors therefrom and carries them into the air cleaner to be subsequently burned in the engine.
It is a still further object of the invention to provide an apparatus of the type described above in which first movable valve means is provided to selectively automatically control the purging operation described, the valve moving to a position closing the hot air duct containing the carbon bed filter when a less restricted air flow is desired, and an additional valve responsive to changes in temperature of the air flowing through the duct to shut off the hot air to the duct above a predetermined temperature level to prevent oxidation and attrition of the activated carbon.
Other objects, features and advantages of the invention will become more apparent upon reference to the succeeding detailed description thereof, and to the drawings illustrating a preferred embodiment thereof; wherein,
FIG. 1 is a perspective view, with parts broken away and in section, of an apparatus embodying the invention; and,
FIG. 2 is a cross-sectional view of a portion of the FIG. 1 showing.
The drawings show, schematically, the air inlet air cleaner portion of an internal combustion engine, and
additional elements associated therewith forming a part of the invention.
FIG. 1 shows the cylindrical-like covered housing of an annular air cleaner 10. It is secured over and to the air horn portion of a conventional downdraft type carburetor 12, in a known manner, by a bail member, not shown, and a wing nut 14. The details of construction and operation of the air cleaner per se are not shown since they are known and believed to be unnecessary for an understanding of the invention. Sutfice it to say, however, that the air cleaner could be of the conventional dry element type having an annular ring-like filter element through which air taken into the air cleaner through a snorkel l6 flows on its way into the carburetor inlet.
The snorkel-like inlet 16 is open at its outer end to communicate with ambient air in the engine compartment of the motor vehicle, not shown. Joined to the snorkel on its lower side is a flexible duct 18 adapted to contain engine compartment air heated by passage over the engine exhaust manifold. More specifically, a shroud 20 is adapted to closely surround a portion of the engine exhaust manifold, but is spaced sufficiently therefrom to permit the passage of engine compartment air through the space between the two into the hot air duct 18. The air thus is heated as it passes over the manifold. The heated air then passes into the snorkel 16 on its way into the air cleaner proper.
Snorkel 16 in this case contains a flap valve 22 that is pivotally mounted as shown in FIG. 2 for alternate movement between positions closing the ambient air temperature inlet 24 or the hot air duct 18. The door is biased by a spring 26 to the position shown closing inlet 24. It is moved towards the opposite extreme position to close duct 18 either by a thermally sensitive assembly 28 or a vacuum controlled servo 30.
More specifically, a temperature responsive, linearly expandable-contractible member 32 is slidably secured to a projection 34 depending from the flapper valve door, as shown. The thermostatic element is calibrated so that as the temperature increases, the element 32 elongates to move the door 22 towards a position closing the hot air duct.
The vacuum controlled motor 30 is an override control. -It consists of a known type of vacuum motor having a central flexible diaphragm that is spring biased to the right with a force sufficient to normally urge the lower extension 34 of flapper door 22 against the force of spring 26 to close the hot air duct :18. The diaphragm divides the servo housing into an atmospheric pressure chamber, and a vacuum chamber. The vacuum chamber is connected to the internal combustion engine intake manifold vacuum by a tube 35 so as to be responsive to the changes thereof. When there is sufficient depression in the intake manifold, corresponding to high load engine operation, the decay in vacuum permits the vacuum motor spring to move the flap door to close hot air duct 18. This permits a less restricted supply of air to flow into the air cleaner through inlet 24. During normal operation, the vacuum in the intake manifold generally is of a level sufficient to maintain the stem of the servo motor withdrawn so as not to affect the operation of the flapper valve.
As thus far described, the above is known, and is shown and described in U.S. 3,450,119 to Ralph E. Sendelbach, Air Cleaner Air Inlet Construction. Further details of construction and operation, therefore, may 4 be had by reference to the latter application.
Turning now to the invention, the hot air duct 18 in this case contains a cylindrical-like canister 36 containing a bed of activated carbon particles 38, as shown. It is filled, for example, with, say 525 grams of activated carbon that is tightly packed between a pair of steel mesh plates 40. The lower portion of the canister is open to the hot air duct 18, and the upper portion, as stated previously, opens into the snorkel 16. The fuelvapors from the carburetor fuel bowl and from the gasoline storage tank or reservoir in this case are directed to the carbon canister through a pair of conduits 42 and 44, as shown. The fuel vapor conduits are shown as being connected to a central portion of the carbon bed; however, it will be clear that they could be connected to any suitable portion of the bed so long as adequate distribution of the fuel vapors among the carbon particles is provided.
In order to protect the carbon particles from oxidation and attrition due to excessively high temperatures on exposure to the exhaust manifold, a thermally sensitive butterfly valve '46 is pivotally mounted in duct 18 between the manifold shroud 20 and canister 36. The valve plate would consist of a bimetallic, thermostatic element. Below a predetermined temperature level, the valve would be rotated to open duct 18 and permit the normal passage of fuel vapors from canister 36. If, for some reason, the temperature at shroud 20 should become excessive, the expansion of one of the bimetallic elements of valve 46 at a faster rate than the other would rotate the valve to shut duct 18 and stop the flow of hot air therethrough. The increased depression in the snorkel 16 would, in this case, cause an opening of flap door 22 by the air pressure at inlet 24, against the force of spring 26.
In operation, an initial engine start under cold ambient temperature conditions will cause the thermostatic element 28 to move the snorkel flapper door 22 to close the cold or ambient air entrance portion 24 and open wide the hot air duct .18. Accordingly, as soon as the engine is started and air flow occurs past the exhaust manifold shroud 20, hot air in the duct will flow through the canister among the carbon particles and desorb the latter of fuel vapors previously adsorbed by them. This purge flow then passes through the snorkel 16 into the air cleaner proper and from there into the inlet of the carburetor, in a known manner.
Therefore, during normal engine operation at low temperatures, fuel vapors adsorbed in the canister are purged therefrom. As soon as the engine compartment air temperature rises to the desired level, the thermostatic member 28, in this case including a wax element, will cause the flapper door 22 to move to close off the hot air duct and permit substantially all of the air to enter by the ambient air temperature inlet 24. This provides the air cleaner with less restriction to flow than occurs with flow only through the hot air duct. This results in greater air flow, which is desired for maximum engine performance.
If, during cold temperature operation, wide open throttle conditions of the engine are desired, a sudden decrease in vacuum by depression of the vehicle throttle pedal is reflected in the vacuum servo so that the spring therein then is capable of forcing the flapper valve 22 to close the hot air duct 18 and permit only cooler,
denser air into the air cleaner. This immediately stops the purging of fuel vapors absorbed by the carbon bed. However, this is not disadvantageous at this time since under these operating conditions, the fuel vapor emission influence is minimized.
When the engine shuts down for a period that includes a large ambient temperature variation, or is operated at high speeds for a period of time, the temperature increase at the carburetor fuel bowl and the vehicle gasoline tank or reservoir may be considerable, causing increased fuel vaporization and increased fuel vapor pressure. This causes a flow of fuel vapors through the tubes 42 and 44 to the carbon bed to be adsorbed by the carbon therein. Therefore, during the hot soak cycle, the fuel tank and fuel bowl vapors will not be passed freely into the atmosphere, but are adsorbed in the carbon bed. At this time, the flapper valve 22 generally will be closed by means of the wax pellet type thermostatic control 28, so that maximum adsorption efiiciency is obtained by the vapors being contained in the hot air duct 18.
Accordingly, it will be seen that vapors that are given off by the fuel tank or reservoir and the carburetor fuel bowl, and any other fuel vapor source, flow into the canister 36 containing the carbon bed and are adsorbed thereby; and, that during the normal operation of the engine, the fuel vapors are desorbed from the canister and passed into the air cleaner and therefrom into the engine.
From the foregoing, therefore, it will be seen that the invention provides a simple and economical method of containing fuel vapors vented from the vehicle fuel tank or carburetor fuel bowl. It will also be seen that the invention provides purging of the fuel vapors from the canister containing the carbon granules in a manner that does not interfere with the normal operation of the engine. It will also be seen that loss of engine power due to restriction of air from the carbon bed is eliminated by the function of the manifold vacuum motor 30 bypassing the carbon bed at low manifold vacuum and high volume air intake. It will further be seen that the exhaust manifold heat will optimize desorption of vapors from the activated carbon to maximize the working capacities of the carbon.
While the invention has been described and illustrated in its preferred embodiments, it will be clear to those skilled in the arts to which it pertains that many changes and modifications may be made thereto Without departing from the scope of the invention.
I claim:
1. An apparatus for controlling the emission of vapors from the fuel tank and carburetor fuel bowl of a motor vehicle engine having a source of intake manifold vacuum, comprising, an engine air cleaner assembly including a casing having an air inlet having branch first and second air inlet portions operatively connected thereto said first portion comprising a duct containing heated air said second portion comprising an ambient temperature air duct, valve means movably associated with said inlet portions for varying the proportionate flow of air from said ducts into said air cleaner as a function of the position of said valve means, engine intake manifold vacuum responsive means connected to and moving said valve means at times in response to the decay of vacuum to a. predetermined level to block the flow of air from said heated air duct into said cleaner, fuel vapor adsorption means in said heated air duct comprising a canister containing activated carbon particles and having an air inlet and outlet at opposite ends thereof, and conduit means containing fuel vapors connected to said vapor adsorption means, the desorption of vapors from said adsorption means into said air cleaner occurring in response to the rise of said vacuum above said predetermined level effecting a movement of said valve means to open said heated air duct.
2. An apparatus as in claim 1, including second movable valve 'means in said heated air duct posterior of said vapor adsorption means for blocking said heated air duct at times to prevent the pasasge of heated air therethrough.
3. An apparatus as in claim 1, including thermostatic means in said heated air duct responsive to a predetermined temperature rise therein for blocking said heated air duct.
4. An apparatus as in claim 1, including temperature responsive valve means in said heated air duct posterior of said canister for blocking said duct in response to a predetermined temperature rise of the air therein.
References Cited UNITED STATES PATENTS 1/1963 Bloch 123-122 7/1968 Vardi et a1. 123-136 5 FRANK W. LUTTER, Primary Examiner B. NOZICK, Assistant Examiner U.S. Cl. X.R.
US765505A 1968-10-07 1968-10-07 Fuel vapor control Expired - Lifetime US3563007A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76550568A 1968-10-07 1968-10-07

Publications (1)

Publication Number Publication Date
US3563007A true US3563007A (en) 1971-02-16

Family

ID=25073730

Family Applications (1)

Application Number Title Priority Date Filing Date
US765505A Expired - Lifetime US3563007A (en) 1968-10-07 1968-10-07 Fuel vapor control

Country Status (3)

Country Link
US (1) US3563007A (en)
DE (1) DE1945103A1 (en)
GB (1) GB1232528A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727597A (en) * 1969-05-28 1973-04-17 Porsche Kg Device for precipitating fuel from the vapor discharging from the fuel supply system of an internal combustion engine
US3763839A (en) * 1971-11-24 1973-10-09 Phillips Petroleum Co Fuel system apparatus and method
US3782349A (en) * 1971-10-22 1974-01-01 Nippon Denso Co Intake air temperature automatic adjusting device and air cleaner with such device for internal combustion engines
US3830210A (en) * 1971-09-21 1974-08-20 Mann & Hummel Filter Air intake system with temperature-controlled warm air valve
US3974808A (en) * 1975-07-02 1976-08-17 Ford Motor Company Air intake duct assembly
US3990421A (en) * 1974-11-07 1976-11-09 Grainger Lewis M D Anti-pollution structure with a fuel economizing fuel feed and exhaust system for an internal combustion engine
US4144857A (en) * 1976-10-18 1979-03-20 Filterwerk Mann & Hummel Gmbh Device for automatically controlling the intake air temperature of a carburetor-equipped internal combustion engine
US4161930A (en) * 1978-02-14 1979-07-24 Filterwerk Mann & Hummel Gmbh Device for regulating the intake air temperature of a carburetor-equipped internal combustion engine
US4430981A (en) * 1981-02-17 1984-02-14 Fram Europe Limited Temperature responsive air induction apparatus
US5009686A (en) * 1988-05-24 1991-04-23 Suzuki Jidosha Kogyo Kabushiki Kaisha Air cleaner of engine for vehicle
US20040182240A1 (en) * 2003-03-19 2004-09-23 Bause Daniel E. Evaporative emissions filter
US20050016474A1 (en) * 2003-04-08 2005-01-27 Dopke Russell J. Intake air and carburetor heating arrangement for V-twin engines
US20050145224A1 (en) * 2003-03-19 2005-07-07 Zulauf Gary B. Evaporative emissions filter
US20060042468A1 (en) * 2004-08-26 2006-03-02 Smith Robert L Adsorptive assembly and method of making the same
US20060118069A1 (en) * 2004-12-06 2006-06-08 Snyder Dale D Carburetor and intake air heating arrangements for V-twin engines
CN105888889A (en) * 2016-05-26 2016-08-24 宁波拓普智能刹车系统有限公司 Gasoline steam purifying device with flow returning function

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3727597A (en) * 1969-05-28 1973-04-17 Porsche Kg Device for precipitating fuel from the vapor discharging from the fuel supply system of an internal combustion engine
US3830210A (en) * 1971-09-21 1974-08-20 Mann & Hummel Filter Air intake system with temperature-controlled warm air valve
US3782349A (en) * 1971-10-22 1974-01-01 Nippon Denso Co Intake air temperature automatic adjusting device and air cleaner with such device for internal combustion engines
US3763839A (en) * 1971-11-24 1973-10-09 Phillips Petroleum Co Fuel system apparatus and method
US3990421A (en) * 1974-11-07 1976-11-09 Grainger Lewis M D Anti-pollution structure with a fuel economizing fuel feed and exhaust system for an internal combustion engine
US3974808A (en) * 1975-07-02 1976-08-17 Ford Motor Company Air intake duct assembly
US4144857A (en) * 1976-10-18 1979-03-20 Filterwerk Mann & Hummel Gmbh Device for automatically controlling the intake air temperature of a carburetor-equipped internal combustion engine
US4161930A (en) * 1978-02-14 1979-07-24 Filterwerk Mann & Hummel Gmbh Device for regulating the intake air temperature of a carburetor-equipped internal combustion engine
US4430981A (en) * 1981-02-17 1984-02-14 Fram Europe Limited Temperature responsive air induction apparatus
US5009686A (en) * 1988-05-24 1991-04-23 Suzuki Jidosha Kogyo Kabushiki Kaisha Air cleaner of engine for vehicle
US7344586B2 (en) 2003-03-19 2008-03-18 Honeywell International, Inc. Evaporative emissions filter
US20080184891A1 (en) * 2003-03-19 2008-08-07 Zulauf Gary B Evaporative emissions filter
US8216349B2 (en) * 2003-03-19 2012-07-10 Fram Group Ip Llc Evaporative emissions filter
US20050145224A1 (en) * 2003-03-19 2005-07-07 Zulauf Gary B. Evaporative emissions filter
US20100101542A1 (en) * 2003-03-19 2010-04-29 Zulauf Gary B Evaporative emissions filter
US7655166B2 (en) * 2003-03-19 2010-02-02 Honeywell International Inc. Evaporative emissions filter
US7163574B2 (en) 2003-03-19 2007-01-16 Honeywell International, Inc. Evaporative emissions filter
US7182802B2 (en) * 2003-03-19 2007-02-27 Honeywell International, Inc. Evaporative emissions filter
US20040182240A1 (en) * 2003-03-19 2004-09-23 Bause Daniel E. Evaporative emissions filter
US20050000362A1 (en) * 2003-03-19 2005-01-06 Bause Daniel E. Evaporative emissions filter
US20050016474A1 (en) * 2003-04-08 2005-01-27 Dopke Russell J. Intake air and carburetor heating arrangement for V-twin engines
US7377966B2 (en) 2004-08-26 2008-05-27 Honeywell International, Inc. Adsorptive assembly and method of making the same
US20060042468A1 (en) * 2004-08-26 2006-03-02 Smith Robert L Adsorptive assembly and method of making the same
US20060118069A1 (en) * 2004-12-06 2006-06-08 Snyder Dale D Carburetor and intake air heating arrangements for V-twin engines
CN105888889A (en) * 2016-05-26 2016-08-24 宁波拓普智能刹车系统有限公司 Gasoline steam purifying device with flow returning function

Also Published As

Publication number Publication date
DE1945103A1 (en) 1970-04-09
GB1232528A (en) 1971-05-19

Similar Documents

Publication Publication Date Title
US3563007A (en) Fuel vapor control
CA1151030A (en) Proportional flow fuel vapor purge control device
US3575152A (en) Vapor recovery using a plurality of progressively absorbent beds connected in series
US3645098A (en) Exhaust emission control
US3221724A (en) Vapor recovery system
US3678663A (en) Air cleaner remote from engine and having integrated fuel vapor adsorption means
US6230693B1 (en) Evaporative emission canister with heated adsorber
US3913545A (en) Evaporative emission system
JP3255718B2 (en) Evaporative fuel processing device
US20170234269A1 (en) Systems and methods for fuel vapor canister purging
US3540423A (en) Evaporative emission control system
US5148793A (en) Compartmental evaporative canister and pressure control valve assembly
US3741179A (en) Exhaust gas recirculating system control
US4085721A (en) Evaporation purge control device
GB2140084A (en) Fuel-vapour emmission control system for an automative engine
JP3345007B2 (en) Exhaust device for fuel tank of internal combustion engine
JP3320722B2 (en) Exhaust device for fuel tank of internal combustion engine
US20140224225A1 (en) Purge valve and fuel vapor management system
US9845745B2 (en) EVAP system with valve to improve canister purging
US3481117A (en) Engine air supply system
US4886096A (en) Evaporative emission control system
US3481119A (en) Air cleaner construction
US3491736A (en) Exhaust recycle on deceleration with purging system for filter
US3918421A (en) Induction air temperature control apparatus
US4783962A (en) Brake booster vapor trap filter and fuel tank vapor trap canister vapor guard system