US3575248A - Weighing device - Google Patents

Weighing device Download PDF

Info

Publication number
US3575248A
US3575248A US816006A US3575248DA US3575248A US 3575248 A US3575248 A US 3575248A US 816006 A US816006 A US 816006A US 3575248D A US3575248D A US 3575248DA US 3575248 A US3575248 A US 3575248A
Authority
US
United States
Prior art keywords
deflection
resiliently deformable
rail
deformable means
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US816006A
Inventor
Edward H Bell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Air Brake Co
Original Assignee
Westinghouse Air Brake Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Air Brake Co filed Critical Westinghouse Air Brake Co
Application granted granted Critical
Publication of US3575248A publication Critical patent/US3575248A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/18Indicating devices, e.g. for remote indication; Recording devices; Scales, e.g. graduated
    • G01G23/36Indicating the weight by electrical means, e.g. using photoelectric cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/04Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing railway vehicles
    • G01G19/042Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing railway vehicles having electrical weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/08Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a leaf spring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G5/00Weighing apparatus wherein the balancing is effected by fluid action
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G7/00Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups
    • G01G7/06Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups by electrostatic action

Definitions

  • This invention relates to a weigh 3i] having a 5 l l t Cl 3 36 1 2 1 crown, a web, a flange portion and an elongated slot extending I'l C01519704: gar sversely throxgh the web poruon between the crown and ange portions.
  • resi iently deformable means is interposed 0 Search 163, between the and lower surfaces of the lot such that g 210, 208, 209 gegection (Efhthe clrowrli portion produces an orthogonal e ection o t e resi ient y deformable means with respect to 22:25:22; :2"
  • my invention relates to a weight rail having a crown, a web, a flange portion and a slot formed between the crown and flange portions.
  • the slot extends transversely through the web portion and has a relatively long dimension disposed longitudinally along the rail.
  • a resiliently deformable means is interposed between the upper and lower surfaces of the slot. This resiliently deformable means is deflected in conjunction with a deflection of the crown portion of the rail.
  • the resiliently deformable means is deflected orthogonal to the direction of motion of the deflection of the crown portion by a passing railway vehicle.
  • a transducing means is cooperatively associated with the resiliently deformable means ,and is responsive to the orthogonal deflection of the resiliently deformable means for providing an indication which is directly proportional to the amount of the deflection of the crown portion of the rail, and, in turn, the weight of the passing railway vehicle.
  • weight rails for measuring the weights of railway vehicles employed various lever arrangements, such as, those shown in U.S.' Pat. Nos. 2,902,595 and 2,487,6l3 for transducing or converting raildeflection into an effective indication of vehicle weight.
  • lever arrangements such as, those shown in U.S.' Pat. Nos. 2,902,595 and 2,487,6l3 for transducing or converting raildeflection into an effective indication of vehicle weight.
  • these previous arrangements include, a primary as well as a secondary lever each of which is pivotally. mdv ed in response to the deflection of the weight rail. The pivotal movementof the secondary lever is"emp loye'd to control a transducing means.
  • the primary. lever is interposed within a slot longitudinally displaced along the rail; and is arranged to have one end mechanically contact the down portion of the rail.
  • This primary lever is pivoted about a suitable bearing or fulcrum point which "is rigidly fixed to provide rotational movement and to prevent translational movement.
  • the other end of the primary lever is arranged to cooperate with an adjustment screw carried by'one end of the secondary lever.
  • the secondary lever is also pivoted on a suitable bearing or fulcrum point similar to the primary lever fulcrum point.
  • the opposite end of the secondary lever is cooperatively associative with appropriate transducing means such as a bank of movable and stationary contacts. Accordingly, any downward deflection in the crown portion of the weigh rail causes a corresponding downward movement of the one end of the primary lever.
  • Another object of this invention is to provide an improved weigh rail with fewer moving parts so that it is less susceptible to mechanical wear.
  • Yet another object of this invention is to provide a new and improved weigh rail which is more economic in construction as well as in maintenance.
  • Still another object of this invention is to provide a novel weigh rail which is less affected by environmental vibrations and other adverse conditions.
  • Yet still another object of this invention is to provide an improved weigh rail which is compact.
  • a further object of this invention is to provide a new and improved weigh rail which measures varying degrees of vehicular weight by the employment of a rail having a crown, a web, a flange portion, and a slot longitudinally disposed through the web portion and having a resiliently deformable means interposed between its upper and lower surfaces and a transducing means responsive to the deflection of the resiliently deformable means for indicating the weight of a railway vehicle.
  • the present invention employs a weigh rail for weighing a railway vehicle fllas'it moves through a section of track.
  • the weigh rail includes conventional crown, web, andflange portions and is provided with an elongated slot disposed between the crown and flange and the downward deflection of the crown portion of the rail itself is in the order of only 10 to l. It will be appreciated that such a ratio is small so that there is little, if any, latitude in the vibrational effects upon theoperation of the weight rail result in erroneous weight indications.
  • a new and improved weigh rail free of the above mentioned disadvantages is desirable for more efficieht railway operation.
  • the transducing means may consist of a bank of contacts, a plurality of digital back pressure switches, an analogue back pressure sensor, a variable capacitive device, or a rheostat. Accordingly, the transducing means is controlled in accordance with the amount of orthogonal movement of the resiliently deformable plate for providing an indication which is proportional to the weight of the vehicle passing over the rail.
  • FIG. 1 illustrates a vehicle wheel passing over a rail section which has an elongated slot formed in its web portion.
  • FIG. 2 depicts a sectional side view of the rail section of FIG. 1 with the above described resiliently deformable plate interposed between the upper and lower surfaces of the slot.
  • FIGS. 2A and 2B illustrate geometric figures which aid in providing a mathematical description of the lateral deflection of the resiliently deformable plate of FIG. 2.
  • FIG. 3 illustrates one embodiment of a weigh rail of the present invention wherein the transducing means comprises a plurality or bank of electrical contacts.
  • FIG. 3A shows a front view, with portions removed, of the embodiment of the weigh rail of the present invention of FIG. 3.
  • FIG. 4 depicts another embodiment of a weigh rail of the present invention wherein the resiliently deformable means is a dynamic metal plate and the transducing means is a static metal plate.
  • FIG. 5 illustrates yet another embodiment of a weigh rail of the present invention wherein the transducing means is a fluidic back pressure sensor.
  • FIG. 6 depicts still yet another embodiment of a weigh rail of the present invention wherein the transducing means is a plurality of fluidic back pressure switches.
  • FIG. 6A shows a front view with portions removed of the embodiment of the weigh rail of the present invention of FIG. 6.
  • FIG. 7 illustrates another embodiment of a weigh rail of the present invention wherein the transducing means is a variable resistance.
  • FIG. 1 shows a railway vehicle wheel 11 rotatably secured on axle 12 passing over a weigh rail section 13.
  • the weigh rail section 13 consists of a running crown portion 14, a web portion 15, and a supporting flange portion 16 appropriately secured to conventional ties (not shown) in the usual manner.
  • a slot 17 is formed in the weigh rail 13 and extends transversely through the web portion 15.
  • the slot 17 is shown having a relatively long dimension longitudinally along the length of the weigh rail section 13.
  • the elongated slot 17 includes a movable upper surface 17a, and a stationary lower surface 17b.
  • the upper crown portion 14 of rail section 13 will be deflected from a normal position as shown by dotted line 14a to a deformed position as shown by solid line 14b.
  • the amount of deflection of the crown portion 14 of rail section 13 will, of course, vary with the weight of each passing railway vehicle.
  • the deflection of the upper crown portion 14 of rail section 13 will cause a corresponding or proportional amount of deflection to occur in the upper surface 17a of the slot 17, as shown by the solid outline 17a.
  • FIG. 2 there is depicted a cross-sectional view of the weigh rail 13 of FIG. 1 with a resiliently deformable plate 21 interposed between the upper and lower surfaces 170 and 1712. As shown, the upper and lower extremities or edges of deformable plate 21 are positioned within a pair of milled grooves 18a and 18b, respectively. It is desirous that the resiliently deformable plate 21 be initially prestressed and slightly tensed to prevent slipping and dislodgement from the slot 17.
  • the crown portion 14 of rail section 13 will flex and in turn cause a proportional amount of deflection in the upper surface 17a of slot 17 to bring the upper surface 17a to a position shown by the solid line 17a as shown in FIG. 2.
  • the resiliently deformable plate 21 will move and bend from its original position at no load shown by dotted outline 21a to the position shown in solid outline 21b in FIG. 2.
  • FIG. 2A shows a circular diagram 19 having a chord L subtending an arc of length S two lines of length L extending from the end points of chord L to the midpoint of are S.
  • an isosceles triangle is formed by sides L and chord L which has a height D.
  • FIGS. 3 through 7 depict several different embodiments of the present invention in which the aforementioned transducing means may be incorporated either as an analogue device or as a digital device.
  • FIG. 3 illustrates the weigh rail of the present invention employing a plurality or bank of associated movable and stationary electrical contacts. While it will be noted that a bank of three contacts 20, 25 and 30 is shown in FIG. 3, it will be understood that a greater or lesser number of contacts may be utilized in practicing this invention.
  • A. first cover 36 in FIG. 3A is shown secured by bolts 37 and 38 to the outer side of the weigh rail 13 and a second cover 33 and weather tight seal member 42 are securely held in place by screws 34 and 35. It will be noted that the covers 36 and 33 and the seal member 42 are appropriately mounted such that they do not impair the downward deflection of the crown portion 14 of weigh rail 13.
  • each of the three contacts comprises 'a movable contact element 23 and a stationary contact element 24.
  • Each of the resiliently movable contact springs 23 and the stationary contact springs 24 are shown held in insulative relationship by means 28a and 28b respectively to the inner and outer insulating blocks 26 and 27 which, in turn, are secured to the flange portion 16 by means of bolts 29.
  • a pair of suitable wires or leads 31 and 32 are electrically coupled to the movable and stationary contact elements of each of the three contact pairs.
  • the leads 31 and 32 may be appropriately connected to any suitable supervisory apparatus, such as, an automatic retarder contacting system in classification yards.
  • the three contact pairs 20, 25 and 30 are vertically positioned relative to each other so that a different level of displacement of the resiliently deformable means 21 is required to close each contactpair. Accordingly, such an arrangement provides a digital method of determining various weights of vehicles being processed. That is, with the maximum deflection of the resiliently deformable plate 21 occurring at its center, and with the deflection of the resiliently deformable plate 21 geometrically decreasing on either side of its center dependent upon the point selected, the three contact pairs 20, 25 and 30 will be additively closed upon the vehicle weight.
  • Each of the contact elements is formed of suitable resilient conductive material, such as beryllium copper, and includes a first vertical supporting portion, a horizontal intermediate portion and a second vertical contact portion.
  • the second vertical portion of each movable contact element also includes a contiguous abutment in the form of a hook or turned over portion for cooperating with the resiliently deformable plate 21.
  • a lightweight"vehicle will only cause contact pair to be closed, a mediumweight" vehicle will cause both contact pairs 20 and to close and a heavyweight" vehicle will cause all three contact pairs 20, 25 and to close.
  • a contact arrangement employing a greater number of contact pairs will produce a greater number of weight classes thereby achieving a greater degree of weighing accuracy.
  • FIG. 4 there is illustrated another embodiment of the invention which utilizes a flat metal plate 41 in place of the bank of three contact pairs.
  • the metallic plate 41 is preferably constructed of suitable conductive material, such as aluminum or copper and is positioned in spaced relationship with the resiliently deformable metallic plate 21.
  • the metallic plate 41 is insulated from the weigh rail section by inner and outer insulating blocks 26a and 27a.
  • the insulative blocks 26a and 27a are securely fastened to the flange portion 16 by suitable bolts, only one of which is shown at 290.
  • a firstleadin wire 31a is directly coupled to the metallic plate 41 through a bolt 280 which rigidly secures the metallic plate 41v between as well as through member 42 and thereby engages the flange portion 16.
  • the lead wire 32a is conductively connected through bolt 28b and flange portion 16 to the resiliently deformable metallic plate 21.
  • the remainings, such as, the protective coverings for the slot 17 are the same as those described in the previous weigh rails.
  • the crown portion 14 will deflect causing a proportional amount of deflection of the resiliently deformable metallic plate 21.
  • the spacing between the resiliently deformable metallic plate 21 and the metallic plate 41 will decrease from the original positions as shown in FIG. 4. It will be appreciated that the spacing will vary in accordance with the weight of the vehicle.
  • the plates 21 and 41 may be employed as a capacitor. That is, since the capacitance value is dependent upon the spacing between plates 21 and 41, and, in turn, upon the amount of deflection of the deformable plate 21, an analogue indication of vehicle weight may be measured by connected leads 31a and 32a to a capacitance bridge or the like.
  • FIG. 5 illustrates another embodiment of a weigh rail in accordance with the present invention.
  • the transducing means now takes the form of a fluidic back pressure sensor 46.
  • the fluidic back pressure sensor 46 may be of the type manufactured by Pitney-Bowes, and listed as Pat No. 6,080,008 which includes a single input and a pair of outputs.
  • a supply of air at a predetermined pressure is normally delivered to the back pressure sensor 46 via input conduit 47.
  • the discharge hole of output conduit 48 is unobstructed as shown in FIG. 5, the air supplied to the input conduit 47 will all flow through the discharge hole. However, when an obstacle partially or completely blocks the discharge hole the supply of air will be backed-up or diverted and will begin flowing through output conduit 49 of back pressure sensor 46.
  • the amount or pressure of air flowing through output conduit 49 can therefore be used as ananalogue indication of the nearness of an obstacle to the discharge hole of conduit 48.
  • the deformable plate 21 as the discharge controlling obstacle, the weight of a vehicle on rail section 13 can be accurately measured in accordance with the amount of deflection of the resiliently defonnable plate 21.
  • back pressure sensor 46 is rigidly held in alignment with the resiliently deformable plate 21.
  • the sensor 46 includes a suitable arm or bracket 50 which is interposed between a pair of shock absorbent mounting blocks 26b and 27b which, in turn, are held in place by bolts 29b and 290.
  • the remaining elements such as the covers for the slot 17 of this embodiment are substantially the same as described above. It should be understood that while an air supply is used in conjunction with the back pressure sensor 46, other available fluids and supply sources may equally well be employed without impeding weigh rail accuracy.
  • FIGS. 6 and 6A there is shown a fluidic digital version of a weight rail similar to FIGS. 3 and 3A in which the transducing means takes-the form of a plurality of individual fluidic back pressure switches.
  • the transducing means takes-the form of a plurality of individual fluidic back pressure switches.
  • a plurality of back pressure switches 63, 64 and 65 are disposed longitudinally along rail 13.
  • the switch 63 is disposed in alignment with the longitudinal centerline of the resiliently deformable plate 21 while the remaining two switches 64 and 65 are disposed at some point below the centerline.
  • Each of the back pressure switches 63, 64 and 65 includes an input conduit, a pair of output conduits and a control conduit.
  • the back pressure switches are carried by separate bracket 56 which is resiliently mounted to the flange portion 16 by means of an inner and an outer shock absorbent mounting block 57 and 58 through which a plurality of bolts 59 and 60 pass and securely hold switches 63, 64 and 65 in proper relationship with deformable plate 21.
  • a supply of air is normally delivered to the back of each pressure switch via input conduits 52. Normally, whenever a control conduit 53 is totally blocked or obstructed, air will no longer flow.
  • the plurality of back pressure switches 63, 64 and 65 cooperate with the resiliently deformable plate 21 to provide a digital method of determining three levels of vehicle weight, similar to the electrical contact arrangement of FIGS. 3 and 3A.
  • FlG. 6A depicts only three back pressure switches vertically displaced at and below the centerline of resiliently deformable plate 21 to indicate lightweight," mediumweight” and heavyweightvehicles, it will be understood that a greater or lesser number of back pressure switches may be used in practice in this invention.
  • the back pressure switches may be disposed above the centerline with the same results and achieve a greater degree of weighing accuracy. It has been found that a suitable type of back pressure switch may be of the type manufactured by Corning Fluidic Products Division described in Catalog No. 191,473.
  • FIG. 7 shows another embodiment of my invention in which the transducing means is a variable resistor or rheostat 67.
  • the transducing means is a variable resistor or rheostat 67.
  • C-shaped operating cam 68 is interposed between the resiliently deformable plate 21 and the variable resistor 67.
  • the C-shaped cam 68 intimately contacts the resiliently deformable plate 21 and is mechanically coupled to a rotatable shaft 81 which varies the resistance of resistor 67.
  • the variable resistor 67 is secured to one end of a suitable bracket 69, the other end of which is held between inner and outer resilient mounting blocks 72 and 73.
  • a pair of bolts 74 and 76 is secured to the mounting blocks 72 and 73 and also the other end of bracket 69 to the flange portion 16 of rail section 13.
  • variable resistor 67 provides an analogue indication of the weight of the railway vehicles. This resistance change may be readily measured by any suitable means, such as an ohmmeter which can be easily connected to leads 78 and 79.
  • the plurality of contact pairs of FIGS. 3 and 3A and the plurality of back pressure switches of FIGS. 6 and 6A provide digital indications of vehicle weight
  • the variable capacitive arrangement of FIG. 4 the back pressure sensor arrangement of FIG. and the variable resistor arrangement of FIG. 7 provides analogue indications of vehicle weight.
  • any suitable conversion means for converting the electrical and fluidic indications into useable data for automatic classification yard operations may be employed with my invention.
  • the new and improved weigh rail arrangements of the present invention provide a more effective and mechanically unique method for measuring weights of vehicles which is inexpensive, compact, and more sensitive to weight changes.
  • a weigh rail having a crown, a web and a flange portion, a slot formed between said crown and flange portions and extending transversely through said web portion, said slot having a relatively long dimension disposed longitudinally along said rail, a resiliently deformable means interposed between the upper and lower surfaces of said slot, said resiliently deformable means being deflected in conjunction with a deflection of said crown portion of said rail such that the direction of motion of said deflection of said resiliently deformable means is orthogonal to the direction of motion of said deflection of said crown portion, and a transducing means cooperatively associated with said resiliently deformable means and responsive only to the orthogonal deflection of said resiliently deformable means for providing an indication of the amount of said deflection of said crown portion.
  • a device for weighting objects moving over a section of track said track having an upper movable, an intermediate web, and a lower stationary portion, a slot formed between said upper and lower portions and extending transversely through said intermediate portion, said slot having a relatively long dimension disposed longitudinally along said section of track, a resiliently deformable plate interposed between the upper and lower surfaces of said slot, said resiliently deformable plate being deflected in conjunction with a deflection of said upper movable portion of said section of track, caused by the passing of said object, such that the direction of motion of said deflection of said resiliently deformable plate is orthogonal to the direction of motion of said deflection of said upper movable portion, and a transducing means cooperatively associated with said resiliently deformable plate and responsive only to the orthogonal deflection of said resiliently deformable plate for providing an indication of the amount of said deflection of said upper movable portion according to the weight of said object.
  • transducing means comprises a bank of electrical contacts in vertically staggered alignment with said resiliently deformable means, the closing of any one of said electrical contacts dependent upon the amount of deflection of said resiliently deformable means due to the amount of deflection of said crown portion of said rail.
  • said resiliently deformable means is a metal plate and said transducing means is a static metal plate in such alignment with said resiliently deformable means as to form a variable capacitive device, the capacitance of said variable capacitive device varying according to the amount of distance between said resiliently deformable means and said static plate, said distance varying according to the amount of deflection of said resiliently deformable means.
  • said transducing means is a plurality of back pressure switches, each of said switches having at least one input conduit, and first and second output conduits and a control conduit, said control conduits in vertically staggered alignment with said resiliently deformable means, said supply input providing a continuous flow of fluid at a predetermined pressure such that whenever said control conduit is free from obstruction by said resiliently deformable means, there will be an indication at said first output conduit, and whenever said control conduit is obstructed by said resiliently deformable means there will be an indication at said second output conduit, and the obstructing of any one of said control conduits dependent upon the amount of deflection of said resiliently deformable means due to the amount of deflection of said crown portion of said rail.
  • said transducing means is a back pressure sensing device having an input conduit, and first and second output conduits, said input conduit providing a continuous flow of fluid at a predetermined pressure, said first output conduit and said resiliently deformable means initially separated, at zero deflection of said resiliently deformable means, by a predetermined distance such that a zero deflection of said first output conduit will allow a maximum flow of fluid and no fluid flow from said' second output conduit and as said predetermined distance decreases due to deflection of said resiliently deformable means, said first output conduit will decreasingly allow fluid to flow therefrom while said second output conduit will increasingly allow air to flow therefrom.

Abstract

This invention relates to a weigh rail having a crown, a web, a flange portion and an elongated slot extending transversely through the web portion between the crown and flange portions. A resiliently deformable means is interposed between the upper and lower surfaces of the slot such that deflection of the crown portion produces an orthogonal deflection of the resiliently deformable means with respect to the deflection of the crown portion. A transducing means is cooperatively associated with the resiliently deformable means and is responsive to a deflection in the resiliently deformable means for providing an indication which is directly proportional to the amount of deflection of the crown portion.

Description

United States Patent [72] Inventor Edward H. Bell 3,004,152 10/1961 Dyche 177/Digest 8 Monongahela, Pa. 3,009,056 1 1/ 1961 Bone et a1. 177/Digest 8 [21] Appl. No. 816,006 3,155,184 11/1964 Raskin 177/163 22] Flled Apr. 14, 1969 FOREIGN PATENTS [45] Patented Apr. 20, 1971 1 088 873 I0 196 [73] Assignee Westinghouse Air Brake Company 61 I 9 7 Great l l [77/210 Swisvaleh. 6/1 58 Great Britain 177/163 Primary ExaminerRobert S. Ward, Jr.
. Atgorggy-H. A. Williamson, A. G. Williamson, Jr. and J. B. (54] WEIGHING DEVICE 0 10 Claims, 1 1 Drawing Figs. [52] [1.8. Cl- 177/163, This invention relates to a weigh 3i] having a 5 l l t Cl 3 36 1 2 1 crown, a web, a flange portion and an elongated slot extending I'l C01519704: gar sversely throxgh the web poruon between the crown and ange portions. resi iently deformable means is interposed 0 Search 163, between the and lower surfaces of the lot such that g 210, 208, 209 gegection (Efhthe clrowrli portion produces an orthogonal e ection o t e resi ient y deformable means with respect to 22:25:22; :2" A t-" 1r 1a e W1 e resl ien y e orma e 2,906,865 9/1959 Jefferson 177/210X means and is responsive to a deflection in the resiliently 3,047,083 7/1962 Chyo l77/210UX deformable means for providing an indication which is 2,779,583 1/1957 Bone' 177/Digest 8 directly proportional to the amount of deflection of the crown 2,987,613 6/1961 Jefferson et a1 l77/Digest 8 portion.
"4 18a 21 Z 17a 4! 12' 17b a [5% F31 59 i ZSL PATENTEU APR20 1971 SHEET 2 [IF .2
Pg. M; H
{1V VE/VWOR K Edward H Bell WEIGHING DEVICE My invention relates to a weight rail.
More specifically, my invention relates to a weight rail having a crown, a web, a flange portion and a slot formed between the crown and flange portions. The slot extends transversely through the web portion and has a relatively long dimension disposed longitudinally along the rail. A resiliently deformable means is interposed between the upper and lower surfaces of the slot. This resiliently deformable means is deflected in conjunction with a deflection of the crown portion of the rail. The resiliently deformable means is deflected orthogonal to the direction of motion of the deflection of the crown portion by a passing railway vehicle. A transducing means is cooperatively associated with the resiliently deformable means ,and is responsive to the orthogonal deflection of the resiliently deformable means for providing an indication which is directly proportional to the amount of the deflection of the crown portion of the rail, and, in turn, the weight of the passing railway vehicle. v
In the past, weight rails for measuring the weights of railway vehicles employed various lever arrangements, such as, those shown in U.S.' Pat. Nos. 2,902,595 and 2,487,6l3 for transducing or converting raildeflection into an effective indication of vehicle weight. 'It will be noted that these previous arrangements include, a primary as well as a secondary lever each of which is pivotally. mdv ed in response to the deflection of the weight rail. The pivotal movementof the secondary lever is"emp loye'd to control a transducing means. It will be further noted j'that the primary. lever is interposed within a slot longitudinally displaced along the rail; and is arranged to have one end mechanically contact the down portion of the rail. This primary lever is pivoted about a suitable bearing or fulcrum point which "is rigidly fixed to provide rotational movement and to prevent translational movement. The other end of the primary lever is arranged to cooperate with an adjustment screw carried by'one end of the secondary lever. .The secondary lever is also pivoted on a suitable bearing or fulcrum point similar to the primary lever fulcrum point. The opposite end of the secondary lever is cooperatively associative with appropriate transducing means such as a bank of movable and stationary contacts. Accordingly, any downward deflection in the crown portion of the weigh rail causes a corresponding downward movement of the one end of the primary lever. This causes the opposite end of the primary lever, and, in turn, the adjustable end of the secondary lever to move upwardly-This upward movement causes the other end .of the secondary lever -to move downwardly. The bank of contacts are arranged such that they are successively closed in weight responsive sequential order depending upon the weight of a railway vehicle on the weigh rail. That is, a lightweight vehicle will only result in the closing It is therefore an object of this invention to provide a novel weight rail for measuring various degrees of vehicular weight with greater weight sensitivity and lesser adjustment requirements.
Another object of this invention is to provide an improved weigh rail with fewer moving parts so that it is less susceptible to mechanical wear.
Yet another object of this invention is to provide a new and improved weigh rail which is more economic in construction as well as in maintenance.
Still another object of this invention is to provide a novel weigh rail which is less affected by environmental vibrations and other adverse conditions.
Yet still another object of this invention is to provide an improved weigh rail which is compact.
A further object of this invention is to provide a new and improved weigh rail which measures varying degrees of vehicular weight by the employment of a rail having a crown, a web, a flange portion, and a slot longitudinally disposed through the web portion and having a resiliently deformable means interposed between its upper and lower surfaces and a transducing means responsive to the deflection of the resiliently deformable means for indicating the weight of a railway vehicle.
In the attainment of the foregoing objects, the present invention employs a weigh rail for weighing a railway vehicle fllas'it moves through a section of track. The weigh rail includes conventional crown, web, andflange portions and is provided with an elongated slot disposed between the crown and flange and the downward deflection of the crown portion of the rail itself is in the order of only 10 to l. It will be appreciated that such a ratio is small so that there is little, if any, latitude in the vibrational effects upon theoperation of the weight rail result in erroneous weight indications. Thus, it will be appreciated that a new and improved weigh rail free of the above mentioned disadvantages is desirable for more efficieht railway operation.
'the length of the rail. A resiliently deformable means,
preferably in the form of a metallic or synthetic plate, is interposed between the upper and lower surfaces in the slot. This resiliently deformable plate is deflected in conjunction with a deflection in the crown portion of the rail caused by a passing railway vehicle. The direction of motion of the deflection of the resiliently defonnable plate which is orthogonal to the direction of motion of the deflection of the crown portion of rail is employed to control a transducing means. The transducing means may consist of a bank of contacts, a plurality of digital back pressure switches, an analogue back pressure sensor, a variable capacitive device, or a rheostat. Accordingly, the transducing means is controlled in accordance with the amount of orthogonal movement of the resiliently deformable plate for providing an indication which is proportional to the weight of the vehicle passing over the rail.
Other objects an advantages of the present invention will become apparent from the ensuring description of various illustrative embodiments thereof, in the course of which reference is had to the accompanying drawings in which:
FIG. 1 illustrates a vehicle wheel passing over a rail section which has an elongated slot formed in its web portion.
FIG. 2 depicts a sectional side view of the rail section of FIG. 1 with the above described resiliently deformable plate interposed between the upper and lower surfaces of the slot.
FIGS. 2A and 2B illustrate geometric figures which aid in providing a mathematical description of the lateral deflection of the resiliently deformable plate of FIG. 2.
FIG. 3 illustrates one embodiment of a weigh rail of the present invention wherein the transducing means comprises a plurality or bank of electrical contacts.
FIG. 3A shows a front view, with portions removed, of the embodiment of the weigh rail of the present invention of FIG. 3.
FIG. 4 depicts another embodiment of a weigh rail of the present invention wherein the resiliently deformable means is a dynamic metal plate and the transducing means is a static metal plate.
FIG. 5 illustrates yet another embodiment of a weigh rail of the present invention wherein the transducing means is a fluidic back pressure sensor.
FIG. 6 depicts still yet another embodiment of a weigh rail of the present invention wherein the transducing means is a plurality of fluidic back pressure switches.
FIG. 6A shows a front view with portions removed of the embodiment of the weigh rail of the present invention of FIG. 6.
FIG. 7 illustrates another embodiment of a weigh rail of the present invention wherein the transducing means is a variable resistance.
A description of the above embodiments will follow and then the novel features of the invention will appear in the appended claims.
Reference is now made to the drawings and, particularly to FIG. 1, which shows a railway vehicle wheel 11 rotatably secured on axle 12 passing over a weigh rail section 13. The weigh rail section 13 consists of a running crown portion 14, a web portion 15, and a supporting flange portion 16 appropriately secured to conventional ties (not shown) in the usual manner. A slot 17 is formed in the weigh rail 13 and extends transversely through the web portion 15. The slot 17 is shown having a relatively long dimension longitudinally along the length of the weigh rail section 13. The elongated slot 17 includes a movable upper surface 17a, and a stationary lower surface 17b. Accordingly, whenever the wheel 11 of a railway vehicle passes over the slot 17, the upper crown portion 14 of rail section 13 will be deflected from a normal position as shown by dotted line 14a to a deformed position as shown by solid line 14b. The amount of deflection of the crown portion 14 of rail section 13 will, of course, vary with the weight of each passing railway vehicle. The deflection of the upper crown portion 14 of rail section 13 will cause a corresponding or proportional amount of deflection to occur in the upper surface 17a of the slot 17, as shown by the solid outline 17a.
Referring now to FIG. 2 there is depicted a cross-sectional view of the weigh rail 13 of FIG. 1 with a resiliently deformable plate 21 interposed between the upper and lower surfaces 170 and 1712. As shown, the upper and lower extremities or edges of deformable plate 21 are positioned within a pair of milled grooves 18a and 18b, respectively. It is desirous that the resiliently deformable plate 21 be initially prestressed and slightly tensed to prevent slipping and dislodgement from the slot 17. Accordingly, when a vehicle wheel passes over the crown portion 14 of rail section 13, the crown portion 14 will flex and in turn cause a proportional amount of deflection in the upper surface 17a of slot 17 to bring the upper surface 17a to a position shown by the solid line 17a as shown in FIG. 2. Hence, the resiliently deformable plate 21 will move and bend from its original position at no load shown by dotted outline 21a to the position shown in solid outline 21b in FIG. 2. For the purpose of discussion, the vertical amount of downward deflection of crown portion 14 of rail section 13 is designated as Y and the amount of deflection of the center of the resiliently deformable plate 21 is designated as Z The original height or vertical dimension of the slot at no load in which the resiliently deformable plate 21 is positioned is designated as Y In viewing FIGS. 2A and 23, it will be noted that the geometric figures are employed for illustrating and analyzing the mathematical calculation of the horizontal deflection at the center of resiliently deformable plate 21 of FIG. 2. For example, FIG. 2A shows a circular diagram 19 having a chord L subtending an arc of length S two lines of length L extending from the end points of chord L to the midpoint of are S. Thus, an isosceles triangle is formed by sides L and chord L which has a height D. The are S is analogous to the resiliently deformable plate 21 in its deflected position. It will be appreciated that since the height of the resiliently defonnable plate 21 at no load" is approximately equal to the height of the slot 17 at no load, then S=Y -The chord L is analogous to the difference between the height of the slot 17 at no load, Y and the amount of downward vertical deflection of the upper surface 17a of the slot 17 between an unloaded and loaded weigh rail of FIG. 2, Y
More simply, L=YSPAN' smv srmw By Huygens approximation formula, it is found that:
8 I 1 L 3 eq. (1)
But, as noted above, L=SY or S=L+Y and substituting this relationship into equation l) we have:
2' & FFYSTRWT eq. 2
But, also as noted above L=Y -Y and substituting this relationship into equation (2) we have:
YSPAN 3 eq. (3
or V
3 sPA.v= sPA-+s1aq- Now, solving for L, we have:
YSPANYSTRN q- YSPAN srmv q- YSPAN srmv" (YSTRN)2 q- DEF) YSPAN sTmv srmfl q- SPAN STRN"' STRN) (am) Solving for Z we have,
V 24=YSPANYSTRN 15 s'rrm) DEF=-'- As an example, let us suppose the -=20" and that the weight of a given wheel 11 causes the weigh rail 13 to deflect from its original position, such that Y QOOOIO inches. As seen by substituting these values into equation 13), we have DEF Z 'inches.
Now taking the ratio of Z (deflection of the center of the resiliently deformable plate 21) and YSTRN (vertical amount of downward deflection of crown portion 14), we find Thus, it can be seen that a very small crown portion deflection results in a relatively large deflection at the center of the resiliently deformable plate which is highly advantageous achieving greater weight sensitivity then heretofore possible.
Reference is now made to FIGS. 3 through 7 which depict several different embodiments of the present invention in which the aforementioned transducing means may be incorporated either as an analogue device or as a digital device.
Turning to FIGS. 3 and 3A, it is noted that FIG. 3 illustrates the weigh rail of the present invention employing a plurality or bank of associated movable and stationary electrical contacts. While it will be noted that a bank of three contacts 20, 25 and 30 is shown in FIG. 3, it will be understood that a greater or lesser number of contacts may be utilized in practicing this invention. In order to protect the resiliently deformable plate 21, and the transducing means from dust, dirt and other adverse conditions, it is advantageous to fully enclose slot 17. A. first cover 36 in FIG. 3A, is shown secured by bolts 37 and 38 to the outer side of the weigh rail 13 and a second cover 33 and weather tight seal member 42 are securely held in place by screws 34 and 35. It will be noted that the covers 36 and 33 and the seal member 42 are appropriately mounted such that they do not impair the downward deflection of the crown portion 14 of weigh rail 13.
As previously mentioned, there is a bank of three normally open contact pairs 20, 25 and 30 each of which is vertically displaced or staggered with respect to one another. As shown, each of the three contacts comprises 'a movable contact element 23 and a stationary contact element 24. Each of the resiliently movable contact springs 23 and the stationary contact springs 24 are shown held in insulative relationship by means 28a and 28b respectively to the inner and outer insulating blocks 26 and 27 which, in turn, are secured to the flange portion 16 by means of bolts 29. It will be notedthat a pair of suitable wires or leads 31 and 32 are electrically coupled to the movable and stationary contact elements of each of the three contact pairs. It will be appreciated that the leads 31 and 32 may be appropriately connected to any suitable supervisory apparatus, such as, an automatic retarder contacting system in classification yards. As mentioned, the three contact pairs 20, 25 and 30 are vertically positioned relative to each other so that a different level of displacement of the resiliently deformable means 21 is required to close each contactpair. Accordingly, such an arrangement provides a digital method of determining various weights of vehicles being processed. That is, with the maximum deflection of the resiliently deformable plate 21 occurring at its center, and with the deflection of the resiliently deformable plate 21 geometrically decreasing on either side of its center dependent upon the point selected, the three contact pairs 20, 25 and 30 will be additively closed upon the vehicle weight.
Each of the contact elements is formed of suitable resilient conductive material, such as beryllium copper, and includes a first vertical supporting portion, a horizontal intermediate portion and a second vertical contact portion. The second vertical portion of each movable contact element also includes a contiguous abutment in the form of a hook or turned over portion for cooperating with the resiliently deformable plate 21. In the present arrangement, a lightweight"vehicle will only cause contact pair to be closed, a mediumweight" vehicle will cause both contact pairs 20 and to close and a heavyweight" vehicle will cause all three contact pairs 20, 25 and to close. As previously mentioned, a contact arrangement employing a greater number of contact pairs will produce a greater number of weight classes thereby achieving a greater degree of weighing accuracy.
Referring now to FIG. 4, there is illustrated another embodiment of the invention which utilizes a flat metal plate 41 in place of the bank of three contact pairs. The metallic plate 41 is preferably constructed of suitable conductive material, such as aluminum or copper and is positioned in spaced relationship with the resiliently deformable metallic plate 21. As in the embodiment shown in FIG. 3A,.the metallic plate 41 is insulated from the weigh rail section by inner and outer insulating blocks 26a and 27a. The insulative blocks 26a and 27a are securely fastened to the flange portion 16 by suitable bolts, only one of which is shown at 290. A firstleadin wire 31a is directly coupled to the metallic plate 41 through a bolt 280 which rigidly secures the metallic plate 41v between as well as through member 42 and thereby engages the flange portion 16. Thus, the lead wire 32a is conductively connected through bolt 28b and flange portion 16 to the resiliently deformable metallic plate 21. The remainings, such as, the protective coverings for the slot 17 are the same as those described in the previous weigh rails. As in the weigh rail of FIG. 3, whenever a vehicle wheel moves on to the crown portion 14 of rail section 13 shown in FIG. 4, the crown portion 14 will deflect causing a proportional amount of deflection of the resiliently deformable metallic plate 21. Thus, it can be seen that the spacing between the resiliently deformable metallic plate 21 and the metallic plate 41 will decrease from the original positions as shown in FIG. 4. It will be appreciated that the spacing will vary in accordance with the weight of the vehicle. Thus, it will further be appreciated that the plates 21 and 41 may be employed as a capacitor. That is, since the capacitance value is dependent upon the spacing between plates 21 and 41, and, in turn, upon the amount of deflection of the deformable plate 21, an analogue indication of vehicle weight may be measured by connected leads 31a and 32a to a capacitance bridge or the like.
Reference is now made to FIG. 5 which illustrates another embodiment of a weigh rail in accordance with the present invention. As shown, the transducing means now takes the form of a fluidic back pressure sensor 46. The fluidic back pressure sensor 46 may be of the type manufactured by Pitney-Bowes, and listed as Pat No. 6,080,008 which includes a single input and a pair of outputs. A supply of air at a predetermined pressure is normally delivered to the back pressure sensor 46 via input conduit 47. When the discharge hole of output conduit 48 is unobstructed as shown in FIG. 5, the air supplied to the input conduit 47 will all flow through the discharge hole. However, when an obstacle partially or completely blocks the discharge hole the supply of air will be backed-up or diverted and will begin flowing through output conduit 49 of back pressure sensor 46. The amount or pressure of air flowing through output conduit 49 can therefore be used as ananalogue indication of the nearness of an obstacle to the discharge hole of conduit 48. Thus, by employing the deformable plate 21 as the discharge controlling obstacle, the weight of a vehicle on rail section 13 can be accurately measured in accordance with the amount of deflection of the resiliently defonnable plate 21. In this case,
the greater the vehicle weight, the greater will be the deflection of the resiliently deformable plate 21, and, therefore, the amount of air through output conduit 48 will be smaller while the degree of back pressure through the output conduit 48, and the amount of air and pressure through output conduit 49 will be greater. As shown, back pressure sensor 46 is rigidly held in alignment with the resiliently deformable plate 21. The sensor 46 includes a suitable arm or bracket 50 which is interposed between a pair of shock absorbent mounting blocks 26b and 27b which, in turn, are held in place by bolts 29b and 290. The remaining elements such as the covers for the slot 17 of this embodiment are substantially the same as described above. It should be understood that while an air supply is used in conjunction with the back pressure sensor 46, other available fluids and supply sources may equally well be employed without impeding weigh rail accuracy.
Turning now to FIGS. 6 and 6A, there is shown a fluidic digital version of a weight rail similar to FIGS. 3 and 3A in which the transducing means takes-the form of a plurality of individual fluidic back pressure switches. It will be noted in view of FIG. 6A that a plurality of back pressure switches 63, 64 and 65 are disposed longitudinally along rail 13. The switch 63 is disposed in alignment with the longitudinal centerline of the resiliently deformable plate 21 while the remaining two switches 64 and 65 are disposed at some point below the centerline. Each of the back pressure switches 63, 64 and 65 includes an input conduit, a pair of output conduits and a control conduit. As shown, the back pressure switches are carried by separate bracket 56 which is resiliently mounted to the flange portion 16 by means of an inner and an outer shock absorbent mounting block 57 and 58 through which a plurality of bolts 59 and 60 pass and securely hold switches 63, 64 and 65 in proper relationship with deformable plate 21. A supply of air is normally delivered to the back of each pressure switch via input conduits 52. Normally, whenever a control conduit 53 is totally blocked or obstructed, air will no longer flow.
through output conduit 54 but will flow through output conduit 55. That is, when the resiliently deformable plate 21 is in the position as shown in FIG. 6, air pressure is available on all of output conduits 54, and none of the control conduits 53 is obstructed by the resiliently deformable plate 21. Now when a lightweight" vehicle passes onto weigh rail 13, the deformable plate is arranged to obstruct the control conduit 53 of switch 63 so that air pressure mediumweight" switched from output conduit 54 to output conduit 55. Since the resilient deformable plate 21 will deflect more and more further outwardly under increasing loads, the back pressure switches 64 and 65 are arranged to assume their obstructing or blocking positions of the control conduits 53 under medium and heavyweight cars. respectively. Hence, the plurality of back pressure switches 63, 64 and 65 cooperate with the resiliently deformable plate 21 to provide a digital method of determining three levels of vehicle weight, similar to the electrical contact arrangement of FIGS. 3 and 3A. While FlG. 6A depicts only three back pressure switches vertically displaced at and below the centerline of resiliently deformable plate 21 to indicate lightweight," mediumweight" and heavyweightvehicles, it will be understood that a greater or lesser number of back pressure switches may be used in practice in this invention. Further, it should be noted that the back pressure switches may be disposed above the centerline with the same results and achieve a greater degree of weighing accuracy. It has been found that a suitable type of back pressure switch may be of the type manufactured by Corning Fluidic Products Division described in Catalog No. 191,473.
FIG. 7 shows another embodiment of my invention in which the transducing means is a variable resistor or rheostat 67. As shown, C-shaped operating cam 68 is interposed between the resiliently deformable plate 21 and the variable resistor 67. The C-shaped cam 68 intimately contacts the resiliently deformable plate 21 and is mechanically coupled to a rotatable shaft 81 which varies the resistance of resistor 67. The variable resistor 67 is secured to one end of a suitable bracket 69, the other end of which is held between inner and outer resilient mounting blocks 72 and 73. A pair of bolts 74 and 76 is secured to the mounting blocks 72 and 73 and also the other end of bracket 69 to the flange portion 16 of rail section 13. Now whenever a wheel passes over rail section 13 and particularly over slot 17, the resiliently deformable plate 21 will cause the C-shaped cam 68 to rotate about the shaft 81 so that the change in resistance of the variable resistor 67 is proportional to the weight of the passing vehicle. The resistance change of the variable resistor 67 provides an analogue indication of the weight of the railway vehicles. This resistance change may be readily measured by any suitable means, such as an ohmmeter which can be easily connected to leads 78 and 79.
As previously mentioned, it will be noted that the plurality of contact pairs of FIGS. 3 and 3A and the plurality of back pressure switches of FIGS. 6 and 6A provide digital indications of vehicle weight, while the variable capacitive arrangement of FIG. 4, the back pressure sensor arrangement of FIG. and the variable resistor arrangement of FIG. 7 provides analogue indications of vehicle weight. Further, it will be noted that any suitable conversion means for converting the electrical and fluidic indications into useable data for automatic classification yard operations may be employed with my invention.
Thus, it is apparent that the new and improved weigh rail arrangements of the present invention provide a more effective and mechanically unique method for measuring weights of vehicles which is inexpensive, compact, and more sensitive to weight changes.
I claim:
1. A weigh rail having a crown, a web and a flange portion, a slot formed between said crown and flange portions and extending transversely through said web portion, said slot having a relatively long dimension disposed longitudinally along said rail, a resiliently deformable means interposed between the upper and lower surfaces of said slot, said resiliently deformable means being deflected in conjunction with a deflection of said crown portion of said rail such that the direction of motion of said deflection of said resiliently deformable means is orthogonal to the direction of motion of said deflection of said crown portion, and a transducing means cooperatively associated with said resiliently deformable means and responsive only to the orthogonal deflection of said resiliently deformable means for providing an indication of the amount of said deflection of said crown portion.
2. A device for weighting objects moving over a section of track, said track having an upper movable, an intermediate web, and a lower stationary portion, a slot formed between said upper and lower portions and extending transversely through said intermediate portion, said slot having a relatively long dimension disposed longitudinally along said section of track, a resiliently deformable plate interposed between the upper and lower surfaces of said slot, said resiliently deformable plate being deflected in conjunction with a deflection of said upper movable portion of said section of track, caused by the passing of said object, such that the direction of motion of said deflection of said resiliently deformable plate is orthogonal to the direction of motion of said deflection of said upper movable portion, and a transducing means cooperatively associated with said resiliently deformable plate and responsive only to the orthogonal deflection of said resiliently deformable plate for providing an indication of the amount of said deflection of said upper movable portion according to the weight of said object.
3. The weigh rail of claim 1 wherein said transducing means comprises a bank of electrical contacts in vertically staggered alignment with said resiliently deformable means, the closing of any one of said electrical contacts dependent upon the amount of deflection of said resiliently deformable means due to the amount of deflection of said crown portion of said rail.
4. The weigh rail of claim 2 wherein said resiliently deformable means is a metal plate and said transducing means is a static metal plate in such alignment with said resiliently deformable means as to form a variable capacitive device, the capacitance of said variable capacitive device varying according to the amount of distance between said resiliently deformable means and said static plate, said distance varying according to the amount of deflection of said resiliently deformable means.
5. The weigh rail of claim 1 wherein said transducing means is a plurality of back pressure switches, each of said switches having at least one input conduit, and first and second output conduits and a control conduit, said control conduits in vertically staggered alignment with said resiliently deformable means, said supply input providing a continuous flow of fluid at a predetermined pressure such that whenever said control conduit is free from obstruction by said resiliently deformable means, there will be an indication at said first output conduit, and whenever said control conduit is obstructed by said resiliently deformable means there will be an indication at said second output conduit, and the obstructing of any one of said control conduits dependent upon the amount of deflection of said resiliently deformable means due to the amount of deflection of said crown portion of said rail.
6. The weigh rail of claim 1 wherein said transducing means is a back pressure sensing device having an input conduit, and first and second output conduits, said input conduit providing a continuous flow of fluid at a predetermined pressure, said first output conduit and said resiliently deformable means initially separated, at zero deflection of said resiliently deformable means, by a predetermined distance such that a zero deflection of said first output conduit will allow a maximum flow of fluid and no fluid flow from said' second output conduit and as said predetermined distance decreases due to deflection of said resiliently deformable means, said first output conduit will decreasingly allow fluid to flow therefrom while said second output conduit will increasingly allow air to flow therefrom.
7. The weigh rail of claim I wherein said transducing means is a variable resistance such that the deflection of said resiliently deformable means causes a proportional change in said variable resistance.
8. The weigh rail of claim 1 wherein the amount of deflection of said resiliently deformable means at its center, due to the amount of deflection of said crown portion of said rail is given by the equation,
5 where: Z =deflection of said resiliently deformable means at its center lfl -=downward deflection of said crown portion of said rail and: Y -height of said slot at zero deflection.
9. The weigh rail of claim 1 wherein said transducing means is an analogue device.
10. The weigh rail of claim 1 wherein said transducing means is a digital device.

Claims (10)

1. A weigh rail having a crown, a web and a flange portion, a slot formed between said crown and flange portions and extending transversely through said web portion, said slot having a relatively long dimension disposed longitudinally along said rail, a resiliently deformable means interposed between the upper and lower surfaces of said slot, said resiliently deformable means being deflected in conjunction with a deflection of said crown portion of said rail such that the direction of motion of said deflection of said resiliently deformable means is orthogonal to the direction of motion of said deflection of said crown portion, and a transducing means cooperatively associated with said resiliently deformable means and responsive only to the orthogonal deFlection of said resiliently deformable means for providing an indication of the amount of said deflection of said crown portion.
2. A device for weighting objects moving over a section of track, said track having an upper movable, an intermediate web, and a lower stationary portion, a slot formed between said upper and lower portions and extending transversely through said intermediate portion, said slot having a relatively long dimension disposed longitudinally along said section of track, a resiliently deformable plate interposed between the upper and lower surfaces of said slot, said resiliently deformable plate being deflected in conjunction with a deflection of said upper movable portion of said section of track, caused by the passing of said object, such that the direction of motion of said deflection of said resiliently deformable plate is orthogonal to the direction of motion of said deflection of said upper movable portion, and a transducing means cooperatively associated with said resiliently deformable plate and responsive only to the orthogonal deflection of said resiliently deformable plate for providing an indication of the amount of said deflection of said upper movable portion according to the weight of said object.
3. The weigh rail of claim 1 wherein said transducing means comprises a bank of electrical contacts in vertically staggered alignment with said resiliently deformable means, the closing of any one of said electrical contacts dependent upon the amount of deflection of said resiliently deformable means due to the amount of deflection of said crown portion of said rail.
4. The weigh rail of claim 2 wherein said resiliently deformable means is a metal plate and said transducing means is a static metal plate in such alignment with said resiliently deformable means as to form a variable capacitive device, the capacitance of said variable capacitive device varying according to the amount of distance between said resiliently deformable means and said static plate, said distance varying according to the amount of deflection of said resiliently deformable means.
5. The weigh rail of claim 1 wherein said transducing means is a plurality of back pressure switches, each of said switches having at least one input conduit, and first and second output conduits and a control conduit, said control conduits in vertically staggered alignment with said resiliently deformable means, said supply input providing a continuous flow of fluid at a predetermined pressure such that whenever said control conduit is free from obstruction by said resiliently deformable means, there will be an indication at said first output conduit, and whenever said control conduit is obstructed by said resiliently deformable means there will be an indication at said second output conduit, and the obstructing of any one of said control conduits dependent upon the amount of deflection of said resiliently deformable means due to the amount of deflection of said crown portion of said rail.
6. The weigh rail of claim 1 wherein said transducing means is a back pressure sensing device having an input conduit, and first and second output conduits, said input conduit providing a continuous flow of fluid at a predetermined pressure, said first output conduit and said resiliently deformable means initially separated, at zero deflection of said resiliently deformable means, by a predetermined distance such that a zero deflection of said first output conduit will allow a maximum flow of fluid and no fluid flow from said second output conduit and as said predetermined distance decreases due to deflection of said resiliently deformable means, said first output conduit will decreasingly allow fluid to flow therefrom while said second output conduit will increasingly allow air to flow therefrom.
7. The weigh rail of claim 1 wherein said transducing means is a variable resistance such that the deflection of said resiliently deformable means causes a proportional change in said variable resistance.
8. The weigh rail of claim 1 wherein the amount of deflection of said resiliently deformable means at its center, due to the amount of deflection of said crown portion of said rail is given by the equation, where: ZDEF deflection of said resiliently deformable means at its center YSTRN downward deflection of said crown portion of said rail and: YSPAN height of said slot at zero deflection.
9. The weigh rail of claim 1 wherein said transducing means is an analogue device.
10. The weigh rail of claim 1 wherein said transducing means is a digital device.
US816006A 1969-04-14 1969-04-14 Weighing device Expired - Lifetime US3575248A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81600669A 1969-04-14 1969-04-14

Publications (1)

Publication Number Publication Date
US3575248A true US3575248A (en) 1971-04-20

Family

ID=25219423

Family Applications (1)

Application Number Title Priority Date Filing Date
US816006A Expired - Lifetime US3575248A (en) 1969-04-14 1969-04-14 Weighing device

Country Status (1)

Country Link
US (1) US3575248A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863724A (en) * 1973-09-20 1975-02-04 Jr Nichola Dalia Inventory control system
US4961533A (en) * 1989-09-27 1990-10-09 Viac Inc. Inventory control system
US6653578B1 (en) * 1998-10-20 2003-11-25 Pfister Waagen Bilanciai Gmbh Track scales with continuous rails and weighing sleepers
US20140251700A1 (en) * 2011-10-20 2014-09-11 Kistler Holding Ag Hollow profile sensor
US20180097927A1 (en) * 2016-10-02 2018-04-05 Skoogmusic Ltd Control apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779583A (en) * 1954-01-22 1957-01-29 Westinghouse Air Brake Co Vehicle weight responsive means
GB797161A (en) * 1955-04-13 1958-06-25 Westinghouse Air Brake Co Improvements relating to railway vehicle weight measuring devices
US2906865A (en) * 1955-04-13 1959-09-29 Westinghouse Air Brake Co Vehicle weighing means
US2987613A (en) * 1957-09-16 1961-06-06 Westinghouse Air Brake Co Vehicle weight responsive means
US3004152A (en) * 1955-12-09 1961-10-10 Westinghouse Air Brake Co Vehicle weight responsive means
US3009056A (en) * 1956-06-01 1961-11-14 Westinghouse Air Brake Co Vehicle weighing devices
US3047083A (en) * 1958-05-21 1962-07-31 Chyo Toshio Weighing balance
US3155184A (en) * 1962-09-27 1964-11-03 Sands Measurement Corp Weighing apparatus
GB1088873A (en) * 1965-02-08 1967-10-25 Wayne Kerr Lab Ltd Improvements in or relating to weighing apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779583A (en) * 1954-01-22 1957-01-29 Westinghouse Air Brake Co Vehicle weight responsive means
GB797161A (en) * 1955-04-13 1958-06-25 Westinghouse Air Brake Co Improvements relating to railway vehicle weight measuring devices
US2906865A (en) * 1955-04-13 1959-09-29 Westinghouse Air Brake Co Vehicle weighing means
US3004152A (en) * 1955-12-09 1961-10-10 Westinghouse Air Brake Co Vehicle weight responsive means
US3009056A (en) * 1956-06-01 1961-11-14 Westinghouse Air Brake Co Vehicle weighing devices
US2987613A (en) * 1957-09-16 1961-06-06 Westinghouse Air Brake Co Vehicle weight responsive means
US3047083A (en) * 1958-05-21 1962-07-31 Chyo Toshio Weighing balance
US3155184A (en) * 1962-09-27 1964-11-03 Sands Measurement Corp Weighing apparatus
GB1088873A (en) * 1965-02-08 1967-10-25 Wayne Kerr Lab Ltd Improvements in or relating to weighing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863724A (en) * 1973-09-20 1975-02-04 Jr Nichola Dalia Inventory control system
US4961533A (en) * 1989-09-27 1990-10-09 Viac Inc. Inventory control system
US6653578B1 (en) * 1998-10-20 2003-11-25 Pfister Waagen Bilanciai Gmbh Track scales with continuous rails and weighing sleepers
US20140251700A1 (en) * 2011-10-20 2014-09-11 Kistler Holding Ag Hollow profile sensor
US9347816B2 (en) * 2011-10-20 2016-05-24 Kistler Holding Ag Two part hollow profile sensor
US20180097927A1 (en) * 2016-10-02 2018-04-05 Skoogmusic Ltd Control apparatus
US10244100B2 (en) * 2016-10-02 2019-03-26 Skoogmusic Ltd Control apparatus

Similar Documents

Publication Publication Date Title
US3734216A (en) Weighing device
CA1057318A (en) Roller-type axle weigher
US4200855A (en) Bolt-like railway vehicle wheel detector
US3782486A (en) Measuring transient loads
US2631272A (en) Measuring system
US3575248A (en) Weighing device
US2779583A (en) Vehicle weight responsive means
US4416342A (en) Apparatus and method for weighing rolling railcars
US4200856A (en) Differential clamp-on railway vehicle wheel detector
US4314203A (en) Test arrangement for the non-destructive testing of metallic test pieces
US3663881A (en) Continuous position sensing system
US3159227A (en) Weighing apparatus
US3747715A (en) Weighing device
US3155184A (en) Weighing apparatus
US4440251A (en) Scale with simplified guidance-damper construction
US1905558A (en) Measuring device
US3234777A (en) Apparatus for electrically measuring wheel loads applied to railway track
US3592278A (en) Vehicle weight classifier with load limit means
US1872068A (en) Low pressure signal
US3073155A (en) Force measuring device
US2033318A (en) Indicator gear for measuring instruments and the like
US3672212A (en) Device for the measurement of the angle of rotation of a rotatable object
US3742762A (en) Impact-type powder/granule flow meter
US2914940A (en) Method and apparatus for determining and measuring thump
US4076192A (en) Apparatus for detecting a high flange