US3581186A - Reduced forward voltage drop rectifying circuit - Google Patents

Reduced forward voltage drop rectifying circuit Download PDF

Info

Publication number
US3581186A
US3581186A US808622A US3581186DA US3581186A US 3581186 A US3581186 A US 3581186A US 808622 A US808622 A US 808622A US 3581186D A US3581186D A US 3581186DA US 3581186 A US3581186 A US 3581186A
Authority
US
United States
Prior art keywords
transistor
terminal
terminals
diode
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US808622A
Inventor
Aaron David Weinberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of US3581186A publication Critical patent/US3581186A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • a dynamic rectifying device uses a transistor biased to saturation as the rectifying element.
  • the lower voltage drop between collector and emitter of a saturated transistor (as compared with the diode voltage drop) provides increased rectifying efficiency and better clamping action.
  • the circuit includes a bias network using the input alternating current signal to develop the proper bias voltage for the circuit.
  • the rectifying junctions of semiconductor elements have been used as dynamic clamps or dynamic rectifying elements.
  • transistors having the base and collector electrodes coupled together have been used as diodes.
  • the rectifying junction thus formed has a relatively large voltage drop which may; for example, be of the order of 0.7 volts in a silicon transistor. In many circuits this voltage drop would not be of importance, particularly where the circuit was operating with a relatively high power supply voltage.
  • the 0.7 volt diode drop is an appreciable percentage of'the power supply voltage and thus it is of great importance to minimize this drop.
  • the voltage drop between the collector and emitter of a transistor biased to saturation is much less than the base-emitter voltage drop so that transistors biased to saturation have been used as rectifying or clamping elements.
  • the collector-emitter voltage drop may be less than 0.2 volts.
  • the base voltage be greater than either the emitter or collector voltage, a condition which is not normally present in transistor circuits. Circuits have been designed which provide for such a bias but the circuits have required extra power supplies or relatively complicated connections from existing power supplies in order to provide the required saturation bias.
  • Another object of this invention is to provide a clamping or rectifying circuit using a transistor biased to saturation by the signal which is clamped or rectified.
  • a rectifying or clamping device in which the emitter and collector electrodes of the transistor are connected across the input terminals.
  • a bias circuit is connected across the input terminals and to the base of the transistor to provide a bias at the base sufficient to bias the transistor to saturation.
  • the bias circuit includes a transformer having a step-up winding to provide a potential at the base of the transistor greater than the potentials at either the collector or emitter.
  • the rectifying or clamping devices may be combined to fon'n a power rectifier.
  • FIG. l is a schematic of one embodiment of the invention.
  • FIG. 2 is a rectifying circuit incorporating the rectifying element of FIG. I; 6
  • FIG. 3 is a second embodiment of the invention.
  • FIG. 4 is a rectifying circuit incorporating the rectifying element of FIG. 3.
  • an alternating current source supplies alternating current to input terminals 12 and 13 of the rectifying or clamping circuit.
  • Transistor 15, connected between terminals 12 and 13, provides the rectifying action. With transistor 15 biased to conduction, current flows from emitter 18 to collector 17 during one-half cycle of the alternating current applied to terminals 12 and 13. During the other half cycle, transistor 15 is biased in the reverse direction to block any current flow between terminals 12 and 13. Transistor 15 is biased to saturation by the bias circuit also coupled to terminals 12 and 13.
  • the bias circuit includes a transformer having a winding 21 connected in series with capacitor 24 across terminals 12 and 13.
  • a second winding 22 connected to terminal 12 and magnetically coupled to the first winding 21 provides a potential to base 19, through resistor 25, which is greater than the potential applied to terminal 12.
  • this increase in potential may be of the order of 1 volt. This increase in potential is sufficient to bias transistor 15 to saturation with the potential applied to terminals 12 and l3'being of the proper polarity.
  • Terminal 28 is connected between transformer winding 21 and capacitor 24. Since the circuit of FIG. 1 will act to clamp an alternating current signal applied thereto the charge developed on capacitor 24 furnishes information as to the average value of the alternating current signal and this information can be provided to other circuits as required.
  • FIG. 2 a pair of the circuits of FIG. 1 are combined to form a full wave rectifier circuit having increased efficiency since the forward voltage drop across the transistor is less than the normal rectifier diode voltage drop.
  • a source of alternatingcurrent 30 is coupled to the primary winding 31 of transformer 33.
  • Secondary winding 35 is center tapped at point 36 forming a first section 38 and a second section 39.
  • the first section has a terminal 41 at one end and the second section has a terminal 42 at one end.
  • the other ends of the first and second sections are connected at the center tap 36.
  • the first section 38 is tapped at terminal 43 and the second section 39 is tapped at terminal 44.
  • Transistor 46 has emitter 47 connected to terminal 41 and collector 48 connected to output terminal 52.
  • the center tap end of first transformer section 38 is coupled to collector 48 through load 53.
  • the base 49 of transistor 46 is connected through current limiting resistor 51 to terminal 43.
  • Transistor 54 is connected in a similar manner to the second section 39 of the secondary winding.
  • terminal 42 In operation; when terminal 41 is positive with respect to the center tap 36, terminal 42 is negative. With terminal 42 negative transistor 54 is biased off. With terminal 41 positive transistor 46 is biased to conduction and current is conducted to output terminal 52.
  • Base 49 is connected to terminal 43 so that a bias voltage is developed between terminals 41 and 43 with terminal 41 being more positive than terminal 43.
  • Terminal 43 is chosen so that the bias potential developed between terminals 41 and 43 is sufficient to bias the transistor 46 to a saturated condition.
  • transistor 54 When the polarities of the output potentials at terminals 41 and 42 are reversed, transistor 54 conducts in a manner similar to transistor 46.
  • Transistor 56 has collector 57 directly connected to .ter-
  • a diode 61 and capacitor 62 are coupled in series between terminals 12 and 13.
  • a second transistor 64 has collector 67 connected to base 59 of transistor 56 and emitter 66 connected to the junction of diode 61 and capacitor 62.
  • a current limiting resistor 69 connects base 65 to terminal 12 and the other end of diode 61.
  • Transistor 64 and transistor 56 are opposite polarity types. Diode 61 is poled opposite to the base 65, emitter 66 diode of transistor 64.
  • capacitor 62 charges through diode 61 so that there is a negative potential on emitter 66.
  • the potential. applied to base 65 is slightly more negative than the emitter 66 potential so that transistor 64 biased to noconduction and therefore transistor 56 is also biased to conductionrwhen the polarity of the signal on terminals 12 and 13 reverses so that terminal 12 has a positive polarity signal and terminal 13 has a negative polarity signal, diode 61 is biased to nonconduction so that the charge on capacitor 62 cannot flow through diode 61.
  • the base 65 is now positive with respect to emitter 66, transistor 64 is biased to conduction and a potential is applied from collector 67 to base 59 of transistor 56. Since the negative potential of terminal 13 is added to thenegative potential appearing on emitter 66, the potential on base 59 of transistor 56 is more negative than the collector 58 potential so that transistor 56 is biased to saturation.
  • FIG. 4 there is shown a bridge rectifier circuit incorporating the rectifying circuit of this invention.
  • the bridge consists of a plurality of rectifying circuits 74, 75, 76 and 77 connected to terminals 79, 80, 81, and 82.
  • An alternating current supply from source 71 is connected through transformer 72 to bridge terminals 79 and 80.
  • a direct current output signal is developed between bridge terminals 81 and 82.
  • Rectifier circuit 74 is shown in detail and is identical with the rectifiercircuit of FIG. 3. Rectifier circuits 75, 76 and 77 are identical to rectifier circuit 74 and are connected as shown to provide the correct polarity for the bridge rectifier.
  • a transistor rectifying circuit for an alternating current signal including in combination, first and second terminals for receiving the alternating current signal, a first transistor having a collector electrode directly connected to said first terminal, an emitter electrode directly connected to said second terminal and a base electrode, bias circuit means directly connected between said first and second terminals and further coupled to said base electrode of said first transistor, said bias circuit means being responsive to the alternating current signal to develop a bias signal therefrom and apply the same to said base electrode, said bias signal being of greater magnitude than the alternating current signal at said collector and emitter electrodes during one-half cycle of the alternating current signal whereby said transistor is biased to saturation.
  • said bias circuit means include a transformer having a first winding portion coupled between said first and second terminals and a second winding portion coupled to said base electrode.
  • said transformer includes a terminal common to said first and second winding portion, said first winding portion includes a first transformer terminal and said second winding portion includes a second transformer terminal, said common transformer terminal being connected to said first terminal, capacitance means connecting said first transformer terminal to said second terminal, and resistance means connecting said second transformer terminal to said base electrode.
  • said bias circuit means includes, capacitor means and diode means connected in series between said first and second terminals, a second transistor having an emitter electrode connected to the junction of said capacitor means and said diode means, a base electrode coupled to to the other side of said diode means and a collector electrode connected to said base electrode of said first transistor, said second transistor being of the polarity type opposite to that of said first transistor, said diode means being poled opposite to the base-emitter diode polarity of said second transistor,
  • a bridge rectifier circuit for an alternating current signal including in combination, four bridge rectifier terminals, four transistor rectifying circuits each connected to pairs of said bridge rectifier circuit, each of said transistor rectifying circuits including first and second terminals, a first transistor having a collector electrode directly connected to said first terminal, an emitter electrode directly connected to said second terminal and a base electrode, bias circuit means including capacitor means and diode means connected in series between said first and second terminals, a second transistor having an emitter electrode connected to the junction of said capacitor means and said diode means, a base electrode coupled to the other side of said diode means and a collector electrode connected to said base electrode of said first transistor, said second transistor being of the polarity type opposite to that of said first transistor, said diode means being poled opposite to the base-emitter diode polarity of said second transistor.

Abstract

A dynamic rectifying device uses a transistor biased to saturation as the rectifying element. The lower voltage drop between collector and emitter of a saturated transistor (as compared with the diode voltage drop) provides increased rectifying efficiency and better clamping action. The circuit includes a bias network using the input alternating current signal to develop the proper bias voltage for the circuit.

Description

United States Patent Inventor Aaron David Weinberger Chicago, Ill.
Appl. No. 808,622
Filed Mar. 19, 1969 Patented May 25, I971 Assignee Motorola, Inc.
Franklin Park, Ill.
REDUCED FORWARD VOLTAGE DROP RECTIFYING CIRCUIT 5 Claims, 4 Drawing Figs.
U.S. Cl 321/43, 321/47 Int. Cl 02m 7/12 Field of Search 321/43, 45, 47, 8
References Cited UNITED STATES PATENTS 2,898,476 8/1959 Jensen 321/43X 2,953,738 9/1960 Bright 32l/47 3,012,182 12/1961 Ford 321/47 3,083,328 3/1963 Mallery et al 321/47X FOREIGN PATENTS 176,133 8/1961 Sweden 321/47 851,375 10/1960 Great Britain 321/43 OTHER REFERENCES RCA Technical Notes, High Efficiency Low Voltage Rectifier, RCA TN 627, August, 1965, 321/8 Primary ExaminerWi11iam M. Shoop, Jr. Attorney-Mueller, & Aichele ABSTRACT: A dynamic rectifying device uses a transistor biased to saturation as the rectifying element. The lower voltage drop between collector and emitter of a saturated transistor (as compared with the diode voltage drop) provides increased rectifying efficiency and better clamping action. The circuit includes a bias network using the input alternating current signal to develop the proper bias voltage for the circuit.
PAT-ENTEU HAYZSISYI V 3581, 186
Inventor AARON DAVID WElNBERGE-R :51 m we 16 ATTYS.
REDUCED FORWARD VOLTAGE DROP RECTIFYING CIRCUIT BACKGROUND OF THE INVENTION The rectifying junctions of semiconductor elements have been used as dynamic clamps or dynamic rectifying elements. For example, transistors having the base and collector electrodes coupled together have been used as diodes. However, the rectifying junction thus formed has a relatively large voltage drop which may; for example, be of the order of 0.7 volts in a silicon transistor. In many circuits this voltage drop would not be of importance, particularly where the circuit was operating with a relatively high power supply voltage. However, in circuits operating from power supplies of from 1.5 to 3 volts, for example, the 0.7 volt diode drop is an appreciable percentage of'the power supply voltage and thus it is of great importance to minimize this drop.
It is known that the voltage drop between the collector and emitter of a transistor biased to saturation is much less than the base-emitter voltage drop so that transistors biased to saturation have been used as rectifying or clamping elements. For example, in a silicon transistor biased to saturation the collector-emitter voltage drop may be less than 0.2 volts. However, in order to bias a transistor to saturation it is necessary that the base voltage be greater than either the emitter or collector voltage, a condition which is not normally present in transistor circuits. Circuits have been designed which provide for such a bias but the circuits have required extra power supplies or relatively complicated connections from existing power supplies in order to provide the required saturation bias.
SUMMARY OF THE INVENTION It is, therefore, an object of this invention to provide an improved circuit using a transistor biased to saturation as a rectifying or clamping element.
Another object of this invention is to provide a clamping or rectifying circuit using a transistor biased to saturation by the signal which is clamped or rectified.
In practicing this invention a rectifying or clamping device is provided in which the emitter and collector electrodes of the transistor are connected across the input terminals. A bias circuit is connected across the input terminals and to the base of the transistor to provide a bias at the base sufficient to bias the transistor to saturation. The bias circuit includes a transformer having a step-up winding to provide a potential at the base of the transistor greater than the potentials at either the collector or emitter. The rectifying or clamping devices may be combined to fon'n a power rectifier.
The invention is illustrated in the drawings of which:
FIG. l is a schematic of one embodiment of the invention;
FIG. 2 is a rectifying circuit incorporating the rectifying element of FIG. I; 6
FIG. 3 is a second embodiment of the invention; and
FIG. 4 is a rectifying circuit incorporating the rectifying element of FIG. 3.
DESCRIPTION OF THE INVENTION Referring to FIG. 1, an alternating current source supplies alternating current to input terminals 12 and 13 of the rectifying or clamping circuit. Transistor 15, connected between terminals 12 and 13, provides the rectifying action. With transistor 15 biased to conduction, current flows from emitter 18 to collector 17 during one-half cycle of the alternating current applied to terminals 12 and 13. During the other half cycle, transistor 15 is biased in the reverse direction to block any current flow between terminals 12 and 13. Transistor 15 is biased to saturation by the bias circuit also coupled to terminals 12 and 13.
The bias circuit includes a transformer having a winding 21 connected in series with capacitor 24 across terminals 12 and 13. A second winding 22 connected to terminal 12 and magnetically coupled to the first winding 21 provides a potential to base 19, through resistor 25, which is greater than the potential applied to terminal 12. For example this increase in potential may be of the order of 1 volt. This increase in potential is sufficient to bias transistor 15 to saturation with the potential applied to terminals 12 and l3'being of the proper polarity.
Assume an alternating current signal is applied to terminals 12 and 13, with the alternating current signal applied to terminal 12 being positive with respect to that applied to terminal 13. The potential applied to base 19 is more positive than the potential applied to collector 17 or emitter 18 so that transistor 15 is reversed biased and no conduction takes place. When the polarity of the alternating current signal applied to terminals 12 and 13 is reversed, transistor 15 is biased to conduction. The negative potential on terminal 12 is added to the potential developed across winding 22 and the potential applied to base 19 is more negative than that applied to either collector 17 or emitter 18, so that transistor 15 is biased to saturation. With transistor 15 biased to saturation, the voltage drop between terminals 12 and 13 is established at a minimum value determined by the V V drop of the transistor instead of the V drop of the transistor.
Terminal 28 is connected between transformer winding 21 and capacitor 24. Since the circuit of FIG. 1 will act to clamp an alternating current signal applied thereto the charge developed on capacitor 24 furnishes information as to the average value of the alternating current signal and this information can be provided to other circuits as required.
In FIG. 2 a pair of the circuits of FIG. 1 are combined to form a full wave rectifier circuit having increased efficiency since the forward voltage drop across the transistor is less than the normal rectifier diode voltage drop. A source of alternatingcurrent 30 is coupled to the primary winding 31 of transformer 33. Secondary winding 35 is center tapped at point 36 forming a first section 38 and a second section 39. The first section has a terminal 41 at one end and the second section has a terminal 42 at one end. The other ends of the first and second sections are connected at the center tap 36. The first section 38 is tapped at terminal 43 and the second section 39 is tapped at terminal 44. Transistor 46 has emitter 47 connected to terminal 41 and collector 48 connected to output terminal 52. The center tap end of first transformer section 38 is coupled to collector 48 through load 53. The base 49 of transistor 46 is connected through current limiting resistor 51 to terminal 43. Transistor 54 is connected in a similar manner to the second section 39 of the secondary winding.
In operation; when terminal 41 is positive with respect to the center tap 36, terminal 42 is negative. With terminal 42 negative transistor 54 is biased off. With terminal 41 positive transistor 46 is biased to conduction and current is conducted to output terminal 52. Base 49 is connected to terminal 43 so that a bias voltage is developed between terminals 41 and 43 with terminal 41 being more positive than terminal 43. Terminal 43 is chosen so that the bias potential developed between terminals 41 and 43 is sufficient to bias the transistor 46 to a saturated condition. When the polarities of the output potentials at terminals 41 and 42 are reversed, transistor 54 conducts in a manner similar to transistor 46.
In FIG. 3 there is shown another embodiment of a bias circuit. Transistor 56 has collector 57 directly connected to .ter-
' minal l2 and collector 58 directly connected to terminal 13.
With transistor 56 biased to saturation the voltage drop across transistor 56 is at a minimum. A diode 61 and capacitor 62 are coupled in series between terminals 12 and 13. A second transistor 64 has collector 67 connected to base 59 of transistor 56 and emitter 66 connected to the junction of diode 61 and capacitor 62. A current limiting resistor 69 connects base 65 to terminal 12 and the other end of diode 61. Transistor 64 and transistor 56 are opposite polarity types. Diode 61 is poled opposite to the base 65, emitter 66 diode of transistor 64.
In operation, with a negative potential applied to terminal 12 and a positive potential on terminal 13, capacitor 62 charges through diode 61 so that there is a negative potential on emitter 66. However, the potential. applied to base 65 is slightly more negative than the emitter 66 potential so that transistor 64 biased to noconduction and therefore transistor 56 is also biased to conductionrwhen the polarity of the signal on terminals 12 and 13 reverses so that terminal 12 has a positive polarity signal and terminal 13 has a negative polarity signal, diode 61 is biased to nonconduction so that the charge on capacitor 62 cannot flow through diode 61. Since the base 65 is now positive with respect to emitter 66, transistor 64 is biased to conduction and a potential is applied from collector 67 to base 59 of transistor 56. Since the negative potential of terminal 13 is added to thenegative potential appearing on emitter 66, the potential on base 59 of transistor 56 is more negative than the collector 58 potential so that transistor 56 is biased to saturation.
In FIG. 4 there is shown a bridge rectifier circuit incorporating the rectifying circuit of this invention. The bridge consists of a plurality of rectifying circuits 74, 75, 76 and 77 connected to terminals 79, 80, 81, and 82. An alternating current supply from source 71 is connected through transformer 72 to bridge terminals 79 and 80. A direct current output signal is developed between bridge terminals 81 and 82.
Rectifier circuit 74 is shown in detail and is identical with the rectifiercircuit of FIG. 3. Rectifier circuits 75, 76 and 77 are identical to rectifier circuit 74 and are connected as shown to provide the correct polarity for the bridge rectifier.
Iclaim:
l. A transistor rectifying circuit for an alternating current signal, including in combination, first and second terminals for receiving the alternating current signal, a first transistor having a collector electrode directly connected to said first terminal, an emitter electrode directly connected to said second terminal and a base electrode, bias circuit means directly connected between said first and second terminals and further coupled to said base electrode of said first transistor, said bias circuit means being responsive to the alternating current signal to develop a bias signal therefrom and apply the same to said base electrode, said bias signal being of greater magnitude than the alternating current signal at said collector and emitter electrodes during one-half cycle of the alternating current signal whereby said transistor is biased to saturation.
2. The transistor rectifying circuit of claim 1 wherein, said bias circuit means include a transformer having a first winding portion coupled between said first and second terminals and a second winding portion coupled to said base electrode.
3. The transistor rectifying circuit of claim 2 wherein, said transformer includes a terminal common to said first and second winding portion, said first winding portion includes a first transformer terminal and said second winding portion includes a second transformer terminal, said common transformer terminal being connected to said first terminal, capacitance means connecting said first transformer terminal to said second terminal, and resistance means connecting said second transformer terminal to said base electrode.
4. The transistor rectifying circuit of claim I wherein, said bias circuit means includes, capacitor means and diode means connected in series between said first and second terminals, a second transistor having an emitter electrode connected to the junction of said capacitor means and said diode means, a base electrode coupled to to the other side of said diode means and a collector electrode connected to said base electrode of said first transistor, said second transistor being of the polarity type opposite to that of said first transistor, said diode means being poled opposite to the base-emitter diode polarity of said second transistor,
5. A bridge rectifier circuit for an alternating current signal, including in combination, four bridge rectifier terminals, four transistor rectifying circuits each connected to pairs of said bridge rectifier circuit, each of said transistor rectifying circuits including first and second terminals, a first transistor having a collector electrode directly connected to said first terminal, an emitter electrode directly connected to said second terminal and a base electrode, bias circuit means including capacitor means and diode means connected in series between said first and second terminals, a second transistor having an emitter electrode connected to the junction of said capacitor means and said diode means, a base electrode coupled to the other side of said diode means and a collector electrode connected to said base electrode of said first transistor, said second transistor being of the polarity type opposite to that of said first transistor, said diode means being poled opposite to the base-emitter diode polarity of said second transistor.

Claims (5)

1. A transistor rectifying circuit for an alternating current signal, including in combination, first and second terminals for receiving the alternating current signal, a first transistor having a collector electrode directly connected to said first terminal, an emitter electrode directly connected to said second terminal and a base electrode, bias circuit means directly connected between said first and second terminals and further coupled to said base electrode of said first transistor, said bias circuit means being responsive to the alternating current signal to develop a bias signal therefrom and apply the same to said base electrode, said bias signal being of greater magnitude than the alternating current signal at said collector and emitter electrodes during one-half cycle of the alternating current signal whereby said transistor is biased to saturation.
2. The transistor rectifying circuit of claim 1 wherein, said bias circuit means include a transformer having a first winding portion Coupled between said first and second terminals and a second winding portion coupled to said base electrode.
3. The transistor rectifying circuit of claim 2 wherein, said transformer includes a terminal common to said first and second winding portion, said first winding portion includes a first transformer terminal and said second winding portion includes a second transformer terminal, said common transformer terminal being connected to said first terminal, capacitance means connecting said first transformer terminal to said second terminal, and resistance means connecting said second transformer terminal to said base electrode.
4. The transistor rectifying circuit of claim 1 wherein, said bias circuit means includes, capacitor means and diode means connected in series between said first and second terminals, a second transistor having an emitter electrode connected to the junction of said capacitor means and said diode means, a base electrode coupled to to the other side of said diode means and a collector electrode connected to said base electrode of said first transistor, said second transistor being of the polarity type opposite to that of said first transistor, said diode means being poled opposite to the base-emitter diode polarity of said second transistor,
5. A bridge rectifier circuit for an alternating current signal, including in combination, four bridge rectifier terminals, four transistor rectifying circuits each connected to pairs of said bridge rectifier circuit, each of said transistor rectifying circuits including first and second terminals, a first transistor having a collector electrode directly connected to said first terminal, an emitter electrode directly connected to said second terminal and a base electrode, bias circuit means including capacitor means and diode means connected in series between said first and second terminals, a second transistor having an emitter electrode connected to the junction of said capacitor means and said diode means, a base electrode coupled to the other side of said diode means and a collector electrode connected to said base electrode of said first transistor, said second transistor being of the polarity type opposite to that of said first transistor, said diode means being poled opposite to the base-emitter diode polarity of said second transistor.
US808622A 1969-03-19 1969-03-19 Reduced forward voltage drop rectifying circuit Expired - Lifetime US3581186A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80862269A 1969-03-19 1969-03-19

Publications (1)

Publication Number Publication Date
US3581186A true US3581186A (en) 1971-05-25

Family

ID=25199289

Family Applications (1)

Application Number Title Priority Date Filing Date
US808622A Expired - Lifetime US3581186A (en) 1969-03-19 1969-03-19 Reduced forward voltage drop rectifying circuit

Country Status (1)

Country Link
US (1) US3581186A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860868A (en) * 1973-09-26 1975-01-14 Joseph S Lindell Voltage polarity sensor indicator and director circuit device
US3904950A (en) * 1975-01-27 1975-09-09 Bell Telephone Labor Inc Rectifier circuit
US3940682A (en) * 1973-10-15 1976-02-24 General Electric Company Rectifier circuits using transistors as rectifying elements
US4716514A (en) * 1984-12-13 1987-12-29 Unitrode Corporation Synchronous power rectifier
US5912552A (en) * 1997-02-12 1999-06-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho DC to DC converter with high efficiency for light loads
US5939871A (en) * 1996-02-01 1999-08-17 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho DC/DC converter and controller therefor utilizing an output inductor current and input voltage
US5994885A (en) * 1993-03-23 1999-11-30 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
US6127815A (en) * 1999-03-01 2000-10-03 Linear Technology Corp. Circuit and method for reducing quiescent current in a switching regulator
US6130528A (en) * 1997-05-09 2000-10-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Switching regulator controlling system having a light load mode of operation based on a voltage feedback signal
US6307356B1 (en) 1998-06-18 2001-10-23 Linear Technology Corporation Voltage mode feedback burst mode circuit
US6476589B2 (en) 2001-04-06 2002-11-05 Linear Technology Corporation Circuits and methods for synchronizing non-constant frequency switching regulators with a phase locked loop
US6674274B2 (en) 2001-02-08 2004-01-06 Linear Technology Corporation Multiple phase switching regulators with stage shedding
US7019507B1 (en) 2003-11-26 2006-03-28 Linear Technology Corporation Methods and circuits for programmable current limit protection
US7030596B1 (en) 2003-12-03 2006-04-18 Linear Technology Corporation Methods and circuits for programmable automatic burst mode control using average output current
US20080030178A1 (en) * 2006-08-04 2008-02-07 Linear Technology Corporation Circuits and methods for adjustable peak inductor current and hysteresis for burst mode in switching regulators
US20080151580A1 (en) * 1997-01-24 2008-06-26 Schlecht Martin F High efficiency power converter
US7558083B2 (en) 1997-01-24 2009-07-07 Synqor, Inc. High efficiency power converter
USRE41037E1 (en) 2002-09-12 2009-12-15 Linear Technology Corp. Adjustable minimum peak inductor current level for burst mode in current-mode DC-DC regulators
US10199950B1 (en) 2013-07-02 2019-02-05 Vlt, Inc. Power distribution architecture with series-connected bus converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898476A (en) * 1955-07-05 1959-08-04 Honeywell Regulator Co Transistor control apparatus
US2953738A (en) * 1954-06-02 1960-09-20 Westinghouse Electric Corp Rectifier device
GB851375A (en) * 1957-10-08 1960-10-19 Westinghouse Brake & Signal Improvements relating to utilisation circuits for transistors
US3012182A (en) * 1957-08-15 1961-12-05 Gerald M Ford Transistor synchronous rectifier
US3083328A (en) * 1959-12-10 1963-03-26 Bell Telephone Labor Inc Control circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953738A (en) * 1954-06-02 1960-09-20 Westinghouse Electric Corp Rectifier device
US2898476A (en) * 1955-07-05 1959-08-04 Honeywell Regulator Co Transistor control apparatus
US3012182A (en) * 1957-08-15 1961-12-05 Gerald M Ford Transistor synchronous rectifier
GB851375A (en) * 1957-10-08 1960-10-19 Westinghouse Brake & Signal Improvements relating to utilisation circuits for transistors
US3083328A (en) * 1959-12-10 1963-03-26 Bell Telephone Labor Inc Control circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RCA Technical Notes, High Efficiency Low Voltage Rectifier , RCA TN 627, August, 1965, 321/8 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860868A (en) * 1973-09-26 1975-01-14 Joseph S Lindell Voltage polarity sensor indicator and director circuit device
US3940682A (en) * 1973-10-15 1976-02-24 General Electric Company Rectifier circuits using transistors as rectifying elements
US3904950A (en) * 1975-01-27 1975-09-09 Bell Telephone Labor Inc Rectifier circuit
US4716514A (en) * 1984-12-13 1987-12-29 Unitrode Corporation Synchronous power rectifier
US5994885A (en) * 1993-03-23 1999-11-30 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
US6304066B1 (en) 1993-03-23 2001-10-16 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regular circuit
US6580258B2 (en) 1993-03-23 2003-06-17 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
US5939871A (en) * 1996-02-01 1999-08-17 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho DC/DC converter and controller therefor utilizing an output inductor current and input voltage
US20080151580A1 (en) * 1997-01-24 2008-06-26 Schlecht Martin F High efficiency power converter
US9143042B2 (en) 1997-01-24 2015-09-22 Synqor, Inc. High efficiency power converter
US8493751B2 (en) 1997-01-24 2013-07-23 Synqor, Inc. High efficiency power converter
US8023290B2 (en) 1997-01-24 2011-09-20 Synqor, Inc. High efficiency power converter
US7564702B2 (en) 1997-01-24 2009-07-21 Synqor, Inc. High efficiency power converter
US7558083B2 (en) 1997-01-24 2009-07-07 Synqor, Inc. High efficiency power converter
US5912552A (en) * 1997-02-12 1999-06-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho DC to DC converter with high efficiency for light loads
US6130528A (en) * 1997-05-09 2000-10-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Switching regulator controlling system having a light load mode of operation based on a voltage feedback signal
US6307356B1 (en) 1998-06-18 2001-10-23 Linear Technology Corporation Voltage mode feedback burst mode circuit
US6127815A (en) * 1999-03-01 2000-10-03 Linear Technology Corp. Circuit and method for reducing quiescent current in a switching regulator
US6366066B1 (en) 1999-03-01 2002-04-02 Milton E. Wilcox Circuit and method for reducing quiescent current in a switching regulator
US6674274B2 (en) 2001-02-08 2004-01-06 Linear Technology Corporation Multiple phase switching regulators with stage shedding
US6476589B2 (en) 2001-04-06 2002-11-05 Linear Technology Corporation Circuits and methods for synchronizing non-constant frequency switching regulators with a phase locked loop
US7019497B2 (en) * 2001-04-06 2006-03-28 Linear Technology Corporation Circuits and methods for synchronizing non-constant frequency switching regulators with a phase locked loop
US20050001602A1 (en) * 2001-04-06 2005-01-06 Linear Technology Corporation Circuits and methods for synchronizing non-constant frequency switching regulators with a phase locked loop
US20020180413A1 (en) * 2001-04-06 2002-12-05 Linear Technology Corporation Circuits and methods for synchronizing non-constant frequency switching regulators with a phase locked loop
US6774611B2 (en) 2001-04-06 2004-08-10 Linear Technology Corporation Circuits and methods for synchronizing non-constant frequency switching regulators with a phase locked loop
USRE41037E1 (en) 2002-09-12 2009-12-15 Linear Technology Corp. Adjustable minimum peak inductor current level for burst mode in current-mode DC-DC regulators
US7019507B1 (en) 2003-11-26 2006-03-28 Linear Technology Corporation Methods and circuits for programmable current limit protection
US7030596B1 (en) 2003-12-03 2006-04-18 Linear Technology Corporation Methods and circuits for programmable automatic burst mode control using average output current
US7990120B2 (en) 2006-08-04 2011-08-02 Linear Technology Corporation Circuits and methods for adjustable peak inductor current and hysteresis for burst mode in switching regulators
US20080030178A1 (en) * 2006-08-04 2008-02-07 Linear Technology Corporation Circuits and methods for adjustable peak inductor current and hysteresis for burst mode in switching regulators
US10199950B1 (en) 2013-07-02 2019-02-05 Vlt, Inc. Power distribution architecture with series-connected bus converter
US10594223B1 (en) 2013-07-02 2020-03-17 Vlt, Inc. Power distribution architecture with series-connected bus converter
US11075583B1 (en) 2013-07-02 2021-07-27 Vicor Corporation Power distribution architecture with series-connected bus converter
US11705820B2 (en) 2013-07-02 2023-07-18 Vicor Corporation Power distribution architecture with series-connected bus converter

Similar Documents

Publication Publication Date Title
US3581186A (en) Reduced forward voltage drop rectifying circuit
US3769571A (en) Power inverter circuit
US3434034A (en) Universal ac or dc to dc converter
US2953738A (en) Rectifier device
US3940682A (en) Rectifier circuits using transistors as rectifying elements
US2819442A (en) Electrical circuit
US3470446A (en) Positive dc to positive dc converter
GB1476150A (en) Transistor bridge-rectifier circuit
US3665221A (en) Transistor bridge rectifier circuit
US3939394A (en) Constant voltage circuit
JPH01255474A (en) Dc power source device
US5586019A (en) Voltage converter
JPH04251532A (en) Uninterruptible dc power supply
US3089077A (en) Transistor converters
US3593111A (en) Voltage regulating device utilizing series transistors controlled by means including zener diodes
US3602839A (en) Inverter including complementary transistors
NO116302B (en)
US3530364A (en) Circuit for converting a direct current potential to an alternating current potential
US3034074A (en) Full-wave modulator circuits
US3449595A (en) D.c. bus switching power contact
US3679959A (en) High current low voltage regulated power supply
JPS5811933U (en) Battery charging device
SU399034A1 (en) TRANSISTOR CONVERTER
SU453776A1 (en) TRANSISTOR CONVERTER
JPS61112416A (en) Waveform delay circuit