Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3565171 A
Tipo de publicaciónConcesión
Fecha de publicación23 Feb 1971
Fecha de presentación23 Oct 1968
Fecha de prioridad23 Oct 1968
Número de publicaciónUS 3565171 A, US 3565171A, US-A-3565171, US3565171 A, US3565171A
InventoresPhilip J Closmann
Cesionario originalShell Oil Co
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Method for producing shale oil from a subterranean oil shale formation
US 3565171 A
Imágenes(3)
Previous page
Next page
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent [72] Inventor Philip J. Closmann Houston, Tex. [21] Appl. No. 769,906 [22] Filed Oct. 23, 1968 [45] Patented Feb. 23, 1971 [73] Assignee. Shell Oil Company New York, NY. a corporation of Delaware [54] METHOD FOR PRODUCING SHALE OIL FROM A SUBTERRANEAN OIL SHALE FORMATION 16 Claims, 7 Drawing Figs.

[52] US. Cl. 166/247, 166/256, 166/295 [51] Int. Cl E2lb [50] Field of Search 166/247, 256, 258, 260, 268, 272, 294, 295 56] References Cited UNITED STATES PATENTS 3,113,620 12/1963 l-lemminger 166/257 3,251,414 5/1966 Willman 166/295 3,342,257 9/ 1967 Jacobs et al. 166/247 3,342,263 9/1967 Fischer 166/294X 3,369,601 2/ 1968 Bond et a1 166/258 3,369,603 2/ 1968 Trantham 166/294X 3,460,620 8/1969 Parker 166/247UX 3,465,819 Dixon Primary Examiner-Stephen J. Novosad AttorneysJ. l-l. McCarthy and L. J. Bovasso ABSTRACT: A method for producing shale oil from a subterranean oil shale formation wherein a chimney of fragmented oil shale is formed in the formation by exploding a relatively high energy explosive device therein, the chimney having a substantially void space formed at the top thereof. A liquid is flowed through the voids formed between the oil shale fragments, the liquid being adapted to selectively bypass small voids and plug larger voids formed between the fragments at least in the substantially vertical central portion of the chimney. Hydrocarbons at substantially the top of the chimney are ignited and a combustion supporting fluid is flowed into the chimney at substantially the top thereof, thereby advancing a combustion front down the chimney to substantially the bottom thereof. The fluid flow path of the fluid supporting the combustion tends to be substantially confined to the vertical outlying portions of the chimney and the untreated small voids within the chimney until the heat from the combustion front thermally mobilizes the liquid plugging the larger voids thus decomposing the plugging liquid thereby pyrolyzing substantially all of the fragmented oil shale along a substantially horizontal level within the chimney without the combustion front bypassing the portions of the fragmented oil shale adjacent to the small voids as the combustion front proceeds down the chimney.

OIL

HEAT EXCHANGER P'ATENTEU FEB? 3 I9?! SHEET 1 OF 3 FIG.

INVENTOR P. J. CLOSM-ANN HIS ATTORNEY FIG. 3

PATEN-TED FEB23 I97! SHEET 2 [IF 3 AIR GAS 33 SEPARATOR HEATER 32 HEAT EXCHANGER OIL FIG-'5 i INVENTORI P.-J; CLOSMANN BYIMW FIG. 4

HIS ATTORNEY PATENfED 5823 I97! sum 3 0F 3 v SEPARATOR GAS 3 HEAT EXCHANGER FIG. 6

INVENTOR:

P. J. CLOSMANN HIS ATTORNEY METHOD FOR PRODUCING SI-IALE OIL FROM A SUB'IERRANEAN OIL SHALE FORMATION BACKGROUND OF THE INVENTION the rubbled zone by known techniques, such as in situ retortrng.

Experience has shown that when a relatively high energy device, such as a nuclear bomb, is exploded within a subterranean earth formation, an almost spherical cavity filled with hot gases isformed. This cavity expands until the pressure within the cavity equals that of the overburden. On cooling,

the roof of the cavity collapses since, generally,.it cannot support itself, and a so-called chimney" develops. Chimney growth ceases when the rock pile substantially fills the cavity, or, a stable arch develops. In both cases,.a substantially void space is formed below the overburdenand above the rubble contained within the chimney. Surrounding the chimney is a i fractured zone which results from the shock of the nuclear explosion.

However, in any chimney of rubble or fragmented oil shale formed by the explosion of a relatively high energy device, the occurrence of large blocks of rock or oil shale indicates large rubble, these voids result in significant'bypassing of injected treated.

SUMMARY OF THE INVENTION shale formation thereby forming a chimney of oil shale fragments therein, the chimney having a substantially void space formed at the top thereof. A liquid is flowed through the voids formed between the oil shale fragments, the liquid being adapted to selectively bypass small voids and plug larger voids formed between the fragments at least in the substantially vertical central portion of the chimney. Hydrocarbons at substantially the top of the chimney are ignited and a combustion supporting fluid is flowed into the chimney at substantially the top thereof thereby advancing a combustion front down the chim- 'ney to substantially the bottom thereof: The fluid flow path of 'the combustion supporting fluid tendsto be substantially confined to the vertical outlying portions-of the chimney and the untreated small voids within the chimney until the heat from the combustion front thermally mobilizes the liquid plugging the larger voids thus decomposing the plugging liquid thereby pyrolyzing substantially all of the fragmented oil shale along a a substantially horizontal level within the chimney without the combustion front bypassing the portions of the fragmented oil shale adjacent to the small voids as the combustion front proceeds down the chimney.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a vertical cross'sectional view of an oil shale formation prior to detonating a relatively high energy explosive device therein;

FIG. 2 is a vertical cross-sectional view of the oil shale formation of FIG. 1 after the explosive device has been detonated;

FIG. 3 is a vertical cross-sectional view of the final rubble zone created by the detonation of the explosive device of FIG. I

FIG. 4 is a vertical cross-sectional view of the treatment of the rubble zone of FIG. 3 in accordance with the teaching of void volumes distributed throughout the chimney. In an in situ flow process for recovering shale oilfrom such a chimney of r and produced fluids, leaving large portions of the rock unv substantially void space 13 is formed at the top of chimney 1'5.

this invention;

FIG. 5 is a vertical cross-sectional view of single-well recovery of shale oil from the treated rubble zone of FIG. 4;

FIG. 6 is a vertical cross-sectional view of dual-well recovery of shale oil from the treated rubble of FIG. 4; and

FIG. 7 is a vertical cross-sectional view of analternate treatment of the rubble zone of FIG. 3 in accordance with the teachings of the invention;

DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a subterranean. oil shale formation 1.1 having a relatively high energy explosive device 1 2 located therein. Ex plosive device 12 may be nuclear or nonnuclear. When a relatively high energy explosive device, such as a nuclear bomb, is detonated within an oil shale formation, a strong shock wave from the explosive device begins to move radially outwardly, vaporizing, melting, crushing, cracking, and displacing the oil shale formation 11. After the shock wave-has passed, the highpressure vaporized material expands, and a generally spherical cavity, such asthe cavity 14 in FIG."2, is formed which continues to grow until the internal pressure is balanced by the lithostatic pressure. The cavity 14 persists for a variable time depending on the composition of the oil shale formation 11, then collapses to form a chimney 15 (FIG. 3). Collapse progresses upwardly until the volume'initially in cavity 14 is distributed between the fragments of the oil shale of formation 11. The size of the cylindrical rubble zone (i.e., the Chimney 15) formed by the collapse of the cavity 14 may be estimated from 'the depthand explosive yield of the explosive device 13 and the properties of the formations 11 and 16. A

A zone of limited permeability 17 within the fragmented oil shale formation 1'7 is also formed surrounding chimney 15 as seen in FIG. 3. The permeability of this zone 17 may be preferably increased by surrounding the explosive device 12 with a plurality of explosive devices of lesser energy and subsequently detonatingthe lesser energy devices in the manner discussed in my copending application Ser. No. 755,684, filed Jun. 10,1968. g

. After forming chimney 15, it may be desirable to extend a well borehole 18 to a point adjacent to the bottom of the chimney 15. Fluids which are apt to be encountered within such a zone (i.e., at the bottom of chimney 15) are liquid and/or gaseous petroleum products and/or steam and/or water. Particularly where petroleum fluid is encountered, it

may be desirable to produce substantially all the liquid phase present at the bottom of chimney 15 so that most of the fluid remaining in the fragmented zone orchimney 15 is gaseous petroleum or air.

Referring now to FIGS. 4 and -5,.the invention disclosed herein is illustrated as preferably applied to such a fragmented zone in which most of the fluid remaining in the chimney 15 is mainly a gas. The same well borehole 18, preferably cased at casing 19, cemented therein, if desirable at cementing 20, may be used to inject a liquid down tubing string 22 into the oil shale fragments 21 disposed at the bottom of chimney 15. The liquid is preferably pumpable and adapted to solidify in situ. Thus, each portion of the inflowed liquid is allowed to solidify, between the series of such injections, in order to selectively plug the central portion of the chimney. Preferably then, a first injection is made at the bottom of chimney 15 with the liquid allowed to solidify, then subsequent injections are made upwardly within chimney 15 to substantially the topthereof by selectively opening casing 19 as is well known in the art.

The injected liquid is one which tends to flow into the larger voids and channels in the central portion of the chimney 15 and may be a foaming and thermosetting resin. Such materials, by foaming in situ, increase, the pressure gradient necessary for flow through such large void spaces and channels.

After the selective plugging of preferably a substantial portion of the vertical central portion of chimney 15, as indicated by a solidified or treated zone 23 of relatively low permeability as in FIG. 5, a tubing string 22 is packed off as at packers 24 and 25 below perforations 26 near the top of the chimney and above the bottom of tubing string 22, respectively. Packer 24 is preferably removed or unseatcd to provide a path of fluid communication with perforations 26 within the treated zone 23. 7

After igniting the hydrocarbons present at the top of chimney 15, by any suitable means, such as by downhole heating means, a combustion front 27 is initiated and advanced downwardly towards a production point near the bottom of chimney 15. This may be accomplished by circulating a heated combustion supporting fluid down casing 19, through perforations 26 and into the fragmented oil shale 21 within chimney 15. The initial flow paths of the heated fluid are confined mainly to the outlying portions of chimney 15, that is, the untreated zone 28 of relatively high permeability as indicated by the direction of the major portion of the arrows in FIG. and also to the untreated smaller voids within the chimney 15, until the heat from the combustion front thermally mobilizes the plugging material that was formed within the larger voids in treated zone 23.

By the time the plugging material decomposes, the relatively slow advance of combustion front 27, and the resultant gradual heating of all the rocks within the remaining fragmented zone of chimney 15, initiates the pyrolysis of the kerogen in the larger oil shale fragments. The overall effect is a pyrolysis of substantially all the fragmented oil shale material without a bypassing of the portions of fragmented oil shale material adjacent to smaller voids through which the flow resistance is significantly larger than that within the larger voids.

Thus, as illustrated in FIG. 5, at the top of chimney 15, between void space 13 and combustion of front 27 a zone A is formed depleted of oil and plugging material. A partially depleted zone B is formed between combustion front 27 and the bottom of chimney 15. The preferred path of hot combustion products and entrained oil shale is indicated at 29.

Numerous types of pumpable liquids may be used to selectively permeate and temporarily plug the larger voids between oil shale fragments 21 within chimney 15. Suitable materials include fluid mixtures containing the components of polyurethane, ureaforrnaldehyde, melamine formaldehyde, and the like types of foaming resin formulations. As the foam begins to form, the gas entrained within the liquid tends to divert the foams from the small voids and keeps them within the larger voids where they remain until the liquid components solidify. In a gas-filled fragmented zone, the relatively higher density of such a foam causes it to form a layer along the bottom of the gas-filled zone.

The plugging liquid may also be a liquid resin containing filler particles of sizes such that flow through smaller pores and channels is inhibited. Such formulations may include solutions of the components of resin, such as epoxy resins, phenolformaldehyde resins, and the like resin formulations containing particles like shredded rubber; walnut shells, wood fibers, etc., of the types used as conventional lost-circulation controlling materials in working wells.

it may also be desirable to inject a fluid adapted to wet preferentially the oil shale material. Such preferentially wetting formulations may comprise aqueous surfactants which tend to contact the smaller pore spaces and block them off during a subsequent injection of resin. The presence of the liquid surfactant phase on the walls of the oil shale fragments adjacent to the smaller void spaces inhibits the wetting of the oil shale fragments by the resin at least for a time and to an extent sufficient to divert the resin into the larger channels and voids. The presence of the liquid surfactant phase may, in some cases, be useful in causing reaction of the injected resinous fluid. Such a wetting fluid may be injected into the chimney 15 down the annulus formed between casing 19 and tubing string 22 as discussed hereinabove with respect to F IG. 5

The combustion-supporting fluid adapted to be injected into chimney 15 may be heated prior to circulation by means of a heating device 30. in other words, the fluid is pumped by means of a pump or compressor 31 through heating device 30 and into the annulus fonned between tubing string 22 and casing 19. The fluid then flows through perforations 26 and into the zone a of chimney 15. Oil shale pyrolysis products are removed at the bottom of chimney 15 up tubing string 22, through heat exchanger 32 and into separator 33 where the oil and gas components are separated as is well known in the art. At least some makeup gas or preferably air is added at, for example, pump 31.

Referring now to FIG. 6, a preferred arrangement for producing shale oil from chimney 15 utilizing at least one production well and one injection well is shown. Here, like numerals refer to like parts of FIG. 5. The fluid from heater 30 is injected into injection well 34, cased and casing 35, through tubing string 36. The fluid exits past packer 37 and enters the void space 13 of chimney 15. Oil shale pyrolysis products are produced up the casing 38 of production well 39 and into heat exchanger 32. 4

Where the fragmented zone within chimney 15 is filled with a relatively dense liquid, such as water, by using a relatively low-density formulation, such as a solution of melamine-formaldehyde resin components containing shredded rubber, the formation of treated zone 23 may be accomplished by injecting the foaming formulation near the top as illustrated in FIG. 7, while producing dense liquid from near the bottom of the chimney. The setting time of the resin components should be adjusted so that the treated layer extends down through the chimney to near the bottom before the foaming formulation becomes immobile. Thus, tubing 22 is packed in casing 19 by means of packers 19a as is well known in the art. Shale oil is then produced from the treated chimney 15 up tubing 22 in the manner discussed hereinabove with respect to FIGS. 5 and 6. The injected formulation passes from casing 19 out perforations 19b and into the top of chimney 15. Alternatively, if the chimney of rubble 15 is liquid filled initially, then the flow of injected resinous fluid may be controlled by adjusting its density to be below of the filling liquid, such as water. The chimney 15 may then be filled upwardly in a series of steps, beginning at the bottom, as disclosed hereinabove with respect to FIG. 4.

Because of the large rubble volume to be so treated in chimney 15, the foaming resin formulation may be injected at a number of vertical positions from the same well (i.e., either well 18 or 34) by either selectively opening well 18 at different vertical positions in chimney 15 or by extending well 34 downwardly into selective vertical positions in chimney 15.

Alternatively, two or more wells may be drilled to communicate with different levels within chimney 15. A limited amount of the foaming resin formulation may be then injected into each of these wells to treat a specified region of the chimney 15.

One advantage of injecting the foaming resin formulation through a central well is that, by carefully regulating the quantity of such injected materials, the outer portions of the chimney of rubble 21, i.e., zone 28, remain substantially untreated. Injected fluids then tend to flow preferentially near the walls of the chimney 15 but not beyond and improve the overall sweep efficiency of the flow process.

I claim:

1. In a method for producing shale oil from a subterranean formation comprising the steps of:

placing a relatively high energy explosive device within the formation;

exploding the relatively high energy explosive device within the oil shale formation, thereby forming a cavity within the oil shale formation having a roof beneath the overburden which subsequentlycollapses to form a chimney of fragmented oil shale within the oil shale formation, said chimney having a substantially void space formed adjacent to the top thereof; flowing a liquid through voids 'fonned between said oil shale fragments in said chimney, said liquid being adapted to bypass small voids and selectively plug larger voids fon-ned between said oil shale fragments at least in the substantially vertical central portion of said chimney;

igniting hydrocarbons at substantially the top of said chimney; and t v flowing a combustion-supporting fluid through said chimney at substantiallythe top thereof thereby advancing a combustion front down said chimney to substantially the bottom thereof, said fluid flow path of said combustionsupporting fluid tending to besubstantially confined to the vertical outlying portions of said chimney and the untreated small voids within said chimney until the heat I from said combustion front thermally mobilizes the liquid plugging said larger voids thus decomposing said plugging liquid thereby pyrolyzing substantially all of the fragmented oil shale along a substantially horizontal level within said chimney without said combustion front bypassing the portions of said fragmented oil shale adjacent to said small voids as said combustion front proceeds down said chimney.

2. The method of claim 1 including the step of recovering shale oil displaced from said combustion front.

3. The method of claim 1 including:

the step of extending at least a central well from a surface location to a first point adjacent to a substantially vertical central portion of said chimney; and

subsequently flowing said liquid and said combustion-sup porting fluid through said well and into said chimney.

4., The method of claim 3 wherein the step of flowing a liquid through said voids includes the step of flowing said liquid from a plurality of vertical positions within said central well into said chimney.

a manner such that gravity tends to segregate the inflowing liquid toward the nearest vertical extremity of the chimney.

7. The method of claim 1 wherein the step of flowing said liquid includes flowing a liquid which is capable of substantially solidifying in situ thereby materially reducing the permeability of the larger voids in which it is present.

8. The method of claim 7 wherein the step of flowing a liquid capable of substantially solidifying in situ includes flowing a liquid capable of being thermally converted from a substantial solid to a mobile fluid at a temperature between about 400 F. and 1,200 P.

9. The method of claim 8 wherein the step of flowing a combustion-supporting fluid includes the step of flowing a heated fluid at a temperature exceeding the thermal conversion temperature of the substantially solidified liquid formed in situ within said larger voids.

10. The method of claim 8 including the step of terminating the inflowing of liquid when a layer of the liquid extends over a significantly large proportion of the central cross-sectional area of the chimney and allowing said inflowing liquid to solidify in situ prior to igniting said hydrocarbons.

11: The method of claim 10 including the steps of repeating the steps of flowing said liquid and terminating the inflowing of said liquid from a first point within said chimney to an additional point within said chimney closer than than said first point towards the center of said chimney. I

12. The method of claim 11 wherein said first point is a point substantially adjacent to the bottom vertical central portion of said chimney and said repeated steps move upwardly within said chimney along said vertical central portion thereof.

13. The method of claim 11 wherein said first point is a point substantially adjacent to the top vertical central portion of said chimney and said repeated steps move downwardly within said chimney along said vertical central portion thereof.

14. The method of claim 1 including the step producing substantially all of the liquids presentat the bottom of said chimney after forming said chimney and prior to flowing a liquid through said voids so that most of the fluid remaining in said chimney is a gas.

5. The method of claim 1 wherein the step of flowing said liquid includes flowing a liquid containing dispersed material which tends to cause the inflowing liquid to bypass said small voids and flow through said larger voids.

6. The method of claim 1 wherein thestep of flowing said liquid includes flowing a liquid havingadensity differing from the formation fluid being displaced from within the chimney in 15. The method of claim 1 wherein the step of flowing a liquid through said voids includes the step of flowing a foaming thermosetting resin formulation through said voids.

16. The method of claim 1 including the step of injecting a fluid adapted to wet preferentially oil shale fragments adjacent said small voids prior to flowing said liquid through said voids.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3113620 *6 Jul 195910 Dic 1963Exxon Research Engineering CoProcess for producing viscous oil
US3251414 *30 Oct 196217 May 1966Exxon Production Research CoMethod for control of water injection profiles
US3342257 *30 Dic 196319 Sep 1967Standard Oil CoIn situ retorting of oil shale using nuclear energy
US3342263 *12 May 196519 Sep 1967Union Oil Company Of CalifoniaMethod and composition for treating subterranean formations
US3369601 *21 Ene 196520 Feb 1968Union Oil CoSecondary recovery method
US3369603 *2 Sep 196520 Feb 1968Phillips Petroleum CoPlugging of a formation adjacent an oil stratum
US3460620 *12 Jun 196712 Ago 1969Phillips Petroleum CoRecovering oil from nuclear chimneys in oil-yielding solids
US3465819 *13 Feb 19679 Sep 1969American Oil Shale CorpUse of nuclear detonations in producing hydrocarbons from an underground formation
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3945679 *3 Mar 197523 Mar 1976Shell Oil CompanySubterranean oil shale pyrolysis with permeating and consolidating steps
US4121662 *3 Jun 197724 Oct 1978Kilburn James SWater purification with fragmented oil shale
US5411098 *9 Nov 19932 May 1995Atlantic Richfield CompanyApparatus for use in a well
US7357180 *22 Abr 200515 Abr 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US783113321 Abr 20069 Nov 2010Shell Oil CompanyInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7986869 *21 Abr 200626 Jul 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US820007224 Oct 200312 Jun 2012Shell Oil CompanyTemperature limited heaters for heating subsurface formations or wellbores
US870178822 Dic 201122 Abr 2014Chevron U.S.A. Inc.Preconditioning a subsurface shale formation by removing extractible organics
Clasificaciones
Clasificación de EE.UU.166/247, 166/295, 166/256
Clasificación internacionalE21B43/247, E21B43/243
Clasificación cooperativaE21B43/243, E21C41/24
Clasificación europeaE21C41/24, E21B43/243