US3587037A - Low insertion force connector assembly - Google Patents

Low insertion force connector assembly Download PDF

Info

Publication number
US3587037A
US3587037A US770513A US3587037DA US3587037A US 3587037 A US3587037 A US 3587037A US 770513 A US770513 A US 770513A US 3587037D A US3587037D A US 3587037DA US 3587037 A US3587037 A US 3587037A
Authority
US
United States
Prior art keywords
contacts
connector
connector member
plate
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US770513A
Inventor
John W Anhalt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
International Telephone and Telegraph Corp
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Application granted granted Critical
Publication of US3587037A publication Critical patent/US3587037A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/28Contacts for sliding cooperation with identically-shaped contact, e.g. for hermaphroditic coupling devices

Definitions

  • the invention comprises a connector assembly having a plug connector and a receptacle connector.
  • Each of the connectors contains a plurality of contacts housed in openings within the connectors. The contacting surfaces of the receptacle connector contacts extend outside of the receptacle connector opening.
  • the contact surface portions of the receptacle connector contacts Upon mating of the receptacle connector and the plug connector the contact surface portions of the receptacle connector contacts enter openings containing the plug connector contacts, but do not engage the plug connector contacts.
  • Means are provided in one of the connectors to move one of the group of contacts in tandem so that the plug connector contacting surface engages the receptacle connector contacting surface.
  • This moving means may be of the form of a plastic insert which houses the contacts and a camshaft housed therein, rotation of the camshaft causing a portion of the plastic insert to move the contacts contained in the plastic insert so that its contacting surfaces abut the contacting surfaces of the other connector.
  • the invention relates in general to low insertion force connector assemblies and, more particularly, to a high density connector assembly wherein no contact mating forces are encountered during engagement of the connector assembly.
  • the connector assembly of the present invention provides an extremely compact arrangement which utilizes a minimum number of parts. Further, only two components are required for actuation of the contacts.
  • the contacts which are interchangeable may be fabricated by metal stamping, thus requiring limited manufacturing control.
  • the invention comprises a connector assembly having a first connector member and a second connector member.
  • Each of the connectors contains a plurality of contacts housed in openings within the connectors.
  • the contacting surfaces of the second connector member contacts extend outside of the second connector opening.
  • the contact surface portions of the second connector contacts enter openings containing the first connector member contacts, but do not engage the first connector member contacts.
  • Means are provided in one of the connectors to move one of the group of contacts in tandem so that the first connector member contacting surface engages the second connector member contacting surface.
  • This moving means may be of the form of a plastic insert which houses the contacts and a camshaft housed therein, rotation of the camshaft causing a portion of the plastic insert to move the contacts contained in the plastic insert so that its connector contacting surfaces abut the contacting surfaces of the other connector.
  • FIG. 5 is a view of the connector assembly, partly in section, taken along the line 5-5 of the FIG. 3.
  • FIG. I a connector assembly 12 having a plug connector 14 and a receptacle connector 16.
  • the plug connector has a plurality of contacts 18 (as shown in FIG. .2 and 3) for connection with respective contacts 20 in the receptacle connector 16.
  • the plug connector 14 comprises a metal shell 22 which is secured 9 around a plastic insert 24.
  • the insert 24 contains a plurality of openings 26 into which cables 28 are inserted for connection with the contacts 18.
  • the plastic insert 24 extends to the forward end of the plug connector 14 and is surrounded by sidewalls 30 of the shell 22.
  • the receptacle connector 16 comprises a shell 32 which be mounted on a panel 33 by means of screw 35.
  • the shell 32 is nonnally made of aluminum and has secured thereto, a plastic actuating plate 34 for partially mounting the contacts 20 therein.
  • the shell 32 further comprises a forwardly extending opening 36 for mating the sidewalls 30 of shell 22.
  • a camshaft 42 mounted in the plate 34 is inserted into an opening 44 in the plug connector 14 upon mating of the plug connector with the receptacle connector'.
  • polarized shafts 52 which are hemispherically shaped, and secured to the shell 22 by means of a screw 53, are aligned with a member 54 having a semicircular opening 56 therein for accepting the shafts 52.
  • polarized shafts 52 which are hemispherically shaped, and secured to the shell 22 by means of a screw 53, are aligned with a member 54 having a semicircular opening 56 therein for accepting the shafts 52.
  • other methods of polarization could be used such as varying the shape of opening 36 and the sidewalls 30 as is conventional.
  • FIG. 2 there is depicted sectional view of the plug connector 14 and receptacle connector 16, after they have been mated together, but prior to locking and contacting of the contacts.
  • the shell 22 comprises a main flange section 62 having secured thereto and integral therewith the sidewalls 30 which envelope the plastic insert 24 at the front end thereof. Integral with the front end of the walls 30 is a cover lip 66.
  • the opening 44 in the plastic section 24 also contains a semicircular keyed slot 68 into which a locking lip 70 formed on the outer surface of camshaft 42 may be inserted.
  • Each of the openings 26 completely extends through the width of the plastic insert 24 and contains a downwardly extending lip 72.
  • Contacts 18 are inserted into the openings 26 in the plastic insert 24 through the rear end thereof, causing a locking tine 76 to depress and then open as it passes through the lip 72.
  • the contact further comprises a beam portion 78 having secured at its forward end and integral therewith, a contacting surface 82 of the somewhat semieliptical shape.
  • the other end of the contacting beam is connected to a crimp pot 84 which is adjacent a rearwardly facing shoulder formed by the lip 72.
  • the crimp pot 84 is integral with a wire strain relief 86 into which cables 28 are inserted.
  • the receptacle shell 32 comprises a somewhat rectangular shaped outer flange member 92 which is integral with the main flange portion 94 and a forwardly extending lip 96. Further, an inwardly extending flange 98 of the receptacle shell 32 has an opening 102 therein.
  • the flange 98 is formed of a forward facing surface 104, and a rear facing surface 106.
  • the plastic plate 34 used to activate the contacts 18 and 20, abuts a portion of a rearward facing shoulder 106 of the flange 98 and is adjacent an inner surface 108 of the flange 98.
  • a circular opening 112 within the plate 34 is generally axially aligned with the opening 44 in the plastic insert 24 but slidably offset therefrom.
  • a cylindrical actuating plate bearing 114 formed on the outer surface of the cam eccentric portion 116 of camshaft 42 is secured within the opening 112.
  • a plurality of openings 118 in the plate 34 are all generally axially aligned with each of the openings 26 in the plastic insert 24, for allowing the contacts 20 which are partially housed in the plate 34 to enter the insert 24 upon mating of the plug connector 14 and the receptacle connector 16.
  • the plate 34 contains downwardly extending central lips 122 which are in direct contact with a portion of each of the contacts 20 housed in the plate 34.
  • the receptacle connector 16 also comprises a plastic insert 124 whose forward facing surface is flush with the rearward facing surface of the plate 34 and slidably engaged therewith.
  • the plastic insert 124 comprises a key-way 126 and an opening 128 which is axially aligned with the opening 44 of plastic insert 24.
  • the insert further comprises a semicircular opening 132 at the rear end of the insert 124 which is an enlargement of the opening 128.
  • Mounted within the opening 132 is a lip shaped member 136 formed on the outer end surface of camshaft 42 whose forward facing shoulder 138 is adjacent a rearwardly facing shoulder 140 of the plastic insert 124 which is formed at the junction of the openings 128 and 132.
  • the camshaft 42 contains a hexagonally shaped opening 141 which is axially aligned the opening 128 of plastic insert 124, the opening 112 of plate 34, and the opening 44 of plastic insert 24.
  • a plurality of openings 142 in the insert 124 are axially aligned with both the openings 118 of plate 34 and the openings 26 of insert 24.
  • An upwardly extending lip 144 in each of the openings 142 perform a similar function as the downwardly extending lip 72 of the insert 24.
  • the contacts 20 are similar to the contacts 18 and contain a contacting surface 146 which is secured to the contact beam 148.
  • the contact beam 148 contains a locking tine 152 which is secured against the forward facing shoulder formed by the upwardly extending lip 144.
  • the contact 20 further comprises a crimp pot 154 and a wire strain relief 156.
  • the actuating plate bearing 114 causes the actuating plate 34 to move downwardly causing the lips 122 which are continuously abutting the contact beams 148 to move downwardly, thus causing the contacting surfaces 146 to make contact with the contacting surfaces 82.
  • the locking lip 70 secures the connectors together.
  • plastic plate 34 has been depicted as being a portion of the receptacle connector it should be understood, of course, that the insert could be made a part of the plug connector as well.
  • the bending of the contact beam 148 causes a high unit force between the contact surface 82 and the contact surfaces 146 resulting in a desirable slight wiping action between the surfaces should any oxide be present on the surfaces.
  • An electrical connector assembly having a first connector member containing a plurality of contacts and a second connector member containing a plurality ofcontacts;
  • each of said first member connector contacts being secured in individual openings in said first connector member and having a contacting surface
  • each of said second connector member contacts being secured in individual openings in said second connector member and having a contacting surface extending outside one of said second connector member openings, said second connector member contact surfaces being inserted in said first connector member contact openings when said second connector member and said first connector members are mated, said second connector member contacts being spaced apart from said first connector member contacts in said openings during said insertion,
  • said moving connector contacts being mounted in said second connector member, said second connector member being formed of a first fixed plate and a second plate slidably movable with respect to said first plate, concentric openings in said plates for mounting a portion of each of said moving contacts in both of said plates, a contact beam portion of each of said moving contacts being mounted abutting to an extending portion of said second plate for causing the contacting surfaces of said first connector member contacts to engage said second connector member contacts when said second plate is moved slidably with respect to said first plate, said slidable second plate engaging said beam portion of said contact only when said second plate is moved slidably with respect to said first plate, said engagement occurring at a point distant from said contact contacting surface for causing a high unit force between contact
  • said means for moving said contacts comprises an actuating plate having a portion thereof in direct contact with each of the plurality of moving contacts, and a keyed member having an eccentric portion fastened to said actuating plate, rotation of said keyed member causing said plate to move said contacts.

Abstract

The invention comprises a connector assembly having a plug connector and a receptacle connector. Each of the connectors contains a plurality of contacts housed in openings within the connectors. The contacting surfaces of the receptacle connector contacts extend outside of the receptacle connector opening. Upon mating of the receptacle connector and the plug connector the contact surface portions of the receptacle connector contacts enter openings containing the plug connector contacts, but do not engage the plug connector contacts. Means are provided in one of the connectors to move one of the group of contacts in tandem so that the plug connector contacting surface engages the receptacle connector contacting surface. This moving means may be of the form of a plastic insert which houses the contacts and a camshaft housed therein, rotation of the camshaft causing a portion of the plastic insert to move the contacts contained in the plastic insert so that its contacting surfaces abut the contacting surfaces of the other connector.

Description

United States Patent John W. Anhalt La Crescenta, Calif. [2]] Appl. No. 770,513
[72] Inventor Corporation New York, N.Y.
{54] LOW INSERTION FORCE CONNECTOR Primary ExaminerMarvin A. Champion Assistant Examiner.loseph H. McGlynn A!t0rneys-C. Cornell Remsen, .lr., Walter J. Baum, Paul W. Hemminger, Percy P. Lantzy and Thomas E. Kristofferson ABSTRACT: The invention comprises a connector assembly having a plug connector and a receptacle connector. Each of the connectors contains a plurality of contacts housed in openings within the connectors. The contacting surfaces of the receptacle connector contacts extend outside of the receptacle connector opening. Upon mating of the receptacle connector and the plug connector the contact surface portions of the receptacle connector contacts enter openings containing the plug connector contacts, but do not engage the plug connector contacts. Means are provided in one of the connectors to move one of the group of contacts in tandem so that the plug connector contacting surface engages the receptacle connector contacting surface. This moving means may be of the form of a plastic insert which houses the contacts and a camshaft housed therein, rotation of the camshaft causing a portion of the plastic insert to move the contacts contained in the plastic insert so that its contacting surfaces abut the contacting surfaces of the other connector.
LOW INSERTION FORCE CONNECTOR ASSEMBLY The invention relates in general to low insertion force connector assemblies and, more particularly, to a high density connector assembly wherein no contact mating forces are encountered during engagement of the connector assembly.
BACKGROUND OF THE INVENTION With the advent of electronics packaging miniaturization, numerous problems have been created in the related field of electrical terminations. A prime consideration has been to physically reduce the size of connectors in response to the decreasing size of electrical systems. One difficulty presented by the conventional connectors is that although smaller connectors can be produced which afford high-density contacts in a given panel area, ensuing engagement forces rise to an intolerable level.
In U.S. Pat. application Ser. No. 658,258, filed Aug. 4, I967, entitled, High Density Zero Force Engage-Release Connector," and assigned to the assignee of the present case, there is described a system for reducing mating forces on conventional-type connectors (zero force connectors). The system described in the above-mentioned United States application was designed primarily for edgeboard printed circuit connectors although it has been modified for rack and panel connectors as well. The system, called a Cam-Rae" system is relatively complex and has numerous moving parts.
In order to overcome the attendant disadvantages of prior art connector assemblies, the connector assembly of the present invention provides an extremely compact arrangement which utilizes a minimum number of parts. Further, only two components are required for actuation of the contacts. The contacts which are interchangeable may be fabricated by metal stamping, thus requiring limited manufacturing control.
SUMMARY OF THE INVENTION More particularly, the invention comprises a connector assembly having a first connector member and a second connector member. Each of the connectors contains a plurality of contacts housed in openings within the connectors. The contacting surfaces of the second connector member contacts extend outside of the second connector opening. Upon mating of the second connector member and first connector member the contact surface portions of the second connector contacts enter openings containing the first connector member contacts, but do not engage the first connector member contacts. Means are provided in one of the connectors to move one of the group of contacts in tandem so that the first connector member contacting surface engages the second connector member contacting surface. This moving means may be of the form of a plastic insert which houses the contacts and a camshaft housed therein, rotation of the camshaft causing a portion of the plastic insert to move the contacts contained in the plastic insert so that its connector contacting surfaces abut the contacting surfaces of the other connector.
The advantage of the invention, both as to its construction and mode of operation, will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings in which like referenced numerals designate like parts throughout the figures.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a view of the connector assembly, partly in section, taken along the line 5-5 of the FIG. 3.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings, there is shown in FIG. I, a connector assembly 12 having a plug connector 14 and a receptacle connector 16. The plug connector has a plurality of contacts 18 (as shown in FIG. .2 and 3) for connection with respective contacts 20 in the receptacle connector 16. The plug connector 14 comprises a metal shell 22 which is secured 9 around a plastic insert 24. The insert 24 contains a plurality of openings 26 into which cables 28 are inserted for connection with the contacts 18. The plastic insert 24 extends to the forward end of the plug connector 14 and is surrounded by sidewalls 30 of the shell 22. The receptacle connector 16 comprises a shell 32 which be mounted on a panel 33 by means of screw 35. The shell 32 is nonnally made of aluminum and has secured thereto, a plastic actuating plate 34 for partially mounting the contacts 20 therein. The shell 32 further comprises a forwardly extending opening 36 for mating the sidewalls 30 of shell 22. A camshaft 42 mounted in the plate 34 is inserted into an opening 44 in the plug connector 14 upon mating of the plug connector with the receptacle connector'. To obtain the correct polarization between the two connectors, polarized shafts 52, which are hemispherically shaped, and secured to the shell 22 by means of a screw 53, are aligned with a member 54 having a semicircular opening 56 therein for accepting the shafts 52. Alternatively, other methods of polarization could be used such as varying the shape of opening 36 and the sidewalls 30 as is conventional.
Referring now to FIG. 2, there is depicted sectional view of the plug connector 14 and receptacle connector 16, after they have been mated together, but prior to locking and contacting of the contacts. The shell 22 comprises a main flange section 62 having secured thereto and integral therewith the sidewalls 30 which envelope the plastic insert 24 at the front end thereof. Integral with the front end of the walls 30 is a cover lip 66. The opening 44 in the plastic section 24 also contains a semicircular keyed slot 68 into which a locking lip 70 formed on the outer surface of camshaft 42 may be inserted.
Each of the openings 26 completely extends through the width of the plastic insert 24 and contains a downwardly extending lip 72. Contacts 18 are inserted into the openings 26 in the plastic insert 24 through the rear end thereof, causing a locking tine 76 to depress and then open as it passes through the lip 72.
The contact further comprises a beam portion 78 having secured at its forward end and integral therewith, a contacting surface 82 of the somewhat semieliptical shape. The other end of the contacting beam is connected to a crimp pot 84 which is adjacent a rearwardly facing shoulder formed by the lip 72. The crimp pot 84 is integral with a wire strain relief 86 into which cables 28 are inserted. The receptacle shell 32 comprises a somewhat rectangular shaped outer flange member 92 which is integral with the main flange portion 94 and a forwardly extending lip 96. Further, an inwardly extending flange 98 of the receptacle shell 32 has an opening 102 therein. The flange 98 is formed of a forward facing surface 104, and a rear facing surface 106.
The plastic plate 34, used to activate the contacts 18 and 20, abuts a portion of a rearward facing shoulder 106 of the flange 98 and is adjacent an inner surface 108 of the flange 98. A circular opening 112 within the plate 34 is generally axially aligned with the opening 44 in the plastic insert 24 but slidably offset therefrom. A cylindrical actuating plate bearing 114 formed on the outer surface of the cam eccentric portion 116 of camshaft 42 is secured within the opening 112.
A plurality of openings 118 in the plate 34 are all generally axially aligned with each of the openings 26 in the plastic insert 24, for allowing the contacts 20 which are partially housed in the plate 34 to enter the insert 24 upon mating of the plug connector 14 and the receptacle connector 16. The plate 34 contains downwardly extending central lips 122 which are in direct contact with a portion of each of the contacts 20 housed in the plate 34.
The receptacle connector 16 also comprises a plastic insert 124 whose forward facing surface is flush with the rearward facing surface of the plate 34 and slidably engaged therewith. The plastic insert 124 comprises a key-way 126 and an opening 128 which is axially aligned with the opening 44 of plastic insert 24. The insert further comprises a semicircular opening 132 at the rear end of the insert 124 which is an enlargement of the opening 128. Mounted within the opening 132 is a lip shaped member 136 formed on the outer end surface of camshaft 42 whose forward facing shoulder 138 is adjacent a rearwardly facing shoulder 140 of the plastic insert 124 which is formed at the junction of the openings 128 and 132. The camshaft 42 contains a hexagonally shaped opening 141 which is axially aligned the opening 128 of plastic insert 124, the opening 112 of plate 34, and the opening 44 of plastic insert 24.
A plurality of openings 142 in the insert 124 are axially aligned with both the openings 118 of plate 34 and the openings 26 of insert 24. An upwardly extending lip 144 in each of the openings 142 perform a similar function as the downwardly extending lip 72 of the insert 24. The contacts 20 are similar to the contacts 18 and contain a contacting surface 146 which is secured to the contact beam 148. The contact beam 148 contains a locking tine 152 which is secured against the forward facing shoulder formed by the upwardly extending lip 144. The contact 20 further comprises a crimp pot 154 and a wire strain relief 156.
As can readily be seen, when a hexagonally shaped member such as the Allen wrench 162 is inserted into the hexagonally shaped opening 141 of the camshaft 42 and rotated clockwise approximately 180, the actuating plate bearing 114 causes the actuating plate 34 to move downwardly causing the lips 122 which are continuously abutting the contact beams 148 to move downwardly, thus causing the contacting surfaces 146 to make contact with the contacting surfaces 82. Simultaneously, the locking lip 70 secures the connectors together.
While the plastic plate 34 has been depicted as being a portion of the receptacle connector it should be understood, of course, that the insert could be made a part of the plug connector as well.
Further, it should be noted that the bending of the contact beam 148 causes a high unit force between the contact surface 82 and the contact surfaces 146 resulting in a desirable slight wiping action between the surfaces should any oxide be present on the surfaces.
What 1 claim is:
1. An electrical connector assembly having a first connector member containing a plurality of contacts and a second connector member containing a plurality ofcontacts;
each of said first member connector contacts being secured in individual openings in said first connector member and having a contacting surface,
each of said second connector member contacts being secured in individual openings in said second connector member and having a contacting surface extending outside one of said second connector member openings, said second connector member contact surfaces being inserted in said first connector member contact openings when said second connector member and said first connector members are mated, said second connector member contacts being spaced apart from said first connector member contacts in said openings during said insertion,
means for moving said plurality of contacts in one of said connectors in tandem for causing said first connector contact surfaces to engage said second connector member contact surfaces, and said latter mentioned plurality of contacts being normally secured in said openings in an unstressed condition and remaining unstressed when said connector members are mated said moving connector contacts being mounted in said second connector member, said second connector member being formed of a first fixed plate and a second plate slidably movable with respect to said first plate, concentric openings in said plates for mounting a portion of each of said moving contacts in both of said plates, a contact beam portion of each of said moving contacts being mounted abutting to an extending portion of said second plate for causing the contacting surfaces of said first connector member contacts to engage said second connector member contacts when said second plate is moved slidably with respect to said first plate, said slidable second plate engaging said beam portion of said contact only when said second plate is moved slidably with respect to said first plate, said engagement occurring at a point distant from said contact contacting surface for causing a high unit force between contact surfaces of said first connector contacts and said second connector contacts.
2. An electrical connector assembly in accordance with claim 1 wherein said means for moving said contacts comprises an actuating plate having a portion thereof in direct contact with each of the plurality of moving contacts, and a keyed member having an eccentric portion fastened to said actuating plate, rotation of said keyed member causing said plate to move said contacts.
3. An electrical connector assembly in accordance with claim 1 wherein said first connector member contacts and said second connector member contacts are similar in construction.
4. An electrical connector assembly in accordance with claim 1 wherein said means for moving said plurality of contacts simultaneously locks said first connector member, and said second connector member together.
5. An electrical connector assembly in accordance with claim 1 wherein wiping action occurs between the contact surfaces upon engagement of said surfaces.

Claims (5)

1. An electrical connector assembly having a first connector member containing a plurality of contacts and a second connector member containing a plurality of contacts; each of said first member connector contacts being secured in individual openings in said first connector member and having a contacting surface, each of said second connector member contacts being secured in individual openings in said second connector member and having a contacting surface extending outside one of said second connector member openings, said second connector member contact surfaces being inserted in said first connector member contact openings when said second connector member and said first connector members are mated, said second connector member contacts being spaced apart from said first connector member contacts in said openings during said insertion, means for moving said plurality of contacts in one of said connectors in tandem for causing said first connector contact surfaces to engage said second connector member contact surfaces, and said latter mentioned plurality of contacts being normally secured in said openings in an unstressed condition and remaining unstressed when said connector members are mated said moving connector contacts being mounted in said second connector member, said second connector member being formed of a first fixed plate and a second plate slidably movable with respect to said first plate, concentric openings in said plates for mounting a portion of each of said moving contacts in both of said plates, a contact beam portion of each of said moving contacts being mounted abutting to an extending portion of said second plate for causing the contacting surfaces of said first connector member contacts to engage said second connector member contacts when said second plate is moved slidably with respect to said first plate, said slidable second plate engaging said beam portion of said contact only when said second plate is moved slidably with respect to said first plate, said engagement occurring at a point distant from said contact contacting surface for causing a high unit force between contact surfaces of said first connector contacts and said second connector contacts.
2. An electrical connector assembly in accordance with claim 1 wherein said means for moving said contacts comprises an actuating plate having a portion thereof in direct contact with each of the plurality of moving contacts, and a keyed member having an eccentric portion fastened to said actuating plate, rotation of said keyed member causing said plate to move said contacts.
3. An electrical connector assembly in accordance with claim 1 wherein said first connector member contacts and said second connector member contacts are similar in construction.
4. An electrical connector assembly in accordance with claim 1 wherein said means for moving said plurality of contacts simultaneously locks said first connector member, and said second connector member together.
5. An electrical connector assembly in accordance with claim 1 wherein wiping action occurs between the contact surfaces upon engagement of said surfaces.
US770513A 1968-10-25 1968-10-25 Low insertion force connector assembly Expired - Lifetime US3587037A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77051368A 1968-10-25 1968-10-25

Publications (1)

Publication Number Publication Date
US3587037A true US3587037A (en) 1971-06-22

Family

ID=25088805

Family Applications (1)

Application Number Title Priority Date Filing Date
US770513A Expired - Lifetime US3587037A (en) 1968-10-25 1968-10-25 Low insertion force connector assembly

Country Status (4)

Country Link
US (1) US3587037A (en)
DE (1) DE1953440C3 (en)
FR (1) FR2021576A1 (en)
GB (1) GB1231779A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818420A (en) * 1970-12-07 1974-06-18 Itt Low insertion force electrical connector
US3848222A (en) * 1973-07-18 1974-11-12 Amp Inc Zero entry connector system
US3950059A (en) * 1975-06-27 1976-04-13 International Telephone & Telegraph Corporation Zero force electrical connector
US3970351A (en) * 1974-12-23 1976-07-20 Hollingsead-Pryor Enterprises, Inc. Electrical connector and contact strip therefor
US4043631A (en) * 1976-04-26 1977-08-23 Hollingsead-Pryor Enterprises Electrical terminal structure for connector
US4538866A (en) * 1983-03-07 1985-09-03 Teradyne, Inc. Backplane connector
US4547960A (en) * 1982-04-29 1985-10-22 At&T Technologies, Inc. Methods of and fixture for establishing an electrical connection
US5201665A (en) * 1991-09-24 1993-04-13 Cardell Corporation Cam lock connector
US5538437A (en) * 1995-03-03 1996-07-23 Itt Industries, Inc. Connector assembly for IC card
US20030124885A1 (en) * 2001-12-31 2003-07-03 Combs Christopher D. Zero mounting force solder-free connector/component and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234525A (en) * 1985-08-09 1987-02-14 オリンパス光学工業株式会社 Endoscope apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818420A (en) * 1970-12-07 1974-06-18 Itt Low insertion force electrical connector
US3848222A (en) * 1973-07-18 1974-11-12 Amp Inc Zero entry connector system
DE2432328A1 (en) * 1973-07-18 1975-01-30 Amp Inc ELECTRIC PLUG
US3970351A (en) * 1974-12-23 1976-07-20 Hollingsead-Pryor Enterprises, Inc. Electrical connector and contact strip therefor
US3950059A (en) * 1975-06-27 1976-04-13 International Telephone & Telegraph Corporation Zero force electrical connector
US4043631A (en) * 1976-04-26 1977-08-23 Hollingsead-Pryor Enterprises Electrical terminal structure for connector
US4547960A (en) * 1982-04-29 1985-10-22 At&T Technologies, Inc. Methods of and fixture for establishing an electrical connection
US4538866A (en) * 1983-03-07 1985-09-03 Teradyne, Inc. Backplane connector
US5201665A (en) * 1991-09-24 1993-04-13 Cardell Corporation Cam lock connector
US5538437A (en) * 1995-03-03 1996-07-23 Itt Industries, Inc. Connector assembly for IC card
US20030124885A1 (en) * 2001-12-31 2003-07-03 Combs Christopher D. Zero mounting force solder-free connector/component and method
US6817878B2 (en) * 2001-12-31 2004-11-16 Intel Corporation Zero mounting force solder-free connector/component and method

Also Published As

Publication number Publication date
FR2021576A1 (en) 1970-07-24
DE1953440B2 (en) 1980-02-14
DE1953440C3 (en) 1980-10-30
GB1231779A (en) 1971-05-12
DE1953440A1 (en) 1970-04-30

Similar Documents

Publication Publication Date Title
US3594698A (en) Low insertion force connector assembly
US5108300A (en) Electrical connector with interlocked components
US3676833A (en) Hermaphorodite electrical connector
US4984998A (en) High density electrical connector
US3693134A (en) Electrical connector for a printed circuit board
US4913664A (en) Miniature circular DIN connector
US9379472B2 (en) Electric connector with accommodating shorting terminal
US4963102A (en) Electrical connector of the hermaphroditic type
US6607397B1 (en) Electrical connector with enhanced mating mechanism
US5240433A (en) Waterproof electric connector
US20150263465A1 (en) Usb plug connector and method for manufacturing the same
US3587037A (en) Low insertion force connector assembly
US4787860A (en) Connector system having combined latch and polarization member
US5934939A (en) Shielded connector, notably of the type comprising a plug and a socket designed to be attached to a flat support
EP0681350A1 (en) Socket connector with a push-button for a bell crank
US4479691A (en) Connector assembly
US3553630A (en) Low insertion force connector
JPH0782892B2 (en) Drawer connector
US6881102B2 (en) Terminal locking mechanism for hybrid electrical connector
WO2015112975A1 (en) Electrical connector
US5611711A (en) Electrical connector assembly
JP2012038548A (en) Terminal fitting
US3901575A (en) Plug for patch systems
CN113690695B (en) High-speed orthogonal connector
US3699502A (en) Electrical connector having improved contact retention means