US3597652A - Apparatus for maintaining the temperature and operating a calibrated lamp in a constant resistance mode - Google Patents

Apparatus for maintaining the temperature and operating a calibrated lamp in a constant resistance mode Download PDF

Info

Publication number
US3597652A
US3597652A US790984A US3597652DA US3597652A US 3597652 A US3597652 A US 3597652A US 790984 A US790984 A US 790984A US 3597652D A US3597652D A US 3597652DA US 3597652 A US3597652 A US 3597652A
Authority
US
United States
Prior art keywords
filament
voltage
current
lamp
sensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US790984A
Inventor
Percival T Gates Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PerkinElmer Inc
Original Assignee
EG&G Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EG&G Inc filed Critical EG&G Inc
Application granted granted Critical
Publication of US3597652A publication Critical patent/US3597652A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • G05D23/2401Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor using a heating element as a sensing element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • G05D23/2451Details of the regulator
    • G05D23/2456Details of the regulator using selfs or transformers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/044Controlling the light-intensity of the source continuously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • This invention relates to regulating systems and more particularly to a system for maintaining the filament temperature ofa calibrated light source at a predetermined, constant value.
  • the instructions cover the use of the particular filament lamp issued as standards of spectral irradiance for a particular wavelength range.
  • the spectral irradiance from the lamp is based on the spectral radiance of blackbody as defined by Plancks equation and has been determined through comparison ofa group of similar lamps with (I) the NBS standards of spectral radiance, (2) the NBS standards ofluminous intensity, and (3) the NBS standards of total irradiance.
  • THe instructions provided are quite explicit and require that the lamp be mounted in a specific orientation in the supplied holder which is constructed in such a manner as to reflect a negligible amount of radiated flux in the direction of the receiver or spectrometer slit.
  • a black shield must be placed at a distance of about 4 feet to the rear of the lamp to intercept stray radiant flux along the radiometric axis and adequate shielding must be provided to intercept stray flux from other directions.
  • the lamp may be subject to environmental changes which influence such reproducibility. For example. variations in temperature of the atmosphere immediately surrounding the lamp envelope, or unpredictable minor movements of air will tend to produce a measurable and undesirable change in output of the lamp.
  • the electrical power is converted to thermal power causing filament temperature to increase until output power (radiated, convected, and conducted) is equal to input power.
  • the envelope is heated primarily through radiation from the filament.
  • a condition of thermal equilibrium of the envelope is achieved when the power received is balanced by the power transferred to the surroundings, such condition is again manifested by stable temperatures.
  • envelope temperature will decrease, and by the laws of radiation power transfer, more power will flow from filament to envelope.
  • the resulting effect is reduced filament temperature. Since the optical output power is a function of the absolute temperature of the filament, any reduction in filament temperature produces a corresponding reduction of light output representing a departure from the calibrated condition.
  • the electrical resistance of a filament is a well established function of its absolute temperature.
  • a given filament temperature corresponds to a predictable and stable value of filament resistance. Therefore, reproducibility of light output is assured through operation at constant filament temperature which may be achieved by such electrical input adjustment as to maintain filament resistance constant.
  • one object of the present invention to provide means for controlling the power emitted from a resistive impedance element by utilizing the relationship between the resistance of the element and the total emissive power therefrom.
  • Another object of the present invention is to provide a control circuit for controlling a standard, calibrated lamp utilizing the relationship between the total emissive power or lamp brightness and the lamp filament resistance.
  • Still another objectof the present invention is to provide a control system for detecting subtle changes in resistive impedance of a calibrated lamp due to changes in surrounding conditions.
  • Yet another object of the present invention is to provide a control system for a standard calibrated lamp capable of detecting changes in ambient conditions in the vicinity of the lamp by detecting changes in the ratio of voltage-to-current (EU) or resistance of the filament.
  • EU voltage-to-current
  • FIG. Us a plot of current and voltage across the terminals ofan incandescent, light standard
  • FIG. 2 is a block diagram incorporating the features of my invention wherein a constant ratio of voltage to current is maintained in a calibrated lamp system;
  • FIG. 3 is a circuit diagram of one embodiment of a system incorporating the features of the invention for controlling the light from a calibrated light source by maintaining a constant ratio of voltage to current;
  • FIG. 4 is a circuit diagram of another embodiment of a system incorporating the features of the invention for controlling the light from a calibrated light source by maintaining a constant ratio of voltage to current.
  • my device senses the voltage applied to and the current passing through a high temperature resistive impedance, such as calibrated lamp, and treats the ratio of voltage to current sensed (EU) as the parameter most indicative of the element temperature.
  • This parameter in the case of a lamp filament, represents a measure of the brightness of the lamp.
  • FIG. 1 there is shown a plot of current versus voltage wherein curve A may represent the current throughthe filamentover a range of values of filament voltage under a set of constant lamp environmental conditions. It may be noted that as current (or voltage) is increased, filament resistance is increased as is evidenced by the curvature of the characteristic curve. At an opening point x, the filament is operating at a unique value of resistance as shown by dashed line R. This resistance in turn corresponds to a unique and particular filament temperature.
  • the present invention provides circuitry for operating a lamp filament at the intersection of its characteristic 5-! curve and line R of constant resistance.
  • power source 12.1 having leads 12.3 and 12.4 for supplying power to series connected lamp 14.
  • Voltage sensing means 16, connected in parallel with lamp 14, and current sensing means 18, connected in series with lamp 14, each is provided with an output which is applied as an input to regulator 20.1.
  • Regulator 20.1 produces a signal voltage at output lead 20.2 which is representative of the ratio of the voltage to the current (E/I) being used by lamp 14.
  • This correction or error signal voltage is fed to power source 12.1 as a means for varying a parameter of lamp 14.
  • a manual adjustment means 12.2 is provided in power source 12.1 to initially set the operating conditions of the power source while the error signal, appearing on lead 20.2 is the means for making a fine adjustment to maintain the El! ratio or resistance of lamp l4 constant.
  • FIG. 3 there is shown another embodiment employing the principles of my invention which utilizes direct current (DC) means for controlling the parameters of lamp 14 so that it will maintain its proper operating conditions.
  • the components enclosed within dotted line 40 represent a magnetic amplifier wherein first control winding 18, connected in series with lamp 14, represents the current sensing means and second control winding 16.1, together with variable resistor 16.2 is connected in parallel with lamp 14 and represents the voltage sensing means.
  • magnetic amplifier 40 is provided with an excitation means 20.5 having a primary winding connected to terminals 20.6 and 20.7 to which is connected a suitable source of excitation (not shown).
  • Center-tapped secondary 20.8 has one end thereof connected to the series connected load windings 20.2 and 20.3 and has its other end connected to the series load windings 20.1 and 20.4.
  • Each of the load windings 20.1, 20.2, 20.3 and 20.4 is connected to one end of respective diodes 22.1, 22.2, 22.3 and 22.4.
  • the other ends of diodes 22.1 and 22.2 are connected to one end of load resistor 24.1 and the common junction of the diodes and resistor is connected to output terminal 26.1.
  • the other ends of diodes 22.3 and 22.4 are connected to one end ofload resistor 24.2 with the junction common to these latter elements connected to output terminal 26.2.
  • the other ends of resistors 24.1 and 24.2 are connected together and to the center tap of excitation winding 20.8.
  • lamp 14 is provided with the appropriate value ofcurrent and voltage, from source 12.1.
  • Variable resistor 12.2 is provided in supply 12.1 for providing the initial settings ofcurrent and voltage to maintain the proper operating conditions. If, after the initial parameters are set, the ambient conditions change and the lamp is now subjected to a movement of air sufficient to reduce the temperature ofthe lamp envelope, the operating conditions will change. Assume for example, that as originally set up, the lamp is made to operate at a voltage and current that would correspond to point x of curve A (FIG 1). 1f now the ambient conditions change so that the lamp envelope temperature is lowered, the temperature of the filament would also change as the equilibria are upset.
  • the windings may be arranged so that if a positive going signal were to appear at terminals 26.1 with respect to 26.2 it would be indicative of a lamp load condition which indicates that the current passing through lamp 14 is too high. A negative voltage at the terminals would indicate that the current is too low while the amplitude ofthe signal would be proportional to the error.
  • This error signal is then applied to the base of transistor 12.3 to regulate the current and voltage appearing at the output terminals of DC source 12.1 and thereby maintained the present E/I ratio so that lamp characteristic curve B (FIG. 1) will not be operated at point w.
  • transformer 140 indicated within dotted line is provided with winding 118 which represents the current sensing means and winding 116.1 which, together with resistor 116.2, represents the voltage sensing means.
  • Operating potential is derived from autotransformer 136 which may be of the type known commercially as a Variac.
  • a source of AC potential (not shown) is applied to terminals 138.1 and 138.2 so that the AC potential appearing thereacross may be picked, at any suitable value, by moveable arm 134.
  • This potential is then applied through current sensing winding 118 which is in series with lamp load 114.
  • Transformer 140 is further provided with a center tapped sensing winding 120 for detecting changes in the sensed current and voltage used by lamp 114. When slight changes in the operating parameters occur, the change will be marked by the appearance of an AC error voltage in winding 120. The amplitude is proportional to the degree of unbalance.
  • the voltage will be in phase or 180 out of phase with the line according to the sense of the unbalance.
  • the resulting error signal is then applied to a phase sensitive detector 122.1, the output of which is a DC signal which may have, for example, a positive value when conditions indicate a high current through lamp 114 and the negative value for low current through lamp 114.
  • the amplitude of the signal from detector 122.1 will be proportional to the error.
  • This output error signal is then applied as an input to a drive on amplifier means 128 which, in turn, provides a signal at its output, suitable to operate servo or motor means 130.
  • the shaft of servo means 130 is coupled to the moveable arm 134 of autotransformer 136.
  • Apparatus for maintaining the temperature of a lamp filament constant comprising:
  • a source of potential connected to the filament for providing operating parameters ofa given ratio thereto;
  • each sensing means detecting an operating parameter of the filament, and each deriving respective signal voltages therefrom representative of the sensed parameter
  • the potential connected to the lamp filament is direct current
  • the operating parameters are filament voltage and filament current.
  • the means sensing the voltage operating parameter and the means sensing the current operating parameter are a pair of magnetic amplifier control windings
  • output windings coupled to the control windings for generating a signal voltage representative of changes in the ratio of the sensed voltage and sensed current of the lamp filament.
  • a series passing stage in series with the power supply output for detecting the changes in the ratio of sensed voltage to sensed current.
  • the potential connected to the lamp filament is alternating current; and v the operating parameters are filament voltage and filament current.
  • the means sensing the voltage operating parameter and the means sensing the current operating parameter are a pair of electromagnetically coupled transformer windings
  • an output winding coupled to the pair of windings for generating a signal voltage representative of the ratio of the sensed voltage to the sensed current of the lamp filament.
  • variable output autotransformer the input of which is connected to the source of alternating current the output of which is connected to one pair of windings;
  • phase detector a source of reference phase voltage connected to the phase detector
  • phase detector combining the signal voltage and the reference phase voltage to derive an error signal responsive to the change in the ratio of sensed parameters

Abstract

The resistance of an incandescent lamp filament, subject to ambient variations, is determined by sensing the current and voltage of the lamp filament. Since the resistance is a known function of the temperature of the filament, changes in the temperature of the filament are sensed to provide an output correction signal to a power supply which adjusts the input parameters of the lamp to maintain filament temperature constant.

Description

United States Patent Percival T. Gates, Jr. Weston, Mass. 790,984
Jan. 14, 1969 Aug. 3, I971 EGltG, Inc. BedIord, Mass.
Inventor Appl: No. Filed Patented Assignee APPARATUS FOR MAINTAINING THE TEMPERATURE AND OPERATING A CALIBRATED LAMP IN A CONSTANT [56] References Cited UNITED STATES PATENTS 2,054,496 9/1936 Craig 315/291 X 3,202,870 8/1965 Carlon.... 315/116 3,263,125 7/1966 Genuit 315/291 X 3,354,384 11/1967 Benjamin 315/311 X 3,474,343 10/1969 Smith 328/8 3,482,145 12/1969 Powell... 315/287 X 3,486,069 12/1969 Mahier 315/291 X Primary Examiner-John W. Huckert Assistant ExnminerAndrew .1. James Attorneys-Ralph L. Cadwallader and Lawrence P. Benjamin ABSTRACT: The resistance of an incandescent lamp filament, subject to ambient variations, is determined by sensing the current and voltage of the lamp filament. Since the resistance is a known function of the temperature of the filament, changes in the temperature of the filament are sensed to provide an output correction signal to a power supply which adjusts the input parameters of the lamp to maintain filament 328/8 temperature constant,
r-1Z.1 @4 1 POWER SOURCE VOLTAGE SENSE 12.2
CURRENT SENSE 18/ I REGULATE PATENTED AUG 31911 597 65 sum 1 OF 2 [--12.1 /12 3 14 POWER SOURCE VOLTAGE SENSE 122 CURRENT SENSE 18 L REGULATE Fig. 2.
REFERENCE 122.2
SENSITIVE -122.1 DR'VE DETECTOR /A\\132 |40\E AL AM l 134 i J PE RCIVAL T GATES, Jr
PATENIEDIIUG 3I97l 3597552 SHEET 2 OF 2 H F v 4 :26]
I 2 20.5 k 241/? i TO D.C.
SOURCE APPARATUS F OR MAINTAINING THE TEMPERATURE AND OPERATING A CALIBRATED LAMP IN A CONSTANT RESISTANCE MODE BACKGROUND OF THE INVENTION This invention relates to regulating systems and more particularly to a system for maintaining the filament temperature ofa calibrated light source at a predetermined, constant value.
When standard incandescent lamps are calibrated by the National Bureau of Standards the Bureau provides the user of the lamps with a sheet of instructions and procedures detailing the conditions under which the lamp is to be operated, and typically may include a tabulation of the calibrated light output for various filament currents. In some instances values of spectral irradiance are tabulated as a function of wavelength at a distance of 50 centimeters, as measured from the center of the lamp to the receiver for a lamp current of 8.30 amperes.
The instructions cover the use of the particular filament lamp issued as standards of spectral irradiance for a particular wavelength range. The spectral irradiance from the lamp is based on the spectral radiance of blackbody as defined by Plancks equation and has been determined through comparison ofa group of similar lamps with (I) the NBS standards of spectral radiance, (2) the NBS standards ofluminous intensity, and (3) the NBS standards of total irradiance.
THe instructions provided are quite explicit and require that the lamp be mounted in a specific orientation in the supplied holder which is constructed in such a manner as to reflect a negligible amount of radiated flux in the direction of the receiver or spectrometer slit. A black shield must be placed at a distance of about 4 feet to the rear of the lamp to intercept stray radiant flux along the radiometric axis and adequate shielding must be provided to intercept stray flux from other directions. These procedures are intended to improve subsequent user reproducibility of calibrated output.
However, the lamp may be subject to environmental changes which influence such reproducibility. For example. variations in temperature of the atmosphere immediately surrounding the lamp envelope, or unpredictable minor movements of air will tend to produce a measurable and undesirable change in output of the lamp.
It is well known that when a lamp is being operated, a condition of overall thermal equilibrium is established. Both the filament and the envelope achieve such conditions wherein power input is equal to power output and the equilibrium is manifested in stable temperatures at .any point of both elements.
In the filament, the electrical power is converted to thermal power causing filament temperature to increase until output power (radiated, convected, and conducted) is equal to input power. The envelope is heated primarily through radiation from the filament.
A condition of thermal equilibrium of the envelope is achieved when the power received is balanced by the power transferred to the surroundings, such condition is again manifested by stable temperatures.
If now more convective power is transferred to the surroundings by the envelope (for example, by moving air or reduced ambient temperature), envelope temperature will decrease, and by the laws of radiation power transfer, more power will flow from filament to envelope. Under conditions of constant filament voltage or constant filament current, the resulting effect is reduced filament temperature. Since the optical output power is a function of the absolute temperature of the filament, any reduction in filament temperature produces a corresponding reduction of light output representing a departure from the calibrated condition.
It can be proven that a blackbody operating at 3000" K. must have its temperature maintained to an accuracy of i% K. to maintain the spectral irradiance to :0.1 percent at 400 nanometers. This corresponds to about 10.01 percent of the resistance of a tungsten filament. It will therefore be obvious that to maintain a constant and repeatable light output, that I the filament temperature must be held constant.
The electrical resistance of a filament is a well established function of its absolute temperature. Thus, a given filament temperature corresponds to a predictable and stable value of filament resistance. Therefore, reproducibility of light output is assured through operation at constant filament temperature which may be achieved by such electrical input adjustment as to maintain filament resistance constant.
It is well known that the resistance of a device is described by Ohms law, namely: R=E/I and that the resistance R is equal to the ratio of voltage-to-current used by the device. Therefore, one may determine filament resistance (R) through sensing filament voltage (E) and current (I).
It is, therefore, one object of the present invention to provide means for controlling the power emitted from a resistive impedance element by utilizing the relationship between the resistance of the element and the total emissive power therefrom.
Another object of the present invention is to provide a control circuit for controlling a standard, calibrated lamp utilizing the relationship between the total emissive power or lamp brightness and the lamp filament resistance.
Still another objectof the present invention is to provide a control system for detecting subtle changes in resistive impedance of a calibrated lamp due to changes in surrounding conditions.
Yet another object of the present invention is to provide a control system for a standard calibrated lamp capable of detecting changes in ambient conditions in the vicinity of the lamp by detecting changes in the ratio of voltage-to-current (EU) or resistance of the filament.
The features of my invention which I believe to be novel are set forthwith particularlity in the appended claims. My invention itself, however, both as to its organization and method of operation, together with further objects and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawing.
DESCRIPTION OF THE DRAWINGS FIG. Us a plot of current and voltage across the terminals ofan incandescent, light standard;
FIG. 2 is a block diagram incorporating the features of my invention wherein a constant ratio of voltage to current is maintained in a calibrated lamp system;
FIG. 3 is a circuit diagram of one embodiment of a system incorporating the features of the invention for controlling the light from a calibrated light source by maintaining a constant ratio of voltage to current; and
FIG. 4 is a circuit diagram of another embodiment of a system incorporating the features of the invention for controlling the light from a calibrated light source by maintaining a constant ratio of voltage to current.
SUMMARY OF THE INVENTION As will be hereinafter shown, my device senses the voltage applied to and the current passing through a high temperature resistive impedance, such as calibrated lamp, and treats the ratio of voltage to current sensed (EU) as the parameter most indicative of the element temperature. This parameter, in the case ofa lamp filament, represents a measure of the brightness of the lamp. By maintaining this ratio of El] constant, in spite of variations in the-lamp environment, I am able to achieve a constancy oflight output far exceeding that resulting from the recommended method involving constant filament current.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now. to FIG. 1, there is shown a plot of current versus voltage wherein curve A may represent the current throughthe filamentover a range of values of filament voltage under a set of constant lamp environmental conditions. It may be noted that as current (or voltage) is increased, filament resistance is increased as is evidenced by the curvature of the characteristic curve. At an opening point x, the filament is operating at a unique value of resistance as shown by dashed line R. This resistance in turn corresponds to a unique and particular filament temperature. The present invention provides circuitry for operating a lamp filament at the intersection of its characteristic 5-! curve and line R of constant resistance.
Referring now to H6. 2, there is shown, in block diagram form, power source 12.1 having leads 12.3 and 12.4 for supplying power to series connected lamp 14. Voltage sensing means 16, connected in parallel with lamp 14, and current sensing means 18, connected in series with lamp 14, each is provided with an output which is applied as an input to regulator 20.1. Regulator 20.1 produces a signal voltage at output lead 20.2 which is representative of the ratio of the voltage to the current (E/I) being used by lamp 14. This correction or error signal voltage is fed to power source 12.1 as a means for varying a parameter of lamp 14. A manual adjustment means 12.2 is provided in power source 12.1 to initially set the operating conditions of the power source while the error signal, appearing on lead 20.2 is the means for making a fine adjustment to maintain the El! ratio or resistance of lamp l4 constant.
Referring now to FIG. 3 there is shown another embodiment employing the principles of my invention which utilizes direct current (DC) means for controlling the parameters of lamp 14 so that it will maintain its proper operating conditions. The components enclosed within dotted line 40 represent a magnetic amplifier wherein first control winding 18, connected in series with lamp 14, represents the current sensing means and second control winding 16.1, together with variable resistor 16.2 is connected in parallel with lamp 14 and represents the voltage sensing means. As is well known in the art, magnetic amplifier 40 is provided with an excitation means 20.5 having a primary winding connected to terminals 20.6 and 20.7 to which is connected a suitable source of excitation (not shown). Center-tapped secondary 20.8 has one end thereof connected to the series connected load windings 20.2 and 20.3 and has its other end connected to the series load windings 20.1 and 20.4. Each of the load windings 20.1, 20.2, 20.3 and 20.4 is connected to one end of respective diodes 22.1, 22.2, 22.3 and 22.4. The other ends of diodes 22.1 and 22.2 are connected to one end of load resistor 24.1 and the common junction of the diodes and resistor is connected to output terminal 26.1. Similarly, the other ends of diodes 22.3 and 22.4 are connected to one end ofload resistor 24.2 with the junction common to these latter elements connected to output terminal 26.2. To complete the circuit, the other ends of resistors 24.1 and 24.2 are connected together and to the center tap of excitation winding 20.8.
In the operation of my device in this mode it will be seen that lamp 14 is provided with the appropriate value ofcurrent and voltage, from source 12.1. Variable resistor 12.2 is provided in supply 12.1 for providing the initial settings ofcurrent and voltage to maintain the proper operating conditions. If, after the initial parameters are set, the ambient conditions change and the lamp is now subjected to a movement of air sufficient to reduce the temperature ofthe lamp envelope, the operating conditions will change. Assume for example, that as originally set up, the lamp is made to operate at a voltage and current that would correspond to point x of curve A (FIG 1). 1f now the ambient conditions change so that the lamp envelope temperature is lowered, the temperature of the filament would also change as the equilibria are upset. lf now source 12.1 were a constant current source, it would be obvious that for the current to be maintained constant the operating point would be shifted along line y to curve B so that operation would be at point 1 corresponding to a different filament resistance and hence filament temperature. This would substantially alter the light output of lamp 14, as there is a lower voltage appearing across the filament of the lamp and indicating a change in filament resistance. However, the turns ratio of control windings 16.1 and 18 together with resistance 16.2 were appropriately selected so that any changes in sensed voltage to current ratio were manifested by the appearance of an error signal at the output terminals 26.1 and 26.2. One may then use the error signal to maintain a constant ratio of E/! or resistance. The windings may be arranged so that if a positive going signal were to appear at terminals 26.1 with respect to 26.2 it would be indicative ofa lamp load condition which indicates that the current passing through lamp 14 is too high. A negative voltage at the terminals would indicate that the current is too low while the amplitude ofthe signal would be proportional to the error. This error signal is then applied to the base of transistor 12.3 to regulate the current and voltage appearing at the output terminals of DC source 12.1 and thereby maintained the present E/I ratio so that lamp characteristic curve B (FIG. 1) will not be operated at point w.
It is known in the art that a magnetic amplifier of this type produces an output voltage proportional to the algebraic addition of the ampere-turns of the central windings. In the system configuration of FIG. 3, feedback control action tends to reduce the net ampere turns of control windings 16.1 and 18 toward zero. A null at output terminals 26.1 and 26.2 corresponds to a constant ratio of the Eto l oflamp 14.
Referring now to FIG. 4, there is shown another embodiment employing the principle of my invention and which operates the lamp in an alternating current (AC) mode. In this embodiment transformer 140, indicated within dotted line is provided with winding 118 which represents the current sensing means and winding 116.1 which, together with resistor 116.2, represents the voltage sensing means.
Operating potential is derived from autotransformer 136 which may be of the type known commercially as a Variac. A source of AC potential (not shown) is applied to terminals 138.1 and 138.2 so that the AC potential appearing thereacross may be picked, at any suitable value, by moveable arm 134. This potential is then applied through current sensing winding 118 which is in series with lamp load 114. Transformer 140 is further provided with a center tapped sensing winding 120 for detecting changes in the sensed current and voltage used by lamp 114. When slight changes in the operating parameters occur, the change will be marked by the appearance of an AC error voltage in winding 120. The amplitude is proportional to the degree of unbalance. The voltage will be in phase or 180 out of phase with the line according to the sense of the unbalance. The resulting error signal is then applied to a phase sensitive detector 122.1, the output of which is a DC signal which may have, for example, a positive value when conditions indicate a high current through lamp 114 and the negative value for low current through lamp 114. As in the previous embodiment, the amplitude of the signal from detector 122.1 will be proportional to the error. This output error signal is then applied as an input to a drive on amplifier means 128 which, in turn, provides a signal at its output, suitable to operate servo or motor means 130. The shaft of servo means 130 is coupled to the moveable arm 134 of autotransformer 136. as indicated by dotted lines 132, so that rotation of the shaft of servo means 130 will, with the appearance ofan error signal at the output ofdetector 122.1, appropriately vary the input parameters to lamp 114 and thereby reduce the error signal to zero and hence maintain the required constant E/l ratio.
While there has been described what is presently considered the preferred embodiment of my invention, it would now be obvious to all those skilled in the art that various other changes and modifications may be made therein without departing from the inventive concept contained herein and it is, therefore, aimed to cover all such changes and modifications as fall within the true spirit and scope ofmy invention.
What 1 claim is:
1. Apparatus for maintaining the temperature of a lamp filament constant, comprising:
a source of potential connected to the filament for providing operating parameters ofa given ratio thereto;
a plurality of sensing means connected in series and in parallel with the filament;
each sensing means detecting an operating parameter of the filament, and each deriving respective signal voltages therefrom representative of the sensed parameter;
means connecting the respective signal voltages to detecting means for sensing and for deriving an error signal in response to changes in the ratio of sensed parameters; and
means connecting the error signal to the source of potential to vary theoperating parameters and maintain the ratio constant.
2. The apparatus of claim 1, wherein:
the potential connected to the lamp filament is direct current; and
the operating parameters are filament voltage and filament current.
3. The apparatus of claim 2, wherein;
the means sensing the voltage operating parameter and the means sensing the current operating parameter are a pair of magnetic amplifier control windings; and
output windings coupled to the control windings for generating a signal voltage representative of changes in the ratio of the sensed voltage and sensed current of the lamp filament.
4. The apparatus of claim 3, further comprising:
a constant current power supply providing the voltage and current parameters; and
a series passing stage in series with the power supply output for detecting the changes in the ratio of sensed voltage to sensed current.
5. The apparatus of claim 1, wherein:
the potential connected to the lamp filament is alternating current; and v the operating parameters are filament voltage and filament current.
6. The apparatus of claim 5, wherein:
the means sensing the voltage operating parameter and the means sensing the current operating parameter are a pair of electromagnetically coupled transformer windings; and
an output winding coupled to the pair of windings for generating a signal voltage representative of the ratio of the sensed voltage to the sensed current of the lamp filament.
7. The apparatus ofclaim 6, further comprising:
a variable output autotransformer, the input of which is connected to the source of alternating current the output of which is connected to one pair of windings; and
drive means connected to the output of the autotransformer for varying the operating parameters to the transformer.
8. Tile apparatus of claim 7, further comprising:
a phase sensitive detector connected to the output winding:
a source of reference phase voltage connected to the phase detector;
the phase detector combining the signal voltage and the reference phase voltage to derive an error signal responsive to the change in the ratio of sensed parameters; and
means connecting the output of the phase sensitive detector to the drive means to vary the operating parameters of the lamp filament.

Claims (8)

1. Apparatus for maintaining the temperature of a lamp filament constant, comprising: a source of potential connected to the filament for providing operating parameters of a given ratio thereto; a plurality of sensing means connected in series and in parallel with the filament; each sensing means detecting an operating parameter of the filament, and each deriving respective signal voltages therefrom representative of the sensed parameter; means connecting the respective signal voltages to detecting means for sensing and for deriving an error signal in response to changes in the ratio of sensed parameters; and means connecting the error signal to the source of potential to vary the operating parameters and maintain the ratio constant.
2. The apparatus of claim 1, wherein: the potential connected to the lamp filament is direct current; and the operating parameters are filament voltage and filament current.
3. The apparatus of claim 2, wherein; the means sensing the voltage operating parameter and the means sensing the current operating parameter are a pair of magnetic amplifier control windings; and output windings coupled to the control windings for generating a signal voltage representative of changes in the ratio of the sensed voltage and sensed current of the lamp filament.
4. The apparatus of claim 3, further comprising: a constant current power supply providing the voltage and current parameters; and a series passing stage in series with the power supply output for detecting the changes in the ratio of sensed voltage to sensed current.
5. The apparatus of claim 1, wherein: the potential connected to the lamp filament is alternating current; and the operating parameters are filament voltage and filament current.
6. The apparatus of claim 5, wherein: the means sensing the voltage operating parameter and the means sensing the current operating parameter are a pair of electromagnetically coupled transformer windings; and an output winding coupled to the pair of windings for generating a signal voltage representative of the ratio of the sensed voltage to the sensed current of the lamp filament.
7. The apparatus of claim 6, further comprising: A variable output autotransformer, the input of which is connected to the source of alternating current the output of which is connected to one pair of windings; and drive means connected to the output of the autotransformer for varying the operating parameters to the transformer.
8. THe apparatus of claim 7, further comprising: a phase sensitive detector connected to the output winding: a source of reference phase voltage connected to the phase detector; the phase detector combining the signal voltage and the reference phase voltage to derive an error signal responsive to the change in the ratio of sensed parameters; and means connecting the output of the phase sensitive detector to the drive means to vary the operating parameters of the lamp filament.
US790984A 1969-01-14 1969-01-14 Apparatus for maintaining the temperature and operating a calibrated lamp in a constant resistance mode Expired - Lifetime US3597652A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79098469A 1969-01-14 1969-01-14

Publications (1)

Publication Number Publication Date
US3597652A true US3597652A (en) 1971-08-03

Family

ID=25152320

Family Applications (1)

Application Number Title Priority Date Filing Date
US790984A Expired - Lifetime US3597652A (en) 1969-01-14 1969-01-14 Apparatus for maintaining the temperature and operating a calibrated lamp in a constant resistance mode

Country Status (1)

Country Link
US (1) US3597652A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2362553A1 (en) * 1976-08-18 1978-03-17 Royal Industries Lamp supply current from battery - has switch connecting lamp in pulses with ON-OFF ratio depending on feedback signal (NL 21.2.78)
US4274034A (en) * 1979-10-15 1981-06-16 C&D Enterprises Glow plug driver
EP0050306A2 (en) * 1980-10-21 1982-04-28 Asea Ab Fibre-optics measuring instrument
EP0018502B1 (en) * 1979-03-28 1984-07-11 Holger Dr. Lueder Process and installation for the homogeneous-radiation air conditioning of a space, closed on all sides, especially of a tepidarium
US4464564A (en) * 1982-10-27 1984-08-07 Conoco Inc. Current controller for heating stage on leitz microscope
US4516056A (en) * 1982-05-18 1985-05-07 General Electric Company Capacitively ballasted low voltage incandescent lamp
US4525651A (en) * 1982-05-18 1985-06-25 General Electric Company Capacitively ballasted low voltage incandescent lamp
US4893063A (en) * 1987-10-06 1990-01-09 Joseph Pernyeszi Apparatus for improving the efficiency of a lighting element
WO1996017282A1 (en) * 1994-12-02 1996-06-06 Motorola Lighting, Inc. Ballast circuit for powering gas discharge lamp
US20040199227A1 (en) * 2001-11-29 2004-10-07 Altshuler Gregory B. Biostimulation of the oral cavity
US7097656B1 (en) * 1999-03-18 2006-08-29 Ls Private Joint-Stock Company Device for the therapeutic and cosmetic photo-processing of biological tissue and method for using the same
US20060214594A1 (en) * 2005-03-23 2006-09-28 Patent-Treuhand-Gesellschaft Fur Elektrisch Gluhlampen Mbh Circuit arrangement and method for operating at least one lamp
US20070038206A1 (en) * 2004-12-09 2007-02-15 Palomar Medical Technologies, Inc. Photocosmetic device
US7276058B2 (en) 2002-06-19 2007-10-02 Palomar Medical Technologies, Inc. Method and apparatus for treatment of cutaneous and subcutaneous conditions
US7531967B2 (en) 2001-03-01 2009-05-12 Palomar Medical Technologies, Inc. Flashlamp drive circuit
US20090137995A1 (en) * 1996-12-02 2009-05-28 Palomar Medical Technologies, Inc. System For Electromagnetic Radiation Dermatology And Head For Use Therewith
US7540869B2 (en) 2001-12-27 2009-06-02 Palomar Medical Technologies, Inc. Method and apparatus for improved vascular related treatment
US20090248004A1 (en) * 2008-02-28 2009-10-01 Palomar Medical Technologies, Inc. Systems and methods for treatment of soft tissue
US20090254076A1 (en) * 2008-03-17 2009-10-08 Palomar Medical Corporation Method and apparatus for fractional deformation and treatment of tissue
US20100145321A1 (en) * 2000-12-28 2010-06-10 Palomar Medical Technologies, Inc. Methods and products for producing lattices of emr-treated islets in tissues, and uses therefor
US7758621B2 (en) 1997-05-15 2010-07-20 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic EMR treatment on the skin
US7763016B2 (en) 1997-05-15 2010-07-27 Palomar Medical Technologies, Inc. Light energy delivery head
US20100286673A1 (en) * 2008-03-17 2010-11-11 Palomar Medical Technologies, Inc. Method and apparatus for treatment of tissue
US20100298744A1 (en) * 2009-04-30 2010-11-25 Palomar Medical Technologies, Inc. System and method of treating tissue with ultrasound energy
US20110046523A1 (en) * 2009-07-23 2011-02-24 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US7942916B2 (en) 2002-05-23 2011-05-17 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US8268332B2 (en) 2004-04-01 2012-09-18 The General Hospital Corporation Method for dermatological treatment using chromophores
US8346347B2 (en) 2005-09-15 2013-01-01 Palomar Medical Technologies, Inc. Skin optical characterization device
US9028536B2 (en) 2006-08-02 2015-05-12 Cynosure, Inc. Picosecond laser apparatus and methods for its operation and use
US9780518B2 (en) 2012-04-18 2017-10-03 Cynosure, Inc. Picosecond laser apparatus and methods for treating target tissues with same
US10245107B2 (en) 2013-03-15 2019-04-02 Cynosure, Inc. Picosecond optical radiation systems and methods of use
US10434324B2 (en) 2005-04-22 2019-10-08 Cynosure, Llc Methods and systems for laser treatment using non-uniform output beam
US11418000B2 (en) 2018-02-26 2022-08-16 Cynosure, Llc Q-switched cavity dumped sub-nanosecond laser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2054496A (en) * 1935-01-03 1936-09-15 Invex Corp Power control circuits
US3202870A (en) * 1962-02-09 1965-08-24 Hugh R Carlon Automatic glower supply
US3263125A (en) * 1963-05-01 1966-07-26 Gen Electric Current limiting circuits and apparatus for operating electric discharge devices and other loads
US3354384A (en) * 1964-07-30 1967-11-21 Christie Electric Corp Power supply impedance control with positive slope
US3474343A (en) * 1966-12-12 1969-10-21 Litton Precision Prod Inc Current monitoring power regulator for microwave oven
US3482145A (en) * 1962-07-23 1969-12-02 Gen Electric Apparatus for operating electric discharge devices
US3486069A (en) * 1967-12-15 1969-12-23 Holophane Co Inc Semiconductor ballast circuit for gas discharge lamps

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2054496A (en) * 1935-01-03 1936-09-15 Invex Corp Power control circuits
US3202870A (en) * 1962-02-09 1965-08-24 Hugh R Carlon Automatic glower supply
US3482145A (en) * 1962-07-23 1969-12-02 Gen Electric Apparatus for operating electric discharge devices
US3263125A (en) * 1963-05-01 1966-07-26 Gen Electric Current limiting circuits and apparatus for operating electric discharge devices and other loads
US3354384A (en) * 1964-07-30 1967-11-21 Christie Electric Corp Power supply impedance control with positive slope
US3474343A (en) * 1966-12-12 1969-10-21 Litton Precision Prod Inc Current monitoring power regulator for microwave oven
US3486069A (en) * 1967-12-15 1969-12-23 Holophane Co Inc Semiconductor ballast circuit for gas discharge lamps

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2362553A1 (en) * 1976-08-18 1978-03-17 Royal Industries Lamp supply current from battery - has switch connecting lamp in pulses with ON-OFF ratio depending on feedback signal (NL 21.2.78)
EP0018502B1 (en) * 1979-03-28 1984-07-11 Holger Dr. Lueder Process and installation for the homogeneous-radiation air conditioning of a space, closed on all sides, especially of a tepidarium
US4274034A (en) * 1979-10-15 1981-06-16 C&D Enterprises Glow plug driver
EP0050306A2 (en) * 1980-10-21 1982-04-28 Asea Ab Fibre-optics measuring instrument
EP0050306A3 (en) * 1980-10-21 1983-12-14 Asea Ab Fibre-optics measuring instrument
US4516056A (en) * 1982-05-18 1985-05-07 General Electric Company Capacitively ballasted low voltage incandescent lamp
US4525651A (en) * 1982-05-18 1985-06-25 General Electric Company Capacitively ballasted low voltage incandescent lamp
US4464564A (en) * 1982-10-27 1984-08-07 Conoco Inc. Current controller for heating stage on leitz microscope
US4893063A (en) * 1987-10-06 1990-01-09 Joseph Pernyeszi Apparatus for improving the efficiency of a lighting element
US5528111A (en) * 1994-12-02 1996-06-18 Motorola, Inc. Ballast circuit for powering gas discharge lamp
WO1996017282A1 (en) * 1994-12-02 1996-06-06 Motorola Lighting, Inc. Ballast circuit for powering gas discharge lamp
US8328794B2 (en) 1996-12-02 2012-12-11 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US20090137995A1 (en) * 1996-12-02 2009-05-28 Palomar Medical Technologies, Inc. System For Electromagnetic Radiation Dermatology And Head For Use Therewith
US8002768B1 (en) 1997-05-15 2011-08-23 Palomar Medical Technologies, Inc. Light energy delivery head
US7935107B2 (en) 1997-05-15 2011-05-03 Palomar Medical Technologies, Inc. Heads for dermatology treatment
US8328796B2 (en) 1997-05-15 2012-12-11 Palomar Medical Technologies, Inc. Light energy delivery head
US7763016B2 (en) 1997-05-15 2010-07-27 Palomar Medical Technologies, Inc. Light energy delivery head
US7758621B2 (en) 1997-05-15 2010-07-20 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic EMR treatment on the skin
US8109924B2 (en) 1997-05-15 2012-02-07 Palomar Medical Technologies, Inc. Heads for dermatology treatment
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US7097656B1 (en) * 1999-03-18 2006-08-29 Ls Private Joint-Stock Company Device for the therapeutic and cosmetic photo-processing of biological tissue and method for using the same
US20100145321A1 (en) * 2000-12-28 2010-06-10 Palomar Medical Technologies, Inc. Methods and products for producing lattices of emr-treated islets in tissues, and uses therefor
US7531967B2 (en) 2001-03-01 2009-05-12 Palomar Medical Technologies, Inc. Flashlamp drive circuit
US20040199227A1 (en) * 2001-11-29 2004-10-07 Altshuler Gregory B. Biostimulation of the oral cavity
US20090149844A1 (en) * 2001-12-27 2009-06-11 Palomar Medical Technologies, Inc. Method And Apparatus For Improved Vascular Related Treatment
US7540869B2 (en) 2001-12-27 2009-06-02 Palomar Medical Technologies, Inc. Method and apparatus for improved vascular related treatment
US7942916B2 (en) 2002-05-23 2011-05-17 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US7942915B2 (en) 2002-05-23 2011-05-17 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants
US20110184334A1 (en) * 2002-05-23 2011-07-28 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US10500413B2 (en) 2002-06-19 2019-12-10 Palomar Medical Technologies, Llc Method and apparatus for treatment of cutaneous and subcutaneous conditions
US7276058B2 (en) 2002-06-19 2007-10-02 Palomar Medical Technologies, Inc. Method and apparatus for treatment of cutaneous and subcutaneous conditions
US10556123B2 (en) 2002-06-19 2020-02-11 Palomar Medical Technologies, Llc Method and apparatus for treatment of cutaneous and subcutaneous conditions
US8915948B2 (en) 2002-06-19 2014-12-23 Palomar Medical Technologies, Llc Method and apparatus for photothermal treatment of tissue at depth
US8268332B2 (en) 2004-04-01 2012-09-18 The General Hospital Corporation Method for dermatological treatment using chromophores
US9452013B2 (en) 2004-04-01 2016-09-27 The General Hospital Corporation Apparatus for dermatological treatment using chromophores
US20070038206A1 (en) * 2004-12-09 2007-02-15 Palomar Medical Technologies, Inc. Photocosmetic device
US7432662B2 (en) * 2005-03-23 2008-10-07 Patent -Treuhand-Gesellschaft Fur Elektrisch Gluhlampen Mbh Circuit arrangement and method for operating at least one lamp
US20060214594A1 (en) * 2005-03-23 2006-09-28 Patent-Treuhand-Gesellschaft Fur Elektrisch Gluhlampen Mbh Circuit arrangement and method for operating at least one lamp
US10434324B2 (en) 2005-04-22 2019-10-08 Cynosure, Llc Methods and systems for laser treatment using non-uniform output beam
US8346347B2 (en) 2005-09-15 2013-01-01 Palomar Medical Technologies, Inc. Skin optical characterization device
US20070239142A1 (en) * 2006-03-10 2007-10-11 Palomar Medical Technologies, Inc. Photocosmetic device
US10849687B2 (en) 2006-08-02 2020-12-01 Cynosure, Llc Picosecond laser apparatus and methods for its operation and use
US10966785B2 (en) 2006-08-02 2021-04-06 Cynosure, Llc Picosecond laser apparatus and methods for its operation and use
US11712299B2 (en) 2006-08-02 2023-08-01 Cynosure, LLC. Picosecond laser apparatus and methods for its operation and use
US9028536B2 (en) 2006-08-02 2015-05-12 Cynosure, Inc. Picosecond laser apparatus and methods for its operation and use
US20090248004A1 (en) * 2008-02-28 2009-10-01 Palomar Medical Technologies, Inc. Systems and methods for treatment of soft tissue
US20090254076A1 (en) * 2008-03-17 2009-10-08 Palomar Medical Corporation Method and apparatus for fractional deformation and treatment of tissue
US20100286673A1 (en) * 2008-03-17 2010-11-11 Palomar Medical Technologies, Inc. Method and apparatus for treatment of tissue
US20100298744A1 (en) * 2009-04-30 2010-11-25 Palomar Medical Technologies, Inc. System and method of treating tissue with ultrasound energy
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US20110046523A1 (en) * 2009-07-23 2011-02-24 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US10305244B2 (en) * 2012-04-18 2019-05-28 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US11095087B2 (en) 2012-04-18 2021-08-17 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US10581217B2 (en) 2012-04-18 2020-03-03 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US11664637B2 (en) 2012-04-18 2023-05-30 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US9780518B2 (en) 2012-04-18 2017-10-03 Cynosure, Inc. Picosecond laser apparatus and methods for treating target tissues with same
US10285757B2 (en) 2013-03-15 2019-05-14 Cynosure, Llc Picosecond optical radiation systems and methods of use
US11446086B2 (en) 2013-03-15 2022-09-20 Cynosure, Llc Picosecond optical radiation systems and methods of use
US10765478B2 (en) 2013-03-15 2020-09-08 Cynosurce, Llc Picosecond optical radiation systems and methods of use
US10245107B2 (en) 2013-03-15 2019-04-02 Cynosure, Inc. Picosecond optical radiation systems and methods of use
US11418000B2 (en) 2018-02-26 2022-08-16 Cynosure, Llc Q-switched cavity dumped sub-nanosecond laser
US11791603B2 (en) 2018-02-26 2023-10-17 Cynosure, LLC. Q-switched cavity dumped sub-nanosecond laser

Similar Documents

Publication Publication Date Title
US3597652A (en) Apparatus for maintaining the temperature and operating a calibrated lamp in a constant resistance mode
US1970103A (en) Control system
US20080061045A1 (en) Systems And Methods For Providing Paralleling Power Sources For Arc Cutting And Welding
JPS59181492A (en) Monitor for optimizing light output of fluorescent lamp and control mechanism as well as method
US2420058A (en) Compensated photoelectric photometer circuits
US3790288A (en) Photometer including variable amplification and dark current compensation
US3530378A (en) Lamp indicator for the balance of a wheatstone bridge
US3399348A (en) R. m. s. metering system
US1986112A (en) Electric controlling apparatus
US2297836A (en) Automatic temperature regulation
US3912967A (en) Heater temperature-regulating circuit for sensor of halogen leak detector
US2219775A (en) Measuring apparatus
US3879138A (en) Electrical light-measuring systems
US3148278A (en) Temperature compensated gauging apparatus
US2032455A (en) Voltage regulating system
US3476944A (en) Electronic photometer with photoelectric element controlled diode circuits
US3552645A (en) Control system for web heat treating apparatus
JP2004030927A (en) Filament lamp light amount control method and device and filament lamp light source device
US2876361A (en) Radiation source and means for starting
US2765703A (en) Illumination meter
US3523238A (en) Current sensing device
JP3425627B2 (en) Standard light source and its control method
US3522464A (en) Standard light source
US1990782A (en) Electrical measuring system
US2656511A (en) Power measuring device