US3576931A - Process for producing fibrillated staple fibers - Google Patents

Process for producing fibrillated staple fibers Download PDF

Info

Publication number
US3576931A
US3576931A US650948A US3576931DA US3576931A US 3576931 A US3576931 A US 3576931A US 650948 A US650948 A US 650948A US 3576931D A US3576931D A US 3576931DA US 3576931 A US3576931 A US 3576931A
Authority
US
United States
Prior art keywords
extrudate
staple fibers
fibrillated
fibrillation
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US650948A
Inventor
Sohinder Nath Chopra
Hilaire Marcel Turmel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Corp
Original Assignee
Celanese Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Corp filed Critical Celanese Corp
Application granted granted Critical
Publication of US3576931A publication Critical patent/US3576931A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/423Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by fibrillation of films or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/08Fibrillating cellular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/47Processes of splitting film, webs or sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section

Definitions

  • This invention relates to the staple fibers and more specifically to staple fibers produced from fibrillated polymeric resins.
  • Synthetic fibers are commonly produced in the form of continuous filaments which after suitable orientation, result in high strength yarns. Such continuous filaments are, however, smooth, compact and have little aesthetic appeal. Consequently, a large percentage of synthetic fibers are cut into short length staple and spun into yarn. Staple processing increases styling possibilities and gives better color uniformity.
  • staple fibers substantially free of trapezoidal cross-sections is deemed to include blends of conventional staple fibers either natural or man-made containing at least some fibrillated staple fibers substantially free of trapezoidal crosssections.
  • the fibrillated extrudate is then passed over a lubricating roll 5 and then through a pair of nip rolls 6 'which are driven nip rolls. Between the first set of driven nip rolls 6 and a second pair of driven nip rolls 7, the extrudate is heated by means of a radiant heating oven 8. The second set of nip rolls 7 which are driven at a faster speed than the first set of nip rolls 6 serves to draw the extrudate 3 up to 4 times its original length. The drawn fibrillated extrudate is then passed over a heating can 9 and then into a stutter box crimper 10. The crimped, drawn, fibrillated extrudate is then passed through staple cutter 11 and the fiber bundle end product collected in drum member 12.
  • thermoplastic resins which can be fabricated by melt extrusion.
  • Suitable resins include one or more polymers and/or copolymers of materials such as polyethylene, polypropylene, polybutene, polymethyl-S-butene, polystyrene, polyamides such as polyhexamethylene adipamide and polycaprolactam, acrylic resins such as polymethylmethacrylate and methyl methacrylate, polyethers such as polyoxymethylene, halogenated polymers such as polyvinyl chloride, polyvinylidene chloride, tetrafluoroethylene, hexafluoropropylene, polyurethanes cellulose esters of acetic acid, propionic acid, butyric acid and the like,
  • Index of birefringence Z n n
  • d is the diameter of a single extrudate
  • 11 is the refraction index parallel to the extrudate axis
  • n is the refraction index vertical with respect to the extrudate axis
  • 6 is the value of retardation as measured by a polarizing microscope with a Berek compensator.
  • the index of birefringence may be obtained by measuring the refraction index parallel to the longitudinal axis of the extrudate and perpendicular to the longitudinal axis of the extrudate while the extrudate is disposed in an immersion fluid.
  • the polymeric material must exhibit an orientation angle which is an acute angle and preferably an angle of not greater than 55 and still more preferably not greater than 0-20.
  • the foaming agents which are useful in the extrusion of foam are known.
  • solids or liquids which vaporize or decompose into gaseous products at the extrusion temperatures, as well as volatile liquids may be employed.
  • Solids which are suitably employed in the process of the present invention include xoalic acid, azobutyric dinitrile, diazoamino benzene, 1,3 bis (p-xenyl) triazine azodicarbonamide and similar azo compounds which decompose at temperatures below the extrusion temperature of the forming composition.
  • Commonly used solid foaming agents producing either nitrogen or carbon dioxide include sodium bicarbonate and oleic acid, ammonium carbonate and mixtures of ammonium carbonate and sodium nitrite.
  • Liquids which are suitable foaming agents include water, acetone, methyl ethyl ketone, ethyl acetate, methyl chloride, ethyl chloride, chloroform, methylene chloride, methylene bromide and in general, fluorine containing normally liquid volatile hydrocarbons.
  • Foaming agents which are the normally gaseous compounds such as nitrogen, carbon dioxide, ammonia, methane, ethane, propane, ethylene, propylene and gaseous halogenated hydrocarbons are also desirable.
  • a particularly preferred class of foaming agents are fluorinated hydrocarbon compounds having from 1 to 4 carbon atoms, which in addition to hydrogen and fluorine, may also contain chlorine and bromine.
  • the quantity of foaming agent employed will vary with the density of foam desireda lower density requiring a greater amount of foaming agent-the nature of the thermoplastic resin foamed and the foaming agent employed. In general, the concentration of the foaming agent will be from 0.001-5 lb. moles/ 100 lbs. of the thermoplastic resin.
  • EXAMPLE I Polypropylene powder Profax 6501 (manufactured by Hercules Company) melt index of 2, is'rnixed with 1% Kempore (blowing agent manufactured by National Polychemicals) by weight. This mixture is extruded through a plastic extruder of 20:1 length to diameter ratio. A 6" wide flat film die of 0.020" opening is used. The die temperature is maintained at 250 C. The extruder throughput is adjusted at 5 lb./hr. A fork type air cooling device is used which consumes 5 c.f.m. of air per inch of the die. A well fibrillated flat sheet of film with the appearance of a net emerges from the die.
  • the blended material is then placed in a National Rubber Machinery extruder, the extruder being equipped with a screw 12" long and 1" in diameter.
  • the rear portion or zone 1 of the extruder is maintained at 200 C. as is the front portion or zone 2 of the extruder.
  • the die-head is maintained at a temperature of 200 C. and the hot-melt extruded at a throughput of about 61b./ hr.
  • the extruded sheet is then hot-melt attenuated to produce fibrillation, bundled together as a tow and drawn by a factor of 2 /2 X through a heated, curved tube stretcher at C.
  • the drawn tow is then crimped in a gear crimping device and cut into 6" long staple.
  • the staple fiber when spun into yarn is found to have a pleasing hand and appearance.
  • the pressure reacting on the system diminishes and part of the stored energy is released in the form of cell expansion.
  • the cells assume an elliptical shape oriented along with stream axis of the polymer film.
  • a process for the preparation of staple fibers having cross-sections substantially devoid of planar surfaces comprising extruding through a die, a mixture comprising a molten polymer and a foaming agent which is, or evolves gas at extrusion temperature, hot-melt attenuating the extrudate by pulling said extrudate away from said die to produce fibrillation, continuously passing said fibrillated extrudate after said attenuation into a drawing zone and drawing by a factor of from 1.5 to four times along the axis of the fibrous network and then cutting the continuous fibrous network to staple length fiber bundles.

Abstract

A PROCESS FOR THE PREPARATION OF STAPLE FIBERS AND THE PRODUCT PRODUCED THEREBY, THE PROCESS INVOLVING EXTRUDING A MIXTURE OF MOLTEN POLYMER AND FOAMING AGENT WHICH IS OR EVOLVES GAS AT EXTRUSION TEMPERATURE, HOT-MELT DRAWING THE EXTRUDATE AT TEMPERATURES ABOVE THE POLYMER''S GLASS TRANSITION TEMPERATURE TO PRODUCE FIBRILLATION AND CUTTING THE FIBROUS-NETWORK INTO BUNDLES OF STAPLE FIBERS CHARACTERIZED BY CROSS-SECTIONS WHICH ARE SUBSTANTIALLY FREE OF TRAPEZOIDAL CONFIGURATIONS.

Description

April 27, 1971 s CHOPRA ET AL 3,576,931
PROCESS FOR PRODUCING FIBRILLATED STAPLE FIBERS INVENTOR S Sohinder N. Chopra Hilaira M. Turmel ATTORNEY ljnited States Patent T 3,576,931 PROCESS FOR PRODUCING FIBRILLATED STAPLE FIBERS Sohiuder Nath Chopra and Hilaire Marcel Tunnel, Drummondville, Quebec, Canada, assignors to Celanese Corporation, New York, NY.
Filed July 3, 1967, Ser. No. 650,948 Int. Cl. B29h 7/20; D01d /12 US. Cl. 264-51 5 Claims ABSTRACT OF THE DISCLOSURE This invention relates to the staple fibers and more specifically to staple fibers produced from fibrillated polymeric resins.
Synthetic fibers are commonly produced in the form of continuous filaments which after suitable orientation, result in high strength yarns. Such continuous filaments are, however, smooth, compact and have little aesthetic appeal. Consequently, a large percentage of synthetic fibers are cut into short length staple and spun into yarn. Staple processing increases styling possibilities and gives better color uniformity.
The fibrillation of extruded polymeric material has recently attracted the attention of the textile industry because in comparison with polymers extruded by spinnerett-e methods to form filament yarn, tow, staple and monofilament, the extrusion of extrudates which can be subsequently subjected to fibrillation techniques results in higher production rates and lower costs of equipment. Polyolefins and especially polypropylene resin have been found to be especially satisfactory for fibrillation techniques. Polypropylene resin is commonly converted into unoriented film by a melt type casting operation, thereafter a typical process involves slitting into narrow bands, orienting uniaxially in a hot-stretching zone and thereby crystallizing in an air temperature of about 170 C. using draw ratios of about 12, heat-setting and thereafter mechanically working to form fibrillated products. Fibrillation techniques in which a polymer undergoes orientation :prior to fibrillation however, result in fibrils having trapezoidal cross-sections. These coarse, trapezoidal crosssection fibrils, while being satisfactory for certain end uses, such as for instance, baler twine, carpet backing, sackcloth, or in general, substitute products for jute, hemp and sisal, do not lend themselves to the textile end usages wherein aesthetics are a prime consideration.
.It is therefore, an object of this invention to produce by means of fibrillation techniques, staple fibers substantially free of trapezoidal cross-sections.
It is another object of this invention to provide a continuous process for the preparation of staple fibers substantially free of trapezoidal cross-sections without the necessity of extruding continuous filament fibers.
These and additional objects of this invention will become readily apparent from the following description.
In accordance with this invention, it has now been discovered that staple fibers substantially free of trapezoidal cross-sections may be produced by means of a process which consists of (l) producing an extrudate Patented Apr. 27, 1971 from a mixture comprising a molten polymer and a foaming agent which is gaseous or evolves gas at extrusion temperature; (2) hot-melt drawing or attenuating the extrudate at temperatures above the glass transition temperature of the polymeric material whereby fibrillation is produced; and (3) cutting the continuous fibrous network into fiber bundles of from about 3 to 7 inches. Preferably, the fibrous network is oriented by drawing by a factor of up to about 4 times along the continuous axis of the network while the fibrous network is hot. Still more preferably, the fibrous network is drawn from 1.5 to 3.5 times its length in order to achieve maximum strength by means of maximum orientation of the preformed fibrils. The fiber bundles separate into individual staple fibers when subjected to conventional textile processing operations such as carding, blending, gilling, dra'wing, garnetting, etc.
It should be understood that the phrase staple fibers substantially free of trapezoidal cross-sections is deemed to include blends of conventional staple fibers either natural or man-made containing at least some fibrillated staple fibers substantially free of trapezoidal crosssections.
A better understanding of the invention may be had from a discussion of the drawing which is a schematic illustration of the process. In the drawing a molten blend of polymer and foaming agent contained in extruder 1 is passed through a die 2 so as to form an extrudate 3. The temperature of extrudate 3 is maintained at a satisfactory temperature which is above the glass transition temperature of the polymeric component composing extrudate 3, by means of fork member 4. Pork member 4 subjects extrudate 3 to a flow of gas or liquid and preferably air maintained within the desired temperature range; that is to say, the flow of air may be either a heating or cooling flow of air. The attenuation of the hot-melt extrudate 3 and the resultant fibrillation takes place immediately after the extrudate leaves die member 2. It should be understood that after hot-melt attenuation, a satisfactorily fibrillated product is obtained. The fibrillated extrudate is then passed over a lubricating roll 5 and then through a pair of nip rolls 6 'which are driven nip rolls. Between the first set of driven nip rolls 6 and a second pair of driven nip rolls 7, the extrudate is heated by means of a radiant heating oven 8. The second set of nip rolls 7 which are driven at a faster speed than the first set of nip rolls 6 serves to draw the extrudate 3 up to 4 times its original length. The drawn fibrillated extrudate is then passed over a heating can 9 and then into a stutter box crimper 10. The crimped, drawn, fibrillated extrudate is then passed through staple cutter 11 and the fiber bundle end product collected in drum member 12.
The process of the present invention is applicable to all thermoplastic resins which can be fabricated by melt extrusion. Suitable resins include one or more polymers and/or copolymers of materials such as polyethylene, polypropylene, polybutene, polymethyl-S-butene, polystyrene, polyamides such as polyhexamethylene adipamide and polycaprolactam, acrylic resins such as polymethylmethacrylate and methyl methacrylate, polyethers such as polyoxymethylene, halogenated polymers such as polyvinyl chloride, polyvinylidene chloride, tetrafluoroethylene, hexafluoropropylene, polyurethanes cellulose esters of acetic acid, propionic acid, butyric acid and the like,
' polycarbonate resins and polyacetal resins. Resins which have been found to be especially suitable for use in conjunction with the present invention are polyethylene, polypropylene, polystyrene and polymethyl-3-butene.
Where fibrillated products are being produced from polypropylene, it has been found that satisfactory fibrillation can be obtained by the hot melt attenuation process of this invention employing polypropylene having at the time of fibrillation, a birefringence of less than about .020 and preferably from to 0.015.
The term orientation as employed herein may be defined in terms of birefringence or X-ray diffraction. The index of birefringence is calculated by the following formula:
Index of birefringence =Z n n wherein d is the diameter of a single extrudate, 11 is the refraction index parallel to the extrudate axis, n is the refraction index vertical with respect to the extrudate axis, and 6 is the value of retardation as measured by a polarizing microscope with a Berek compensator. Where the diameter of the extrudate is diflicult to measure, or is non-uniform the index of birefringence may be obtained by measuring the refraction index parallel to the longitudinal axis of the extrudate and perpendicular to the longitudinal axis of the extrudate while the extrudate is disposed in an immersion fluid.
The degree of orientation which is required in polymeric materials other than polypropylene is best described in terms of X-ray diffraction and more specifically in terms of orientation angle. Orientation angle is a parameter which represents the alignment of molecular axes of the material forming the extrudate with respect to the longitudinal axis of the extrudate. The orientation angles are measured according to the technique of H. G. Ingersol, Journal of Applied Physics, 17, 924 (1946) on the instrument described by J. E. Owens and W. O. Statton, Acta Crystallagraphic, 10, 560 (1957). In general, where fibrillated products are obtained by the hot-melt attenuation process of this invention, the polymeric material may exhibit an orientation angle of up to 180. Where however, a fibrillated product is prepared by extruding directly into a quenching bath and thereby inhibiting hot melt attenuation, the polymeric material must exhibit an orientation angle which is an acute angle and preferably an angle of not greater than 55 and still more preferably not greater than 0-20.
The foaming agents which are useful in the extrusion of foam are known. As previously indicated, solids or liquids which vaporize or decompose into gaseous products at the extrusion temperatures, as well as volatile liquids, may be employed. Solids which are suitably employed in the process of the present invention include xoalic acid, azobutyric dinitrile, diazoamino benzene, 1,3 bis (p-xenyl) triazine azodicarbonamide and similar azo compounds which decompose at temperatures below the extrusion temperature of the forming composition. Commonly used solid foaming agents producing either nitrogen or carbon dioxide include sodium bicarbonate and oleic acid, ammonium carbonate and mixtures of ammonium carbonate and sodium nitrite. Liquids which are suitable foaming agents include water, acetone, methyl ethyl ketone, ethyl acetate, methyl chloride, ethyl chloride, chloroform, methylene chloride, methylene bromide and in general, fluorine containing normally liquid volatile hydrocarbons. Foaming agents which are the normally gaseous compounds such as nitrogen, carbon dioxide, ammonia, methane, ethane, propane, ethylene, propylene and gaseous halogenated hydrocarbons are also desirable. A particularly preferred class of foaming agents are fluorinated hydrocarbon compounds having from 1 to 4 carbon atoms, which in addition to hydrogen and fluorine, may also contain chlorine and bromine. Examples of such blowing agents are dichlorodifluoromethane; dichlorofiuoromethane; chlorofluoromethane; difiuoromethane; chloropentafluoroethane; 1,2-dichlorotetrafiuoroethane; l,l-dichlorotetrafiuoroethane; 1,1 ,2-trichlorotrifiuoroethane; 1, l l-trichlorotrifluoroethane; 2-chloro 1,1,1 trifluoroethane; 2- chloro 1,l,1,2 tetrafiuoroethane; 1 chloro-1,l,2,2-tetrafluoroethane; 1,2-dichloro-1,1,2-trifiuoroethane; l-chloro- 1,1,2-trifluoroethane; l-chloro-l,l-difluoroethane; perfiuorocyclobut-ane; perfiuoropropane; l,l,l-trifluoropropane; l-fluoropropane; 2 fluoropropane; 1,1,1,2,2 pentafiuoropropane; l,l,l,3,3 pentafluoropropane; 1,l,l,2,3,3 hexafiuoropropane; 1,1,l-trifluoro-3-chloropropane; trifluoromethylethylene; perfluoropropene and perfluorocyclobutene.
The quantity of foaming agent employed will vary with the density of foam desireda lower density requiring a greater amount of foaming agent-the nature of the thermoplastic resin foamed and the foaming agent employed. In general, the concentration of the foaming agent will be from 0.001-5 lb. moles/ 100 lbs. of the thermoplastic resin.
A better understanding of the invention may be had from the following specific examples. It should be understood, however, that the examples are given for purposes of illustration and are not considered as limiting the spirit or scope of this invention.
EXAMPLE I Polypropylene powder Profax 6501 (manufactured by Hercules Company) melt index of 2, is'rnixed with 1% Kempore (blowing agent manufactured by National Polychemicals) by weight. This mixture is extruded through a plastic extruder of 20:1 length to diameter ratio. A 6" wide flat film die of 0.020" opening is used. The die temperature is maintained at 250 C. The extruder throughput is adjusted at 5 lb./hr. A fork type air cooling device is used which consumes 5 c.f.m. of air per inch of the die. A well fibrillated flat sheet of film with the appearance of a net emerges from the die. This sheet is pulled away from the die at the rate of 100 ft./min. It is bundled together as a tow and drawn by a factor of 3x through a heated, curved tube stretcher at 125 C. The drawn tow is passed through an oven at 140 C. and in the same continuous process, it is passed through a stulfer box crimper where it receives a saw-tooth-crimp of 12 crimps/ in. and then cut into 5 inches long staple. This staple is processed three times through a garnett and then spun through a woolen system into yarn. Two-ply yarn produced from the previously described singles yarn is used to tuft a loop pile and a cut pile carpet of 16 and 20 oz./ sq. yd. pile weights respectively. The carpet showed novel hand and attractive appearance. After 40,000 traffic treads on the floor, the above carpets showed no visible wear, hairiness or pills and retained excellent appearance.
The tow tenacities checked at different draw ratios were as follows:
Tow Tow elontenaeity, gation,
Draw ratio g./d percent EXAMPLE H blowing agent. The blended material is then placed in a National Rubber Machinery extruder, the extruder being equipped with a screw 12" long and 1" in diameter. The rear portion or zone 1 of the extruder is maintained at 200 C. as is the front portion or zone 2 of the extruder. The die-head is maintained at a temperature of 200 C. and the hot-melt extruded at a throughput of about 61b./ hr. The extruded sheet is then hot-melt attenuated to produce fibrillation, bundled together as a tow and drawn by a factor of 2 /2 X through a heated, curved tube stretcher at C. The drawn tow is then crimped in a gear crimping device and cut into 6" long staple. The staple fiber when spun into yarn is found to have a pleasing hand and appearance.
While the exact reason for the production of fibrils in the hot melt attenuated thermoplastic resin of this invention is not known, it is known that foam systems have a finite structure. In the ideal case of equal sized bubbles, a close packing in pentagonal dodecahedrons is obtained. Packed in this arrangement, the intersection of three bubbles form three angles of 120. In the dynamic hot melt attenuation process of this invention, the cell structure is never in equilibrium; shear forces, pressure, and velocity gradients affect cell size and shape. In the earlier phases of extrusion the polymer-foam is forced under increasing pressure into a converging film die. Under compression, the cells become smaller, thus storing part of the energy supplied by the extruder. On leaving the film die, the pressure reacting on the system diminishes and part of the stored energy is released in the form of cell expansion. During expansion, the cells assume an elliptical shape oriented along with stream axis of the polymer film. Once the melt leaves the die, polymer shrinkage due to cooling and drawdown tension produce fibrillation and further attenuation.
The individual fibrils produced by the hot melt attenuation process possess a plurality of geometrically different cross-sections within the same fibril. While the cross-sections are described as irregular in shape, it should be noted that there is almost total absence of any flat or planar surfaces. This characteristic renders a cross-section of the fibrillated product produced by hot-melt attenuation distinctly different from products which are fibrillated by orienting a polymeric material and then relying upon the orientation to enhance fibrillation in that polymeric products which undergo orientation prior to fibrillation are characterized by having trapezoidal cross-sections.
Having thus disclosed the invention, what is claimed is:
1. A process for the preparation of staple fibers having cross-sections substantially devoid of planar surfaces, said process comprising extruding through a die, a mixture comprising a molten polymer and a foaming agent which is, or evolves gas at extrusion temperature, hot-melt attenuating the extrudate by pulling said extrudate away from said die to produce fibrillation, continuously passing said fibrillated extrudate after said attenuation into a drawing zone and drawing by a factor of from 1.5 to four times along the axis of the fibrous network and then cutting the continuous fibrous network to staple length fiber bundles.
2. The process of claim 1 wherein said molten polymer is polypropylene.
3. The process of claim 1 wherein said staple length fibers are blended with at least some staple fibers selected from the group consisting of naturally occurring staple fibers and man-made staple fibers produced by extrusion through filament size orifices.
4. The process of claim 1 wherein subsequent to the drawing operation, the drawn fibrous network is subjected to a crimping operation and then cut into fiber bundles.
5. The process of claim 1 wherein said fibrous network is oriented along its continuous axis by heating and drawing in the range of from about 1.5 times to about 3.5 times.
References Cited UNITED STATES PATENTS 2,948,927 8/1960 Rasmussen 161-Fibrillated Digest 3,214,234 10/1965 Bottomley 28-1F 3,336,174 8/1967 Dyer et al 28-1F 3,081,519 3/1963 Blades et al. 16l-Fib. 3,403,203 9/1968 Schirmer 26451 FOREIGN PATENTS 1,073,741 6/ 1967 Great Britain 161-Fibrillated Digest ROBERT F. BURNETT, Primary Examiner R. O. LINKER, 111., Assistant Examiner US. Cl. X.R.
US650948A 1967-07-03 1967-07-03 Process for producing fibrillated staple fibers Expired - Lifetime US3576931A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US65094867A 1967-07-03 1967-07-03

Publications (1)

Publication Number Publication Date
US3576931A true US3576931A (en) 1971-04-27

Family

ID=24610979

Family Applications (1)

Application Number Title Priority Date Filing Date
US650948A Expired - Lifetime US3576931A (en) 1967-07-03 1967-07-03 Process for producing fibrillated staple fibers

Country Status (1)

Country Link
US (1) US3576931A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939237A (en) * 1971-11-19 1976-02-17 Asahi Dow, Ltd. Method of making a fluid transmitting porous tube or sheet
US3962386A (en) * 1973-01-02 1976-06-08 Sun Research And Development Co. Corona discharge treatment of foam fibrillated webs
US3962388A (en) * 1973-01-02 1976-06-08 Sun Research And Development Co. Method of producing a foam fibrillated web
US3969471A (en) * 1973-01-02 1976-07-13 Sun Research And Development Co. Process of manufacturing chromic acid treated foam fibrillated webs
US3984514A (en) * 1972-01-24 1976-10-05 Gulf Research & Development Company Process for producing fine polyamide/polystyrene fibers
US4038357A (en) * 1972-06-28 1977-07-26 Imperial Chemical Industries Inc. Manufacture of synthetic filaments
US4189455A (en) * 1971-08-06 1980-02-19 Solvay & Cie. Process for the manufacture of discontinuous fibrils
US4212915A (en) * 1975-11-07 1980-07-15 Akzona Incorporated Mat material of melt-spun polymeric filaments having discontinuous cavities
US4720252A (en) * 1986-09-09 1988-01-19 Kimberly-Clark Corporation Slotted melt-blown die head
US4858629A (en) * 1986-05-09 1989-08-22 S.P.T. S.R.L. Increased volume synthetic fibres, procedure for producing them and their use, in particular for filters
US5498468A (en) * 1994-09-23 1996-03-12 Kimberly-Clark Corporation Fabrics composed of ribbon-like fibrous material and method to make the same
US5582904A (en) * 1989-06-01 1996-12-10 Hercules Incorporated Rewettable polyolefin fiber and corresponding nonwovens
US6057024A (en) * 1997-10-31 2000-05-02 Kimberly-Clark Worldwide, Inc. Composite elastic material with ribbon-shaped filaments
US6468451B1 (en) 2000-06-23 2002-10-22 3M Innovative Properties Company Method of making a fibrillated article
US20030105176A1 (en) * 2001-06-21 2003-06-05 Haas Christopher K. Foam and method of making
US6642429B1 (en) 1999-06-30 2003-11-04 Kimberly-Clark Worldwide, Inc. Personal care articles with reduced polymer fibers
US6680114B2 (en) 2001-05-15 2004-01-20 3M Innovative Properties Company Fibrous films and articles from microlayer substrates
US6692823B2 (en) 2001-12-19 2004-02-17 3M Innovative Properties Company Microfibrillated articles comprising hydrophillic component
US6753080B1 (en) 2002-01-29 2004-06-22 3M Innovative Properties Company Receptor medium having a microfibrillated surface
US7083849B1 (en) 1999-06-04 2006-08-01 3M Innovative Properties Company Breathable polymer foams
US20120139150A1 (en) * 2009-08-17 2012-06-07 Oerlikon Textile Gmbh & Co. Kg Method And Device For Producing A Grass Yarn

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189455A (en) * 1971-08-06 1980-02-19 Solvay & Cie. Process for the manufacture of discontinuous fibrils
US3939237A (en) * 1971-11-19 1976-02-17 Asahi Dow, Ltd. Method of making a fluid transmitting porous tube or sheet
US3984514A (en) * 1972-01-24 1976-10-05 Gulf Research & Development Company Process for producing fine polyamide/polystyrene fibers
US4038357A (en) * 1972-06-28 1977-07-26 Imperial Chemical Industries Inc. Manufacture of synthetic filaments
US3962386A (en) * 1973-01-02 1976-06-08 Sun Research And Development Co. Corona discharge treatment of foam fibrillated webs
US3962388A (en) * 1973-01-02 1976-06-08 Sun Research And Development Co. Method of producing a foam fibrillated web
US3969471A (en) * 1973-01-02 1976-07-13 Sun Research And Development Co. Process of manufacturing chromic acid treated foam fibrillated webs
US4212915A (en) * 1975-11-07 1980-07-15 Akzona Incorporated Mat material of melt-spun polymeric filaments having discontinuous cavities
US4858629A (en) * 1986-05-09 1989-08-22 S.P.T. S.R.L. Increased volume synthetic fibres, procedure for producing them and their use, in particular for filters
US4720252A (en) * 1986-09-09 1988-01-19 Kimberly-Clark Corporation Slotted melt-blown die head
US5582904A (en) * 1989-06-01 1996-12-10 Hercules Incorporated Rewettable polyolefin fiber and corresponding nonwovens
US5498468A (en) * 1994-09-23 1996-03-12 Kimberly-Clark Corporation Fabrics composed of ribbon-like fibrous material and method to make the same
US6057024A (en) * 1997-10-31 2000-05-02 Kimberly-Clark Worldwide, Inc. Composite elastic material with ribbon-shaped filaments
US7083849B1 (en) 1999-06-04 2006-08-01 3M Innovative Properties Company Breathable polymer foams
US6642429B1 (en) 1999-06-30 2003-11-04 Kimberly-Clark Worldwide, Inc. Personal care articles with reduced polymer fibers
US6468451B1 (en) 2000-06-23 2002-10-22 3M Innovative Properties Company Method of making a fibrillated article
US6646019B2 (en) 2000-06-23 2003-11-11 3M Innovative Properties Company Fibrillated foam article
US6680114B2 (en) 2001-05-15 2004-01-20 3M Innovative Properties Company Fibrous films and articles from microlayer substrates
US20030105176A1 (en) * 2001-06-21 2003-06-05 Haas Christopher K. Foam and method of making
US20030211310A1 (en) * 2001-06-21 2003-11-13 Haas Christopher K. Foam and method of making
US7094463B2 (en) 2001-06-21 2006-08-22 3M Innovative Properties Company Foam and method of making
US6692823B2 (en) 2001-12-19 2004-02-17 3M Innovative Properties Company Microfibrillated articles comprising hydrophillic component
US6753080B1 (en) 2002-01-29 2004-06-22 3M Innovative Properties Company Receptor medium having a microfibrillated surface
US20040213928A1 (en) * 2002-01-29 2004-10-28 3M Innovative Properties Company Receptor medium having a microfibrillated surface
US20120139150A1 (en) * 2009-08-17 2012-06-07 Oerlikon Textile Gmbh & Co. Kg Method And Device For Producing A Grass Yarn

Similar Documents

Publication Publication Date Title
US3576931A (en) Process for producing fibrillated staple fibers
US3634564A (en) Process for the manufacture of fibrillated foamed films
CA1052966A (en) Radial extrusion and stretching of foam to form fibrous networks
US3509013A (en) Composite polypropylene filament
CA2127494C (en) Improved propylene polymer yarn and articles made therefrom
US5275884A (en) Split fibers, integrated split fiber articles and method for preparing the same
US3562369A (en) Producing a crinkled and fibrillated ribbon by hot melt drawing techniques
US3549470A (en) Fibrillated yarn carpet backing
US3595738A (en) Helically crimped filamentary materials
JPH02139408A (en) Flash spinning
US3884030A (en) Fibrillated foamed textile products and method of making same
US3112160A (en) Method for producing textile yarn from a mono
US3874965A (en) Fibrillated yarn carpet backing
US3594459A (en) Process for the production of conjugate foam fibrillated structures
US3641760A (en) Foam fibrillated yarn and process
JPH04214407A (en) Manufacture of foaming fiber
US4102969A (en) Method for manufacturing crimped textile elements by fibrillation of films
AU606357B2 (en) Biconstituent polypropylene/polyethylene fibers
US3598637A (en) Metal-coated fibrillated products
US2700657A (en) Melt-spinnable, fiber forming blend of polystyrene and specific styrene-acrylonitrile interpolymers
Galanti et al. Polypropylene fibers and films
US3549467A (en) Pile fabric having fibrillated pile yarn and method of making same
US3463652A (en) Article and method of coating continuous filament
KR20220073790A (en) filament composition
JPH0610233A (en) Ultrahigh molecular weight polyethylene woven fabric