US3594945A - Flying toy - Google Patents

Flying toy Download PDF

Info

Publication number
US3594945A
US3594945A US815784A US3594945DA US3594945A US 3594945 A US3594945 A US 3594945A US 815784 A US815784 A US 815784A US 3594945D A US3594945D A US 3594945DA US 3594945 A US3594945 A US 3594945A
Authority
US
United States
Prior art keywords
annulus
flying device
thickness
varying
flying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US815784A
Inventor
Howard R Turney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3594945A publication Critical patent/US3594945A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/18Throwing or slinging toys, e.g. flying disc toys

Definitions

  • a primary object of the invention is to provide a flying device of the foregoing nature which can be scaled manually very easily and with no special manipulations. Consequently, the device can be thrown manually with a scaling motion with no necessity for developing any particular skill, thereby making the device suitable for use as a toyby persons of all ages, including even young children, which is an important feature.
  • Another object of the invention is to provide a scalable flying device which, among other things, sails through the air with a side-to-side motion, which can be caused to return to a point near the thrower in boomeranglike fashion, and the like.
  • An important object of the invention is to provide a scalable flying-device of the foregoing nature comprising an annulus the cross section of which in any radial plane containing its axis is that of an airfoil having a convex upper surface.
  • the device produces self-sustaining lift as it is projected through the air with a scaling motion.
  • Another object is to provide a device wherein the axial thickness of the annulus varies uniformly circumferentially thereof and is a maximum and a minimum at points circumferentially spaced apart by 180.
  • the annulus is axially thicker on one side than it is on the other. This construction causes the device'to sail through the air with the side-to-side motion mentioned, and also provides a boomerang effect. 1
  • Another object is to provide a scalable flying device comprising an'annulus having a lower surface which is preferably substantially flat and which is provided with circumferentially spaced cavities varying in volume'with the thickness of the annulus.
  • This construction results in at least approximately balancing the weight of the annulus circumferentially. In other words, it results in at least approximately equalizing the weights of the various circumferential portions of the annulus despite their differences in thickness.
  • Another object is to provide a lightweight device wherein the annulus is made of a low density, foamed material.
  • FIG. I is a top plan view of a scalable flying toy which cmbodies the invention.
  • FIG. 2 is a bottom plan view ofthe toy of FIG. 1'
  • FIG. 3 is an enlarged side or edge elevational view taken as indicated by the arrowed line 3-3 of FIG. 1;
  • FIG. 4 is an enlarged, fragmentary sectional view taken as indicated by the arrowed line 4-4 of FIG. 1;
  • FIG. 5 is a diagrammatic view suggesting the side-to-side motion which the scalable flying toy of the invention undergoes when thrown.
  • the scalable flying toy of the invention is designated generally by the numeral 10 and comprises an annulus 12 the cross section of which in any radial plane containing its axis is that of an airfoil, as best shown in FIG. 4. (Actually, for a reason which will become apparent the annulus 12 has two closely spaced axes l4 and 16, FIG. 1. The cross section of the annulus 12 is that of an airfoil in any radial plane containing and extending outwardly from either of these axes.)
  • the upper surface 18 of the annulus I2 is convex to develop lift in response to relative movement of the surface 18 and the air.
  • the lower surface 20 is shown as nonconvex and is preferably substantially flat.
  • the axial thickness of the annulus 12 varies uniformly circumferentially thereof between a maximum and a minimum at points 22 and 24, respectively, 180 apart.
  • the minimum thickness is between about 60 percent and percent of the maximum thickness.
  • the inner and outer circumferences of the annulus 12 are slightly eccentric relative to each other to make the width of the annulus vary uniformly circumferentially thereof directly with the uniformly circumferentially varying axial thickness.
  • the maximum width 26 occurs at the point 22 of maximum thickness and the minimum width 28 coincides with the point 24 of minimum thickness. Because of this, the axis 14 of the inner circumference of the annulus 12 is displaced slightly from the axis 16 of the outer circumference in the direction of the point 24 of minimum thickness.
  • the lower surface 20 is provided therein with circumferentially spaced cavities 30 uniformly varying in volume, circumferentially of the annulus 12, with the thickness and width of the annulus.
  • the largest cavity occurs at the point 22 of maximum thickness and maximum width, while the smallest cavity 30 occurs at the point 24 of minimum thickness and width.
  • the device 10 when the device 10 is thrown manually, or otherwise, with a scaling motion, it flies with a side-to-side movement, as suggested by the arrowed broken line 32 in FIG. 5, and, eventually, returns to the general vicinity of the thrower in a boomeranglike manner.
  • I have not been able to determine precisely why the toy 10 flies with the side-to-side motion depicted by the line 32, but this is presumably due to one or more of such factors as the differential lift between the thick and thin airfoil sections of the annulus 12, the spoiling effect of the leading edge of the annulus on the trailing edge thereof, which spoiling effect varies as the device rotates because of the varying thickness and width of the annulus, and the like. Similar factors or combinations of factors may be involved in the tendency of the device to boomerang. In this connection, I have found that the device 10 will not boomerang, or at least will not boomerang satisfactorily, without the circumferential thickness variation hereinbefore discussed.
  • annulus 12 Although various materials may be used for the annulus 12, a low density material is preferably so that the device 10 will fly with more of a sailing mode of operation. I have found that an excellent material for the annulus 12 is foamed polystyrene formed at a pressure of) p.s.i., which provides a satisfactorily low density.
  • a flying device according to claim 1 wherein said annulus is made of a foamed material.
  • a flying device as defined in claim 1 wherein the width of said annulus varies uniformly circumferentially thereof with said uniformly circumferentially varying axial thickness.

Abstract

A manually projectable flying toy comprising an annulus the cross section of which in any radial plane containing its axis is that of an airfoil having a convex upper surface, the axial thickness of the annulus varying uniformly circumferentially thereof and being a maximum and a minimum at points 180* apart.

Description

United States Patent Inventor Howard R. Turney 1180 Holly SL, Anaheim, Calif. 92801 Appl. No. 815,784 Filed Apr. 14, 1969 Patented July 27, 1971 FLYING TOY 6 Claims, 5 Drawing Figs.
08. Cl 46/74 R,
273/100, 273/126 Int. Cl. A63h 27/00 Field of Search 46/74; 273/100, 106, 105.4, 126
References Cited UNlTED STATES PATENTS l 1/1881 Wetherill 273/1062 334,848 1/1886 Damm.... 273/105.4 678,265 7/1901 Low 273/106 708,519 9/1902 Bradshaw 273/106 1,986,937 1/1935 MacGregor 273/106 Primary Examiner- Louis G. Mancene Assistant Examiner-D. L. Weinhold AttorneyHarris, Kiech, Russell and Kern ABSTRACT: A manually projectable flying toy comprising an annulus the cross section of which in any radial plane containing its axis is that of an airfoil having a convex upper surface, the axial thickness of the annulus varying uniformly circum ferentially thereof and being a maximum and a minimum at points 180 apart.
FLYING T011 4 BACKGROUND or INVENTION SUMMARY AND OBJECTS OF INVENTION A primary object of the invention is to provide a flying device of the foregoing nature which can be scaled manually very easily and with no special manipulations. Consequently, the device can be thrown manually with a scaling motion with no necessity for developing any particular skill, thereby making the device suitable for use as a toyby persons of all ages, including even young children, which is an important feature.
Another object of the invention is to provide a scalable flying device which, among other things, sails through the air with a side-to-side motion, which can be caused to return to a point near the thrower in boomeranglike fashion, and the like.
An important object of the invention is to provide a scalable flying-device of the foregoing nature comprising an annulus the cross section of which in any radial plane containing its axis is that of an airfoil having a convex upper surface. With this construction, the device produces self-sustaining lift as it is projected through the air with a scaling motion. I
Another object is to provide a device wherein the axial thickness of the annulus varies uniformly circumferentially thereof and is a maximum and a minimum at points circumferentially spaced apart by 180. In other words, the annulus is axially thicker on one side than it is on the other. This construction causes the device'to sail through the air with the side-to-side motion mentioned, and also provides a boomerang effect. 1
Another object is to provide a scalable flying device comprising an'annulus having a lower surface which is preferably substantially flat and which is provided with circumferentially spaced cavities varying in volume'with the thickness of the annulus. This construction results in at least approximately balancing the weight of the annulus circumferentially. In other words, it results in at least approximately equalizing the weights of the various circumferential portions of the annulus despite their differences in thickness.
Another object is to provide a lightweight device wherein the annulus is made of a low density, foamed material.
The foregoing objects, advantages, features and results of the present invention, together with various other objects, advantages, features and results thereof which will be evident to those skilled in the scalable flying device art in the light of this disclosure, may be achieved with the exemplary embodiment of the invention described in detail hereinafter and illustrated in the accompanying drawing.
DESCRIPTION OF DRAWING FIG. I is a top plan view of a scalable flying toy which cmbodies the invention;
FIG. 2 is a bottom plan view ofthe toy of FIG. 1',
FIG. 3 is an enlarged side or edge elevational view taken as indicated by the arrowed line 3-3 of FIG. 1;
FIG. 4 is an enlarged, fragmentary sectional view taken as indicated by the arrowed line 4-4 of FIG. 1; and
FIG. 5 is a diagrammatic view suggesting the side-to-side motion which the scalable flying toy of the invention undergoes when thrown.
DESCRIPTION OF EXEMPLARY EMBODIMENT O INVENTION 7 Referring to the drawing, the scalable flying toy of the invention is designated generally by the numeral 10 and comprises an annulus 12 the cross section of which in any radial plane containing its axis is that of an airfoil, as best shown in FIG. 4. (Actually, for a reason which will become apparent the annulus 12 has two closely spaced axes l4 and 16, FIG. 1. The cross section of the annulus 12 is that of an airfoil in any radial plane containing and extending outwardly from either of these axes.)
As is typical of any airfoil, the upper surface 18 of the annulus I2 is convex to develop lift in response to relative movement of the surface 18 and the air. The lower surface 20 is shown as nonconvex and is preferably substantially flat.
The axial thickness of the annulus 12 varies uniformly circumferentially thereof between a maximum and a minimum at points 22 and 24, respectively, 180 apart. Preferably, the minimum thickness is between about 60 percent and percent of the maximum thickness. Correspondingly, the inner and outer circumferences of the annulus 12 are slightly eccentric relative to each other to make the width of the annulus vary uniformly circumferentially thereof directly with the uniformly circumferentially varying axial thickness. Thus, as shown in FIG. 3, the maximum width 26 occurs at the point 22 of maximum thickness and the minimum width 28 coincides with the point 24 of minimum thickness. Because of this, the axis 14 of the inner circumference of the annulus 12 is displaced slightly from the axis 16 of the outer circumference in the direction of the point 24 of minimum thickness.
To achieve at least an approximate circumferential weight balance, i.e., to at least approximately offset the circumferential weight variation resulting from the circumferential thickness and width variations, the lower surface 20 is provided therein with circumferentially spaced cavities 30 uniformly varying in volume, circumferentially of the annulus 12, with the thickness and width of the annulus. Thus, as shown in FIG. 3, the largest cavity occurs at the point 22 of maximum thickness and maximum width, while the smallest cavity 30 occurs at the point 24 of minimum thickness and width.
With the foregoing construction, when the device 10 is thrown manually, or otherwise, with a scaling motion, it flies with a side-to-side movement, as suggested by the arrowed broken line 32 in FIG. 5, and, eventually, returns to the general vicinity of the thrower in a boomeranglike manner. I have not been able to determine precisely why the toy 10 flies with the side-to-side motion depicted by the line 32, but this is presumably due to one or more of such factors as the differential lift between the thick and thin airfoil sections of the annulus 12, the spoiling effect of the leading edge of the annulus on the trailing edge thereof, which spoiling effect varies as the device rotates because of the varying thickness and width of the annulus, and the like. Similar factors or combinations of factors may be involved in the tendency of the device to boomerang. In this connection, I have found that the device 10 will not boomerang, or at least will not boomerang satisfactorily, without the circumferential thickness variation hereinbefore discussed.
Although various materials may be used for the annulus 12, a low density material is preferably so that the device 10 will fly with more of a sailing mode of operation. I have found that an excellent material for the annulus 12 is foamed polystyrene formed at a pressure of) p.s.i., which provides a satisfactorily low density.
Although an exemplary embodiment of the invention has been disclosed herein for purposes of illustration it will be understood that various minor changes, modifications, and substitutions may be incorporated in such embodiment.
I claim as my invention:
4. A flying device as set forth in claim 3 wherein said lower surface is provided therein with circumferentially spaced cavities varying in volume with the thickness of said annulus.
5. A flying device according to claim 1 wherein said annulus is made of a foamed material.
6. A flying device as defined in claim 1 wherein the width of said annulus varies uniformly circumferentially thereof with said uniformly circumferentially varying axial thickness.

Claims (6)

1. A flying device comprising an annulus the cross section of which in any radial plane containing its axis is that of an airfoil having a convex upper surface, the axial thickness of said annulus varying uniformly circumferentially thereof between a maximum and a minimum at points 180* apart.
2. A flying device as defined in claim 1 wherein the lower surface of said annulus is nonconvex.
3. A flying device according to claim 2 wherein said lower surface is substantially flat.
4. A flying device as set forth in claim 3 wherein said lower surface is provided therein with circumferentially spaced cavities varying in volume with the thickness of said annulus.
5. A flying device according to claim 1 wherein said annulus is made of a foamed material.
6. A flying device as defined in claim 1 wherein the width of said annulus varies uniformly circumferentially thereof with said uniformly circumferentially varying axial thickness.
US815784A 1969-04-14 1969-04-14 Flying toy Expired - Lifetime US3594945A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81578469A 1969-04-14 1969-04-14

Publications (1)

Publication Number Publication Date
US3594945A true US3594945A (en) 1971-07-27

Family

ID=25218812

Family Applications (1)

Application Number Title Priority Date Filing Date
US815784A Expired - Lifetime US3594945A (en) 1969-04-14 1969-04-14 Flying toy

Country Status (1)

Country Link
US (1) US3594945A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828466A (en) * 1972-06-22 1974-08-13 E Geiger Flying saucer
US4023805A (en) * 1974-05-01 1977-05-17 Harry Sherrill Tricky disk
US4104822A (en) * 1976-12-03 1978-08-08 Rodgers Henry Wendell Rotating circular airfoil
US4325556A (en) * 1980-07-14 1982-04-20 Decanto Joseph F Playing disc
US4456265A (en) * 1979-01-16 1984-06-26 Adler Alan John Gliding ring
WO1985005283A1 (en) * 1984-05-10 1985-12-05 Adler Alan John Gliding ring
US4687210A (en) * 1985-09-20 1987-08-18 Michel James C Toy bouncing ring
US4820230A (en) * 1987-01-06 1989-04-11 Richards Marvin D Tossing ring and saucer
US4850923A (en) * 1988-05-06 1989-07-25 Etheridge Ronald D Flying toy
DE3813491A1 (en) * 1988-04-22 1989-11-02 Schlegel Joerg Frieder WURFRING
US5020808A (en) * 1990-01-11 1991-06-04 Richards Marvin D Tossing ring
US5041042A (en) * 1989-12-19 1991-08-20 David Stein Flying bubble toy
US5045011A (en) * 1990-06-01 1991-09-03 Lovik Craig J Flying balloon toy
US5131879A (en) * 1991-08-22 1992-07-21 Myron Bouchakian Bi-elliptical flying toy
US5232226A (en) * 1992-08-03 1993-08-03 Rapid Mounting And Finishing Co.-Cadaco Division Apparatus and method for propelling and retrieving a disk
US5366403A (en) * 1993-08-11 1994-11-22 Barney Weiss Flying disc
US5655947A (en) * 1977-03-17 1997-08-12 Applied Elastomerics, Inc. Ultra-soft, ultra-elastic gel airfoils
USD386223S (en) * 1996-07-23 1997-11-11 Mattel, Inc. High performance flying disc
US5760117A (en) * 1990-05-21 1998-06-02 Applied Elastomerics, Inc. Gelatinous composition and articles
US5962572A (en) * 1994-04-19 1999-10-05 Applied Elastomerics, Inc. Oriented gel and oriented gel articles
US6247989B1 (en) 1999-04-26 2001-06-19 Richard D. Neff Secondary lift flying ring
US6739934B1 (en) 2003-05-15 2004-05-25 Alan J. Adler Long range flying disc sporting toy
US7081032B1 (en) 2003-01-14 2006-07-25 Holgate Inc. Flying disc having contoured features
US20190118025A1 (en) * 2017-10-19 2019-04-25 Mark A. Krull Hand-Held Exercise Free Weights
US20190201742A1 (en) * 2016-08-24 2019-07-04 Yiming Lin Exercise disc for strengthening the fingers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US248901A (en) * 1881-11-01 Parlor-quoit
US334848A (en) * 1886-01-26 Flying target
US678265A (en) * 1901-01-04 1901-07-09 Abbot Augustus Low Quoit.
US708519A (en) * 1898-10-17 1902-09-09 Charles T Bradshaw Quoit.
US1986937A (en) * 1932-09-10 1935-01-08 Bonney Forge And Tool Works Quoit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US248901A (en) * 1881-11-01 Parlor-quoit
US334848A (en) * 1886-01-26 Flying target
US708519A (en) * 1898-10-17 1902-09-09 Charles T Bradshaw Quoit.
US678265A (en) * 1901-01-04 1901-07-09 Abbot Augustus Low Quoit.
US1986937A (en) * 1932-09-10 1935-01-08 Bonney Forge And Tool Works Quoit

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828466A (en) * 1972-06-22 1974-08-13 E Geiger Flying saucer
US4023805A (en) * 1974-05-01 1977-05-17 Harry Sherrill Tricky disk
US4104822A (en) * 1976-12-03 1978-08-08 Rodgers Henry Wendell Rotating circular airfoil
US5655947A (en) * 1977-03-17 1997-08-12 Applied Elastomerics, Inc. Ultra-soft, ultra-elastic gel airfoils
US4456265A (en) * 1979-01-16 1984-06-26 Adler Alan John Gliding ring
US4325556A (en) * 1980-07-14 1982-04-20 Decanto Joseph F Playing disc
WO1985005283A1 (en) * 1984-05-10 1985-12-05 Adler Alan John Gliding ring
US4560358A (en) * 1984-05-10 1985-12-24 Adler Alan John Gliding ring
US4687210A (en) * 1985-09-20 1987-08-18 Michel James C Toy bouncing ring
US4820230A (en) * 1987-01-06 1989-04-11 Richards Marvin D Tossing ring and saucer
DE3813491A1 (en) * 1988-04-22 1989-11-02 Schlegel Joerg Frieder WURFRING
US4850923A (en) * 1988-05-06 1989-07-25 Etheridge Ronald D Flying toy
US5041042A (en) * 1989-12-19 1991-08-20 David Stein Flying bubble toy
US5020808A (en) * 1990-01-11 1991-06-04 Richards Marvin D Tossing ring
US5760117A (en) * 1990-05-21 1998-06-02 Applied Elastomerics, Inc. Gelatinous composition and articles
US5045011A (en) * 1990-06-01 1991-09-03 Lovik Craig J Flying balloon toy
US5131879A (en) * 1991-08-22 1992-07-21 Myron Bouchakian Bi-elliptical flying toy
WO1993003809A1 (en) * 1991-08-22 1993-03-04 Miro Bouchakian Bi-elliptical flying toy
US5232226A (en) * 1992-08-03 1993-08-03 Rapid Mounting And Finishing Co.-Cadaco Division Apparatus and method for propelling and retrieving a disk
US5366403A (en) * 1993-08-11 1994-11-22 Barney Weiss Flying disc
US5962572A (en) * 1994-04-19 1999-10-05 Applied Elastomerics, Inc. Oriented gel and oriented gel articles
USD386223S (en) * 1996-07-23 1997-11-11 Mattel, Inc. High performance flying disc
US6247989B1 (en) 1999-04-26 2001-06-19 Richard D. Neff Secondary lift flying ring
US7081032B1 (en) 2003-01-14 2006-07-25 Holgate Inc. Flying disc having contoured features
US6739934B1 (en) 2003-05-15 2004-05-25 Alan J. Adler Long range flying disc sporting toy
US20190201742A1 (en) * 2016-08-24 2019-07-04 Yiming Lin Exercise disc for strengthening the fingers
US11103745B2 (en) * 2016-08-24 2021-08-31 Yiming Lin Exercise disc for strengthening the fingers
US20190118025A1 (en) * 2017-10-19 2019-04-25 Mark A. Krull Hand-Held Exercise Free Weights
US11235191B2 (en) * 2017-10-19 2022-02-01 Mark A. Krull Hand-held exercise free weights

Similar Documents

Publication Publication Date Title
US3594945A (en) Flying toy
US4151674A (en) Flying cylinder
US4560358A (en) Gliding ring
US4246721A (en) Aerial toy
US3852910A (en) Aerial toy
US4104822A (en) Rotating circular airfoil
US5620351A (en) Bubble toy
US2864201A (en) Inflated discus
US3220142A (en) Aerial toy
US3613295A (en) Aerial toy
US3477168A (en) Internal combustion engine powered flying toys
US4850923A (en) Flying toy
GB1127470A (en) An aerodynamic toy
US2690339A (en) Flying disk and catcher
US3673732A (en) Aerial toy
US3216727A (en) Game baton
EP0698406B1 (en) flying toy
US2473574A (en) Rolling toy
IT8323054A1 (en) BOOMERANG
US3525484A (en) Aerodynamic saucer
US5800237A (en) Flying segmented ring
US2919919A (en) Jump rope
US20030092515A1 (en) Open center returning flying polygon
US2354790A (en) Shuttlecock
US3190032A (en) Hula hoop carrying vaned spinning part