US3566207A - Silicon-to-gold bonded structure and method of making the same - Google Patents

Silicon-to-gold bonded structure and method of making the same Download PDF

Info

Publication number
US3566207A
US3566207A US825725A US3566207DA US3566207A US 3566207 A US3566207 A US 3566207A US 825725 A US825725 A US 825725A US 3566207D A US3566207D A US 3566207DA US 3566207 A US3566207 A US 3566207A
Authority
US
United States
Prior art keywords
gold
tin
layer
silicon
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US825725A
Inventor
Clark N Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Singer Co
Original Assignee
Singer Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singer Co filed Critical Singer Co
Application granted granted Critical
Publication of US3566207A publication Critical patent/US3566207A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K2035/008Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of silicium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base

Definitions

  • the present invention relates to the mounting and bonding of integrated circuit chips, or wafers, on a mounting pad of a lead frame.
  • such a silicon chip may be bonded to a gold surface lead frame by means of a gold-tin solder, preferably as a preform.
  • a gold-tin solder melts at 217 C, the use of such solder, even as a preform, adds greatly to the difficulties and expense of the assembly.
  • a preferred embodiment of the present invention is achieved by coating the reverse side of a silicon substrate having an integrated circuit formed on its obverse side with chromium, and then with tin, preferably by vapor-phase deposition before it is separated into individual circuit chips.
  • the resulting tin surface is applied, at a temperature of about 217 C, to a gold-surfaced support, such as a mounting pad on a lead frame, and is bonded thereto by the formation of a goldtin eutectic bond.
  • Still another object of the present invention is to provide a method for bonding an integrated circuit chip to a base member without temperature degrading the circuit components.
  • FIG. 1 is a pictorial view of the obverse side of a silicon wafer on which a plurality of integrated circuits are formed;
  • FIG. 2 is a view similar to FIG. 1, showing the breaking of the wafer into individual integrated circuit chips
  • FIG. 3 is a pictorial view of a single integrated circuit chip mounted on a lead frame according to the present invention
  • FIG. 4 is a simplified illustration of apparatus for vapor depositing metal on the surface of a wafer
  • FIG. 5 is a view of apparatus for assembling a single integrated circuit chip to a lead frame
  • FIG. 6 is a view looking in the direction of arrows 6-6 of FIG. 3.
  • FIG. 1 is a pictorial representation of a thin silicon wafer 10, usually about one inch in diameter, cut from a silicon crystal.
  • a plurality of individual integrated circuits 12 are formed on the upper or obverse plane surface of the wafer 10.
  • the wafer 10 is scribed and divided into a plurality of chips, or dice, 14, each of which contains one of the integrated circuits 12.
  • chips may range in size from about .040 to about .170 inch on a side.
  • each such chip 14 is bonded to a central mounting pad 16 of a lead frame 18. Circuit connections are made with fine wire jumpers 15 (only one jumper 15 is shown in FIG.
  • the central portion of the resulting structure may be encapsulated in plastic material (not shown) for enclosing and supporting the parts, and the outside peripheral portions 19 of the lead frame 18 are trimmed for leaving the terminal leads 20 extending from the plastic encapsulation.
  • integrated circuits 12 on the obverse side or surface 13 of the silicon wafer 10 includes a plurality of patterned deposits or layers of metal 11, such as chromium, gold, and aluminum, and silicon dioxide 71, at least some of which will diffuse'into each other and degrade the circuit thus formed if heated to too high a temperature.
  • the lead frame and of course'the mounting pad 16 is constructed of nickel-cobalt-iron alloy 21, having a coefficient of thermal expansion close to that of silicon.
  • the nickel-c obaltiron alloy is plated with gold 23.
  • the clean silicon reverse side or surface 25 of the chip 14 has been bonded to the gold-plated mounting pad 16 by holding the parts in contact and bringing the assembly to a temperature of approximately 370 C, the melting temperature of a gold-silicon eutectic.
  • a temperature of 370 C can damage the integrated circuits 12. In particular, degradation of the integrated circuits at a temperature of about 300 C has been observed.
  • such chips 14 have been bonded to gold-surfaced lead frames by a gold-tin eutectic solder melting at 270 C.
  • the lead frame 18 may be held on a heat table,
  • the reverse side 25 of the chip 14 is provided with a coating of tin 27.
  • a tin coating 27 of the chip is applied to the surface of the gold coating 23 ofthe lead frame at a temperature of about 217 C, the two metals (gold and tin) form a eutectic bond.
  • tin does not adhere well to the silicon and, therefore, in accordance with the present invention, a layer of chromium 73 which adheres well to the silicon, is first applied to the reverse surface 25 of the silicon wafer 10 and then the layer of tin 27 is applied over the chromium.
  • the chromium and tin are applied to the back of the wafer 10 before being broken into chips, such as 14, as shown in FIG. 2. The details of the method of making the structure shown in FIG. 6 will now be described.
  • the integrated circuits 12 are constructed on the obverse surface 13 of silicon wafer 10 according to any desired wellknown method.
  • the reverse surface 25 of the silicon wafer 10 is cleaned of all silicon oxides and other contaminants according to well-known methods.
  • the layer of chromium 73 and then the layer of tin 27 are deposited by vapor deposition process to the back of wafer 10 as described in more detail below.
  • a vacuum chamber 31 comprises a bell jar 30 supported on a base 32.
  • a conduit 34 communicates between a vacuum pump (not shown) and the vacuum chamber.
  • a platen 36 comprised of, for example, stainless steel.
  • the silicon wafer 10 is supported on the underside of this platen in a known manner, with the reverse surface 25 of the silicon wafer 10 facing downwardly.
  • a heater 38 may be provided for heating the platen 36 and silicon wafer 10 in a known manner.
  • a shield or shutter 40 mounted and arranged to be moved, as by handle 42, into and out of a position directly below the wafer 10 for shielding it when desired.
  • a rotary table 44 carrying containers or crucibles 46 and 48 containing the metals to be vapor deposited on the wafer 10, specifically, chromium and tin respectively, in their solid form. Each of these metals may be evaporated by rotating the table 44 to bring the desired container 46 and 48 into alignment with an electron beam path 51 of an electron gun 50.
  • the reverse surface 25 of the silicon wafer is suitably cleaned to remove all unwanted impurities by well-known means.
  • the wafer 10 is mounted on the lower face of the platen 36 (FIG. 4) as mentioned above with its clean reverse surface 25 facing downwardly.
  • the chamber 31 is evacuated in a pressure of approximately 10- torr.
  • the heater 38 may be energized for heating the platen 36 and silicon wafer uniformly to a temperature not to exceed 200 C. Alternatively, the silicon wafer 10 may be left at room temperature.
  • the shutter 40 is swung into position directly below the silicon wafer 10 for shielding it.
  • the table 44 is then rotated to the position for bringing the crucible 46 containing solid chromium into alignment with the path 51 of electrons from the electron gun 50, which is then energized to heat and evaporate the chromium.
  • the shutter 40 is kept in place directly below the silicon wafer 10 for about 30 seconds during initial heating of the chromium in the crucible 46 by the electron gun 50, so that any surface contaminants on the solid chromium, which will evaporate easily, will be deposited on the underside of shutter 40.
  • the electron gun 50 is operated at an intensity that will deposit the desired layer of about 150 angstroms of chromium in about 30 seconds.
  • the shutter 40 is then swung away from shielding position so' the chromium molecules evaporated from the melted chromium in the crucible 46 will deposit on the exposed reverse surface of the silicon wafer 10. After the seconds required for the layer 73 ofchromium on the wafer 10 has reached the desired thickness, the shutter 40 is swung into shielding position below the wafer 10 and the electron gun 50 is deenergized.
  • the table 40 is then rotated to bring the to other crucible 48 containing tin into alignment with the electron beam path 51 of the electron gun 50.
  • the electron gun 50 is then energized for about 30 seconds to heat the tin in the crucible 48 and drive off contaminants.
  • the electron gun 50 is operated at an intensity to deposit a film of tin of substantially 10,000 angstroms in about thirty seconds.
  • the shield 40 is swung away from shielding position for the thirty seconds required to cause the deposition of the layer 27 of tin.
  • the shutter 40 is then swung into place below the silicon wafer 10 to terminate the deposition, the electron gun 50 is deenergized, air is admitted into the vacuum chamber, and the silicon wafer 10 is removed.
  • the silicon wafer 10 is then scribed and broken into in dividual chips, such as the chip 14 in FIG. 2. Eachsuch chip then has an integrated circuit 12 on its obverse face 13 and layers of chromium and tin on its reverse side 25.
  • a gold-plated lead frame 18 is placed on a hot table 60, held down by clamps 62 so that it is heated to a temperature of about 217 C. or slightly above, as for example, 220 to 225 C.
  • the individual chip 14 may then be picked up with tweezers and manually laid in place on the mounting pad 16 of the frame 18. Since the temperature is above the melting point of gold-tin eutectic, such a eutectic bonds the chip 14 to the mounting pad 16. This bonding can be accomplished without pressure simply by laying the chip 14 on the mounting pad 16.
  • the chip 14 may be held in a vacuum chuck 64, also shown in FIG. 5. Such vacuum chucks are well known.
  • Such a chuck may be movable laterally to any position for picking up the individual chips.
  • the vacuum chuck 64 may be lowered, as shown in FIG. 5, for placing the chip 14 on the mounting pad 16 of the lead frame 18, and may be employed for applying slight pressure downwardly, if desired, of a magnitude of about a few grams.
  • solderlike bond betweenthe silicon base of the integrated circuit chip and the gold surface of the lead frame 18 and does so in an efficient operation while avoiding excess heating of the chip and the circuit elements thereon.
  • a method of bonding silicon to gold comprising the steps of:
  • a method of bonding a silicon-surfaced electronic circuit device to a gold-surfaced support member comprising the steps of:
  • a method in the making of an integrated circuit device which comprises the steps of:
  • vapor phase depositing chromium on the opposite face of said wafer vapor phase depositing tin on the chromium so deposited; separating said wafer into a plurality of chips, each chip having an integrated circuit contained thereon; placing individual ones of said separated chips on individual gold-surfaced mounting pads so that said tin of the chip is in surface contact with the gold surface of the mounting pad; and
  • An electronic device comprising:
  • a substantially flat member of silicon having an obverse surface and a reverse surface
  • An electronic device comprising:
  • a substantially flat member of silicon having an obverse surface and a reverse surface
  • said integrated circuit disposed on said obverse surface, said integrated circuit including layers of material that operatively degenerate at temperatures above a predetermined temperature;
  • said bonding material being a material which forms said eutectic bond at a temperature less than said predetermined temperature.
  • said layer of bonding material includes a layer of chromium in adhesive contact with said reverse surface of said silicon member, and a layer of tin in eutectic bond relation with said gold plate; said chromium and said tin being in adhesive rela-

Abstract

A silicon chip, constituting the substrate of an integrated circuit, is coated first with chromium, and then tin, to provide a surface that will bond at temperatures as low as 217* C. to a gold-surfaced mounting pad.

Description

United States Patent Clark N. Adams Courhevoie, France 825,725
May 19,1969
Feb. 23, 1971 The Singer Company Inventor Appl. No. Filed Patented Assignee SlLICON-TO-GOLD BONDED STRUCTURE AND METHOD OF MAKING THE SAME 7 Claims, 6 Drawing Figs.
US. Cl 317/234, 317/235, 29/589, 29/59l, 29/625, 29/628, 29/630, 1 13/1 19 Int. Cl H0ll 1/14 Field ofSearch 317/234,
235, 3, 5, 5.2, 5.3, 5.4, 22; l74/(F.P.); 29/589, 591, 624, 625, 626, 627, 678, 630; 113/119- [56] References Cited UNITED STATES PATENTS 2,973,466 2/1961 Atalla et a]. 317/240 3,458,925 8/1969 Napier et al. 29/578 3,480,841 I l/1969 Castrucci et al. 317/234 Primary Examiner-John W. l-luckert Assistant Examiner-R. F. Polissack Attorneys-Patrick J. Schlesinger, Charles R. Lepchinsky, R.
Perry Shipman and Jay Cantor ABSTRACT: A silicon chip, constituting the substrate of an integrated circuit, is coated first with chromium, and then tin, to provide a surface that will bond at temperatures as low as 217 C. to a gold-surfaced mounting pad.
PATENTEUFEB23|97| 3556207 LT m INVENTOR.
M54 i BY @lark @lGcloms AGENT SILICON-TO-GOLD BONDED STRUCTURE AND METHOD OF MAKING THE SAME BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the mounting and bonding of integrated circuit chips, or wafers, on a mounting pad of a lead frame.
2. Description of the Prior Art It is known that silicon substrates of integrated circuit chips may be bonded directly to gold-surfaced mounting pads of lead frames by the formation of gold silicon eutectic alloy at a temperature of about 370 C. Heating of integrated circuits on a silicon chip to a temperature of 370 C is undesirable, since such a high temperature is high enough to cause degradation of the circuits, for example, those having chromium or aluminum in proximity to gold.
Further, it is well known that such a silicon chip may be bonded to a gold surface lead frame by means of a gold-tin solder, preferably as a preform. Although gold-tin solder melts at 217 C, the use of such solder, even as a preform, adds greatly to the difficulties and expense of the assembly.
SUMMARY A preferred embodiment of the present invention is achieved by coating the reverse side of a silicon substrate having an integrated circuit formed on its obverse side with chromium, and then with tin, preferably by vapor-phase deposition before it is separated into individual circuit chips. The resulting tin surface is applied, at a temperature of about 217 C, to a gold-surfaced support, such as a mounting pad on a lead frame, and is bonded thereto by the formation of a goldtin eutectic bond.
Therefore, it is an object of the present invention to provide an improved silicon-to-gold bonded structure.
It is another object of the present invention to provide an improved and novel method for bonding a silicon substrate to a gold-surfaced base member.
Still another object of the present invention is to provide a method for bonding an integrated circuit chip to a base member without temperature degrading the circuit components.
These and other objects and advantages will be apparent from the description of one specific embodiment of the present invention set forth below when read in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a pictorial view of the obverse side of a silicon wafer on which a plurality of integrated circuits are formed;
FIG. 2 is a view similar to FIG. 1, showing the breaking of the wafer into individual integrated circuit chips;
FIG. 3 is a pictorial view of a single integrated circuit chip mounted on a lead frame according to the present invention;
FIG. 4 is a simplified illustration of apparatus for vapor depositing metal on the surface of a wafer;
FIG. 5 is a view of apparatus for assembling a single integrated circuit chip to a lead frame; and
FIG. 6 is a view looking in the direction of arrows 6-6 of FIG. 3.
DESCRIPTION OF A PREFERRED EMBODIMENT FIG. 1 is a pictorial representation of a thin silicon wafer 10, usually about one inch in diameter, cut from a silicon crystal. A plurality of individual integrated circuits 12 are formed on the upper or obverse plane surface of the wafer 10. Thereafter, as indicated in FIG. 2, the wafer 10 is scribed and divided into a plurality of chips, or dice, 14, each of which contains one of the integrated circuits 12. Such chips may range in size from about .040 to about .170 inch on a side. As shown in FIG. 3 each such chip 14 is bonded to a central mounting pad 16 of a lead frame 18. Circuit connections are made with fine wire jumpers 15 (only one jumper 15 is shown in FIG. 3) from the chip [4 to leads 20. The central portion of the resulting structure may be encapsulated in plastic material (not shown) for enclosing and supporting the parts, and the outside peripheral portions 19 of the lead frame 18 are trimmed for leaving the terminal leads 20 extending from the plastic encapsulation.
The present invention provides an improved and novel structure for and method of bonding a chip 14 to a mounting pad 16. As shown in FIG. 6, integrated circuits 12 on the obverse side or surface 13 of the silicon wafer 10 includes a plurality of patterned deposits or layers of metal 11, such as chromium, gold, and aluminum, and silicon dioxide 71, at least some of which will diffuse'into each other and degrade the circuit thus formed if heated to too high a temperature.
The lead frame and of course'the mounting pad 16 is constructed of nickel-cobalt-iron alloy 21, having a coefficient of thermal expansion close to that of silicon. The nickel-c obaltiron alloy is plated with gold 23. Heretofore, the clean silicon reverse side or surface 25 of the chip 14 has been bonded to the gold-plated mounting pad 16 by holding the parts in contact and bringing the assembly to a temperature of approximately 370 C, the melting temperature of a gold-silicon eutectic. However, a temperature of 370 C can damage the integrated circuits 12. In particular, degradation of the integrated circuits at a temperature of about 300 C has been observed.
Alternatively, such chips 14 have been bonded to gold-surfaced lead frames by a gold-tin eutectic solder melting at 270 C. For example, the lead frame 18 may be held on a heat table,
a small preform of gold-tin solder laid on the mounting pad 16 of the lead frame, where it melts, and the chip 14 then set in place on the molten solder, and the assembly then lifted off the heat table. However, such an operation requires excessive handling of the small parts.
In accordance with the present invention, the reverse side 25 of the chip 14 is provided with a coating of tin 27. When a tin coating 27 of the chip is applied to the surface of the gold coating 23 ofthe lead frame at a temperature of about 217 C, the two metals (gold and tin) form a eutectic bond. However, tin does not adhere well to the silicon and, therefore, in accordance with the present invention, a layer of chromium 73 which adheres well to the silicon, is first applied to the reverse surface 25 of the silicon wafer 10 and then the layer of tin 27 is applied over the chromium. Preferably, the chromium and tin are applied to the back of the wafer 10 before being broken into chips, such as 14, as shown in FIG. 2. The details of the method of making the structure shown in FIG. 6 will now be described.
The integrated circuits 12 are constructed on the obverse surface 13 of silicon wafer 10 according to any desired wellknown method. The reverse surface 25 of the silicon wafer 10 is cleaned of all silicon oxides and other contaminants according to well-known methods. The layer of chromium 73 and then the layer of tin 27 are deposited by vapor deposition process to the back of wafer 10 as described in more detail below.
in FIG. 4, a vacuum chamber 31 comprises a bell jar 30 supported on a base 32. A conduit 34 communicates between a vacuum pump (not shown) and the vacuum chamber. Supported within the vacuum chamber, in thermal insulation from the jar 30 and base 32, is a platen 36 comprised of, for example, stainless steel. The silicon wafer 10 is supported on the underside of this platen in a known manner, with the reverse surface 25 of the silicon wafer 10 facing downwardly. A heater 38 may be provided for heating the platen 36 and silicon wafer 10 in a known manner.
Beneath the platen 36 is a shield or shutter 40, mounted and arranged to be moved, as by handle 42, into and out of a position directly below the wafer 10 for shielding it when desired.
Within the chamber 31 and below platen 36 and shutter 40 is a rotary table 44 carrying containers or crucibles 46 and 48 containing the metals to be vapor deposited on the wafer 10, specifically, chromium and tin respectively, in their solid form. Each of these metals may be evaporated by rotating the table 44 to bring the desired container 46 and 48 into alignment with an electron beam path 51 of an electron gun 50.
After the integrated circuits 12 are formed on the obverse surface 13 of the silicon wafer 10, the reverse surface 25 of the silicon wafer is suitably cleaned to remove all unwanted impurities by well-known means. The wafer 10 is mounted on the lower face of the platen 36 (FIG. 4) as mentioned above with its clean reverse surface 25 facing downwardly. By means of the vacuum pump, the chamber 31 is evacuated in a pressure of approximately 10- torr. The heater 38 may be energized for heating the platen 36 and silicon wafer uniformly to a temperature not to exceed 200 C. Alternatively, the silicon wafer 10 may be left at room temperature.
Initially, the shutter 40 is swung into position directly below the silicon wafer 10 for shielding it.
The table 44 is then rotated to the position for bringing the crucible 46 containing solid chromium into alignment with the path 51 of electrons from the electron gun 50, which is then energized to heat and evaporate the chromium. Preferably, the shutter 40 is kept in place directly below the silicon wafer 10 for about 30 seconds during initial heating of the chromium in the crucible 46 by the electron gun 50, so that any surface contaminants on the solid chromium, which will evaporate easily, will be deposited on the underside of shutter 40. The operation of the apparatus having been calibrated in a previous test, the electron gun 50 is operated at an intensity that will deposit the desired layer of about 150 angstroms of chromium in about 30 seconds.
The shutter 40 is then swung away from shielding position so' the chromium molecules evaporated from the melted chromium in the crucible 46 will deposit on the exposed reverse surface of the silicon wafer 10. After the seconds required for the layer 73 ofchromium on the wafer 10 has reached the desired thickness, the shutter 40 is swung into shielding position below the wafer 10 and the electron gun 50 is deenergized.
The table 40 is then rotated to bring the to other crucible 48 containing tin into alignment with the electron beam path 51 of the electron gun 50. The electron gun 50 is then energized for about 30 seconds to heat the tin in the crucible 48 and drive off contaminants. The electron gun 50 is operated at an intensity to deposit a film of tin of substantially 10,000 angstroms in about thirty seconds. Then, the shield 40 is swung away from shielding position for the thirty seconds required to cause the deposition of the layer 27 of tin. The shutter 40 is then swung into place below the silicon wafer 10 to terminate the deposition, the electron gun 50 is deenergized, air is admitted into the vacuum chamber, and the silicon wafer 10 is removed.
The silicon wafer 10 is then scribed and broken into in dividual chips, such as the chip 14 in FIG. 2. Eachsuch chip then has an integrated circuit 12 on its obverse face 13 and layers of chromium and tin on its reverse side 25.
As shown in FIG. 5, a gold-plated lead frame 18 is placed on a hot table 60, held down by clamps 62 so that it is heated to a temperature of about 217 C. or slightly above, as for example, 220 to 225 C. The individual chip 14 may then be picked up with tweezers and manually laid in place on the mounting pad 16 of the frame 18. Since the temperature is above the melting point of gold-tin eutectic, such a eutectic bonds the chip 14 to the mounting pad 16. This bonding can be accomplished without pressure simply by laying the chip 14 on the mounting pad 16. Alternatively, the chip 14 may be held in a vacuum chuck 64, also shown in FIG. 5. Such vacuum chucks are well known. Such a chuck may be movable laterally to any position for picking up the individual chips. The vacuum chuck 64 may be lowered, as shown in FIG. 5, for placing the chip 14 on the mounting pad 16 of the lead frame 18, and may be employed for applying slight pressure downwardly, if desired, of a magnitude of about a few grams.
solderlike bond betweenthe silicon base of the integrated circuit chip and the gold surface of the lead frame 18 and does so in an efficient operation while avoiding excess heating of the chip and the circuit elements thereon.
I claim:
1, A method of bonding silicon to gold, comprising the steps of:
forming a coating of chromium on a surface of the silicon;
forming a coating of tin on a surface of the chromium coatheating said gold and said silicon with said chromium and tin coatings to at least the melting temperature of the eutectic alloy of tin and gold; and
placing a surface of said tin in contact with a surface of said gold for causing a bond of gold-tin eutectic to form at said melting temperature.
2. The method according to claim 1 wherein said temperature is about 217 C.
3. A method of bonding a silicon-surfaced electronic circuit device to a gold-surfaced support member comprising the steps of:
vapor-phase depositing a layer of chromium on the silicon surface of said circuit device;
vapor-phase depositing a layer of tin on a surface of the layer of chromium;
placing a surface of the tin layer against the gold surface of said support member; and
raising the temperature of the gold and tin to about 21 7 C.
for forming a gold-tin eutectic alloy, thereby bonding said device to said support member.
4. A method in the making of an integrated circuit device which comprises the steps of:
forming a plurality ofintegrated circuits on onc'face ofa silicon wafer;
vapor phase depositing chromium on the opposite face of said wafer; vapor phase depositing tin on the chromium so deposited; separating said wafer into a plurality of chips, each chip having an integrated circuit contained thereon; placing individual ones of said separated chips on individual gold-surfaced mounting pads so that said tin of the chip is in surface contact with the gold surface of the mounting pad; and
heating the thus contacted chips and mounting pads to a gold-tin eutectic alloy forming temperature.
5. An electronic device comprising:
a substantially flat member of silicon having an obverse surface and a reverse surface;
an integrated circuit disposed on said obverse surface;
a layer of chromium on said reverse surface;
a layer of tin on said layer ofchromium; and
a gold-surfaced mounting member in eutectic bonded relation with said layer of tin.
6. An electronic device comprising:
a substantially flat member of silicon having an obverse surface and a reverse surface;
an integrated circuit disposed on said obverse surface, said integrated circuit including layers of material that operatively degenerate at temperatures above a predetermined temperature;
a gold-plated base member; and
a layer of bonding material in adhesive contact with said reverse surface of said silicon member and in eutectic bond with the gold plating of said base member; said bonding material being a material which forms said eutectic bond at a temperature less than said predetermined temperature.
7. An electronic device according to claim 6 wherein said layer of bonding material includes a layer of chromium in adhesive contact with said reverse surface of said silicon member, and a layer of tin in eutectic bond relation with said gold plate; said chromium and said tin being in adhesive rela-

Claims (3)

  1. 2. The method according to claim 1 wherein said temperature is about 217* C. 3. A method of bonding a silicon-surfaced electronic circuit device to a gold-surfaced support member comprising the steps of: vapor-phase depositing a layer of chromium on the silicon surface of said circuit device; vapor-phase depositing a layer of tin on a surface of the layer of chromium; placing a surface of the tin layer against the gold surface of said support member; and raising the temperature of the gold and tin to about 217* C. for forming a gold-tin eutectic alloy, thereby bonding said device to said support member.
  2. 4. A method in the making of an integrated circuit device which comprises the steps of: forming a plurality of integrated circuits on one face of a silicon wafer; vapor phase depositing chromium on the opposite face of said wafer; vapor phase depositing tin on the chromium so deposited; separating said wafer into a plurality of chips, each chip having an integrated circuit contained thereon; placing individual ones of said separated chips on individual gold-surfaced mounting pads so that said tin of the chip is in surface contact with the gold surface of the mounting pad; and heating the thus contacted chips and mounting pads to a gold-tin eutectic alloy forming temperature. 5. An electronic device comprising: a substantially flat member of silicon having an obverse surface and a reverse surface; an integrated circuit disposed on said obverse surface; a layer of chromium on said reverse surface; a layer of tin on said layer of chromium; and a gold-surfaced mounting member in eutectic bonded relation with said layer of tin.
  3. 6. An electronic device comprising: a substantially flat member of silicon having an obverse surface and a reverse surface; an integrated circuit disposed on said obverse surface, said integrated circuit including layers of material that operatively degenerate at temperatures above a predetermined temperature; a gold-plated base member; and a layer of bonding material in adhesive contact with said reverse surface of said silicon member and in eutectic bond with the gold plating of said base member; said bonding material being a material which forms said eutectic bond at a temperature less than said predetermined temperature. 7. An electronic device according to claim 6 wherein said layer of bonding material includes a layer of chromium in adhesive contact with said reverse surface of said silicon member, and a layer of tin in eutectic bond relation with said gold plate; said chromium and said tin being in adhesive relation with each other.
US825725A 1969-05-19 1969-05-19 Silicon-to-gold bonded structure and method of making the same Expired - Lifetime US3566207A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82572569A 1969-05-19 1969-05-19

Publications (1)

Publication Number Publication Date
US3566207A true US3566207A (en) 1971-02-23

Family

ID=25244768

Family Applications (1)

Application Number Title Priority Date Filing Date
US825725A Expired - Lifetime US3566207A (en) 1969-05-19 1969-05-19 Silicon-to-gold bonded structure and method of making the same

Country Status (1)

Country Link
US (1) US3566207A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4870477A (en) * 1971-12-23 1973-09-25
JPS5323568A (en) * 1976-08-18 1978-03-04 Toshiba Corp Semiconductor device
US4141029A (en) * 1977-12-30 1979-02-20 Texas Instruments Incorporated Integrated circuit device
EP0072273A2 (en) * 1981-07-13 1983-02-16 FAIRCHILD CAMERA & INSTRUMENT CORPORATION Low temperature integrated circuit die attachment process
US4609936A (en) * 1979-09-19 1986-09-02 Motorola, Inc. Semiconductor chip with direct-bonded external leadframe
US5647528A (en) * 1996-02-06 1997-07-15 Micron Technology, Inc. Bondhead lead clamp apparatus and method
US6105846A (en) * 1998-04-02 2000-08-22 Micron Technology, Inc. Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US6162662A (en) * 1998-02-23 2000-12-19 Micron Technology, Inc. Die paddle clamping method for wire bond enhancement
US20020048846A1 (en) * 1998-12-11 2002-04-25 Corisis David J. Die paddle clamping method for wire bond enhancement
US6484922B2 (en) 1996-01-26 2002-11-26 Micron Technology, Inc. Apparatus and method of clamping semiconductor devices using sliding finger supports
US6634538B2 (en) 1998-04-02 2003-10-21 Micron Technology, Inc. Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US20040026483A1 (en) * 1996-06-17 2004-02-12 Ball Michael B. Methods for lead penetrating clamping system
US20040140342A1 (en) * 2003-01-20 2004-07-22 Yao Ming Gao System and method for manufacture of a hard disk drive arm and bonding of magnetic head to suspension on a drive arm
US20060091555A1 (en) * 2004-10-29 2006-05-04 Fujitsu Limited Method of and apparatus for mounting an electronic part to a substrate

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036344B2 (en) * 1971-12-23 1975-11-22
JPS4870477A (en) * 1971-12-23 1973-09-25
JPS5323568A (en) * 1976-08-18 1978-03-04 Toshiba Corp Semiconductor device
JPS5515862B2 (en) * 1976-08-18 1980-04-26
US4141029A (en) * 1977-12-30 1979-02-20 Texas Instruments Incorporated Integrated circuit device
US4609936A (en) * 1979-09-19 1986-09-02 Motorola, Inc. Semiconductor chip with direct-bonded external leadframe
EP0072273A3 (en) * 1981-07-13 1985-01-02 FAIRCHILD CAMERA & INSTRUMENT CORPORATION Low temperature integrated circuit die attachment process
EP0072273A2 (en) * 1981-07-13 1983-02-16 FAIRCHILD CAMERA & INSTRUMENT CORPORATION Low temperature integrated circuit die attachment process
US6637636B2 (en) 1996-01-26 2003-10-28 Micron Technology, Inc. Apparatus of clamping semiconductor devices using sliding finger supports
US6484922B2 (en) 1996-01-26 2002-11-26 Micron Technology, Inc. Apparatus and method of clamping semiconductor devices using sliding finger supports
US20040035913A1 (en) * 1996-01-26 2004-02-26 Ball Michael B. Apparatus of clamping semiconductor devices using sliding finger supports
US6715659B2 (en) 1996-01-26 2004-04-06 Micron Technology, Inc. Apparatus for clamping semiconductor devices using sliding finger supports
US20060157532A1 (en) * 1996-01-26 2006-07-20 Ball Michael B Apparatus of clamping semiconductor devices using sliding finger supports
US6981629B2 (en) 1996-01-26 2006-01-03 Micron Technology, Inc. Apparatus of clamping semiconductor devices using sliding finger supports
US6837418B2 (en) 1996-02-06 2005-01-04 Micron Technology, Inc. Bondhead lead clamp apparatus and method
US6435400B1 (en) 1996-02-06 2002-08-20 Micron Technology, Inc. Bondhead lead clamp apparatus and method
US6845898B2 (en) 1996-02-06 2005-01-25 Micron Technology, Inc. Bondhead lead clamp apparatus
US6325275B1 (en) 1996-02-06 2001-12-04 Micron Technology, Inc. Bondhead lead clamp apparatus and method
US20040065719A1 (en) * 1996-02-06 2004-04-08 Ball Michael B. Bondhead lead clamp apparatus and method
US6662993B2 (en) 1996-02-06 2003-12-16 Micron Technology, Inc. Bondhead lead clamp apparatus
US6000599A (en) * 1996-02-06 1999-12-14 Micron Technology, Inc. Bondhead lead clamp apparatus and method
US6290116B1 (en) 1996-02-06 2001-09-18 Micron Technology, Inc. Bondhead lead clamp apparatus and method
US6464123B2 (en) 1996-02-06 2002-10-15 Micron Technology, Inc. Bondhead lead clamp apparatus and method
US5647528A (en) * 1996-02-06 1997-07-15 Micron Technology, Inc. Bondhead lead clamp apparatus and method
US6604671B2 (en) 1996-02-06 2003-08-12 Micron Technology, Inc. Bondhead lead clamp apparatus and method
US20040026478A1 (en) * 1996-02-06 2004-02-12 Ball Michael B. Bondhead lead clamp apparatus
US20040026483A1 (en) * 1996-06-17 2004-02-12 Ball Michael B. Methods for lead penetrating clamping system
US7131568B2 (en) 1996-06-17 2006-11-07 Micron Technology, Inc. Methods for lead penetrating clamping system
US6756659B2 (en) 1998-02-23 2004-06-29 Micron Technology, Inc. Die paddle clamping method for wire bond enhancement
US6326238B1 (en) 1998-02-23 2001-12-04 Micron Technology, Inc. Die paddle clamping method for wire bond enhancement
US6162662A (en) * 1998-02-23 2000-12-19 Micron Technology, Inc. Die paddle clamping method for wire bond enhancement
US6288441B1 (en) 1998-02-23 2001-09-11 Micron Technology, Inc. Die paddle clamping method for wire bond enhancement
US6507094B2 (en) 1998-02-23 2003-01-14 Micron Technology, Inc. Die paddle clamping for wire bond enhancement
US6375061B1 (en) 1998-04-02 2002-04-23 Micron Technology, Inc. Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US6126062A (en) * 1998-04-02 2000-10-03 Micron Technology, Inc. Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US6352191B1 (en) 1998-04-02 2002-03-05 Micron Technology, Inc. Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US6105846A (en) * 1998-04-02 2000-08-22 Micron Technology, Inc. Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US6634538B2 (en) 1998-04-02 2003-10-21 Micron Technology, Inc. Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US20040026486A1 (en) * 1998-04-02 2004-02-12 Sven Evers Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US6588649B2 (en) 1998-04-02 2003-07-08 Micron Technology, Inc. Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US6921017B2 (en) 1998-04-02 2005-07-26 Micron Technology, Inc. Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US6138891A (en) * 1998-04-02 2000-10-31 Micron Technology, Inc. Non-conductive and self-leveling leadframe clamp insert for wirebonding integrated circuits
US6977214B2 (en) 1998-12-11 2005-12-20 Micron Technology, Inc. Die paddle clamping method for wire bond enhancement
US20060154404A1 (en) * 1998-12-11 2006-07-13 Corisis David J Die paddle clamping method for wire bond enhancement
US20020048846A1 (en) * 1998-12-11 2002-04-25 Corisis David J. Die paddle clamping method for wire bond enhancement
US20050230456A1 (en) * 2003-01-20 2005-10-20 Yao Ming G System and method for manufacture of a hard disk drive arm and bonding of magnetic head to suspension on a drive arm
US20040140342A1 (en) * 2003-01-20 2004-07-22 Yao Ming Gao System and method for manufacture of a hard disk drive arm and bonding of magnetic head to suspension on a drive arm
US7083078B2 (en) * 2003-01-20 2006-08-01 Sae Magnetics (H.K.) Ltd. System and method for manufacture of a hard disk drive arm and bonding of magnetic head to suspension on a drive arm
US20060091555A1 (en) * 2004-10-29 2006-05-04 Fujitsu Limited Method of and apparatus for mounting an electronic part to a substrate
US7513032B2 (en) * 2004-10-29 2009-04-07 Fujitsu Limited Method of mounting an electronic part to a substrate

Similar Documents

Publication Publication Date Title
US3566207A (en) Silicon-to-gold bonded structure and method of making the same
KR100426839B1 (en) Device and method for producing a chip-substrate connection
US3380155A (en) Production of contact pads for semiconductors
US3625837A (en) Electroplating solder-bump connectors on microcircuits
US4142662A (en) Method of bonding microelectronic chips
US4545840A (en) Process for controlling thickness of die attach adhesive
US4078711A (en) Metallurgical method for die attaching silicon on sapphire devices to obtain heat resistant bond
US3647533A (en) Substrate bonding bumps for large scale arrays
US4096983A (en) Bonding copper leads to gold film coatings on alumina ceramic substrate
US3617348A (en) Method and apparatus for the evaporation of chromium-silver
US3680198A (en) Assembly method for attaching semiconductor devices
US4876221A (en) Bonding method
EP0165148B1 (en) Assembly process for at least two ceramic pieces each having at least one plane surface
JP3147424B2 (en) Electronic circuit components
US4659006A (en) Method of bonding a die to a substrate
US4457976A (en) Method for mounting a sapphire chip on a metal base and article produced thereby
US4863090A (en) Room temperature attachment method employing a mercury-gold amalgam
US3978517A (en) Titanium-silver-palladium metallization system and process therefor
JPH0254658B2 (en)
US3654694A (en) Method for bonding contacts to and forming alloy sites on silicone carbide
JPS6130028B2 (en)
JPS61181136A (en) Die bonding
JP2000000685A (en) Electronic circuit joining method and electronic circuit device
US3710432A (en) Method for removing a metalized device from a surface
JPS60160623A (en) Method and apparatus for manufacturing semiconductor device