US3598108A - Biopsy technique and biopsy device - Google Patents

Biopsy technique and biopsy device Download PDF

Info

Publication number
US3598108A
US3598108A US803193*A US3598108DA US3598108A US 3598108 A US3598108 A US 3598108A US 3598108D A US3598108D A US 3598108DA US 3598108 A US3598108 A US 3598108A
Authority
US
United States
Prior art keywords
needle
tissue
biopsy
distal end
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US803193*A
Inventor
Khosrow Jamshidi
William R Swaim
Harold E Windschitl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3598108A publication Critical patent/US3598108A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B2017/12004Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for haemostasis, for prevention of bleeding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00041Heating, e.g. defrosting

Definitions

  • a biopsy needle device and method of using the same includes an elongate needle having a tapered distal end portion which terminates in a distal cutting edge.
  • An elongate sleeve member is inserted into the needle and corresponds in shape and length to the needle.
  • An elongate stylet is positioned interiorly of the telescopically disposed needle and sleeve member and projects from the needle to close the distal end thereof so that the needle assembly may penetrate exterior tissue when a specimen is to be taken from a deeply located organ or tissue of a patient.
  • the stylet is first removed and the biopsy specimen is collected in the sleeve member which is then removed from the needle while the needle is allowed to remain in place so that a heat transfer means such as a microcauter or a cryoprobe may be introduced into the needle.
  • a heat transfer means such as a microcauter or a cryoprobe may be introduced into the needle.
  • the distal end of the microcauter or cryoprobe projects into the biopsy track, and the needle and heat transfer means are removed as a unit whereby cauterization or cooling of the biopsy track occurs and intro-organ bleeding is prevented.
  • the expanding or tapered distal end portions of the sleeve and biopsy needle permit the specimen to be collected in the sleeve with little if any damage to the specimen.
  • BIOPSY TECHNIQUE AND BIOPSY DEVICE SUMMARY OF THE INVENTION Although there are many kinds specialized biopsy instruments used for obtaining biopsy specimens from various organs, it has been found that such instruments are quite often unsatisfactory in obtaining biopsy specimens from organs such as the spleen, thyroid or other organs which tend to bleed profusely if a biopsy specimen is taken. Therefore when biopsy specimens are taken from the spleen, thyroid or similar organ, it is necessary to resort to a surgical procedure in order to manage and prevent bleeding after removal of the biopsy specimen.
  • the present biopsy technique and device involves the insertion of a biopsy needle into the tissue from which the specimen is to be taken, the needle having a sleeve member and stylet therein, the stylet being removed and the biopsy being collected in the sleeve which is also thereafter removed.
  • a hear transfer means such as a microcauter or a cryoprobe is inserted through the needle to project from the distal end thereof, and which serves to cauterize the biopsy track as the needle and heat transfer means are removed as a unit.
  • biopsy specimens may be obtained from organs such as the spleen'or thyroid without requiring surgical procedures which is normally required when obtaining such biopsy specimens.
  • FIG. I is an exploded perspective view illustrating the biopsy needle device including the biopsy needle, sleeve member and stylet,
  • FIG. 2 is a cross-sectional view illustrating the microcauter projecting through the needle
  • FIG. 3 is a side-elevational view of a cryoprobe which may be used as an alternative to the microcauter and,
  • FIG. 4 is a fragmentary perspective view of a modified form of the cutting edge ofa biopsy needle.
  • the biopsy needle device 10 is comprised of an elongate biopsy needle 11 having an elongate cylindrical body 12 which terminates in a uniformly distal tapered end portion 13. Opposite ends of the needle 11 are open and it will be noted that a cutting edge 14 is defined by the distal end.
  • the biopsy needle 11 is preferably formed of a suitable metallic material and the lumen 12a of the cylindrical body portion communicated smoothly with the lumen or interior 13a of the tapered distal end portion 13. In the embodiment shown, the cutting edge defined by the distal end is bevelled or obliquely disposed with respect to the longitudinal axis of the needle 11.
  • the biopsy needle I1 is also provided with a pair of outwardly projecting oppositely disposed finger grip elements 15 and terminates in an enlarged cylindrical proximal end portion 16.
  • the enlarged cylindrical proximal end portion 16 has a distal end wall l7 which in the embodiment shown engages the finger grip elements 15.
  • This proximal end portion l6 also has a notch l8 therein which extends in a general longitudinal direction and which terminates in an offset'portion.
  • the biopsy needle device also includes an elongate sleeve member 19 which serves as a tissue-collecting medium and which is adapted to be positioned interiorly of the needle II.
  • the sleeve member 19 includes an elongate cylindrical body 20 which terminates in a uniformly tapered distal end portion 21. Opposite ends of this sleeve member 19 are also open and it will be noted that the distal end 22 also defines a cutting edge which is bevelled or obliquely disposed with respect to the longitudinal axis of the sleeve member.
  • the cylindrical body 20 ofthe sleeve member 19 also communicates smoothly with the lumen of the tapered distal end portion 21 in the manner ofthe needle 11.
  • the sleeve member also has an enlarged cylindrical proximal end portion 23 which is provided with a radially projecting locking pin 24.
  • the locking pin 24 is adapted to engage in the notch 18 to releasably interlock the sleeve member 19 within the needle 11.
  • the proximal end portion 23 also has a generally axially extending notch 25 therein which also terminates in an offset portion. It will be noted that the pin 24 and notch 25 are spaced axially from each other.
  • the sleeve member 19 is also preferably formed of a suitable metallic material and is adapted to receive therein an elongate metallic stylet 26 which in the embodiment shown is preferably of cylindrical configuration and terminates in a bevelled or obliquely disposed distal end 27.
  • the stylet is also provided with an enlarged cylindrical proximal end portion 28 and terminates in a finger grip portion or handle 29.
  • a locking pin 30 is affixed to the proximal end portion 28 and projects radially therefrom. This locking pin is adapted to engage in the notch 25 of the sleeve member 19. It is pointed out that the sleeve member will have its distal end 22 disposed in substantially aligned relation with the distal end 14 of the needle ll. However, the stylet 26 when interlocked with the sleeve 19 will project approximately one millimeter beyond the end of the biopsy needle 12 and this serves to obstruct the distal end of the assembled biopsy needle device.
  • Heat transfer means is also provided so that the temperature of the biopsy track may be radically changer to prevent intraorgan bleeding after the removal of the biopsy specimen.
  • such a heat transfer means may include a microcauter 31 which includes an elongate hollow probe 32 having a closed distal end or tip 33 in which is disposed a resistance element.
  • a pair of electrical conductors 34 extend through the handle 35 of the microcauter into the hollow probe 32 and are connected to the resistance element at the tip interiorly of the probe.
  • the electrical conductors are connected to a suitable source of electrical current so that when current is supplied to the tip, it will be heated rapidly to a temperature sufficient to produce cauterization of the tissue defining the biopsy track.
  • the microcauter may be inserted into and through the biopsy needle 11 so that the tip 31 of the microcauter projects exteriorly thereof.
  • the probe 32 is provided with a small cylindrical spacer element 36 which is adapted to engage the inner surface of the needle adjacent the proximal end thereof to space the the probe from the inner surface of the biopsy needle.
  • An alternative heat transfer means comprises a cryoprobe illustrated in FIG. 3 and designated generally by the reference numeral 37.
  • the cryoprobe 37 includes an elongate substantially solid metallic probe 38 which is preferably formed of a material such as silver or the like which is characterized by its high thermal conductivity.
  • the probe is of a length corresponding to the length of the hollow probe 32 of the microcauter 31.
  • the proximal end portion of the probe 38 is connected to a reservoir 39 and a handle 40 is secured to the proximal end portion of the reservoir 39.
  • a small cylindrical spacer element 41 is positioned concentrically around the proximal end portion of the probe 38 and serves to space the probe from the inner surface of the needle I] when the cryoprobe is inserted into the needle.
  • a pair of conduits 42 extend through the handle 40 and communicate with the interior of the reservoir 39 to circulate liquid nitrogen through the reservoir 39 from a source of supply.
  • the conduits are also connected toa source of supply of liquid nitrogen with suitable means being provided to force the liquid nitrogen through the conduits.
  • suitable valving will also be provided.
  • the biopsy needle of which the cutting edge 42 constitutes the .distal end thereof is otherwise of identical construction to the biopsy needle illustrated in FIGS. 1 and 2, and includes a tubular body (not shown) having a uniformly tapered distal end portion 43.
  • the cutting edge 42 is provided with a pair of diametrically opposed teeth 44 which project axially of the needle.
  • Each tooth 44 defines an axial cutting edge 45 which is disposed substantially parallel to the longitudinal axis of the needle.
  • These axial cutting edges 45 are of substantially the same length and the points of the teeth I are disposed in substantially coplanar relation.
  • each axial cutting edge 45 is generallyof spiralled configuration and facilitates the cutting of a tissue as the needle is urged forwardly in an axial direction.
  • the axial cutting edges 45 permit radial cutting when the needle is revolved about its longitudinal axis.
  • the needle illustrated in FIG. 4 will also be provided with a stylet having a distal end configuration which will present a closed end surface to facilitate insertion of the needle for access to a deeply located organ.
  • the sleeve member 19 will be releasably interlocked within the biopsy needle 11 and the stylet 26 will be interlocked within the sleeve member 19.
  • the assembled needle device will then be inserted from the exterior through the exterior tissue to the more deeply located organ such as a thyroid or spleen.
  • the distal end 14 of the needle 11 is disposed in close proximal relation to the organ from which the tissue specimen is to be taken the stylet 26 will be unlocked from the sleeve member 19 and retracted therefrom.
  • the interlocked biopsy needle 11 and sleeve member 19 will then be advanced into the organ while simultaneously producing a revolving or oscillating movement of the assembly about its longitudinal axis.
  • a tissue specimen will be cut by this augering action and will be collected in the distal end portion of the sleeve member 19 which, as set forth above, expands uniformly in a proximal direction. Because of this expansion configuration of the sleeve member, the tissue specimen will not be subjected to any compression as it is collected in the sleeve member, and the tissue specimen will therefore not be damaged. After the specimen has been collected within the sleeve member 19, the sleeve member will then be unlocked and retracted from the needle I l.
  • the microcauter 31 will be inserted through the needle so that the tip thereof projects into the biopsy track.
  • the microcauter will be energized so that the tip instantaneously heats to a temperature sufficient to cauterize the biopsy track.
  • the biopsy needle 11 and microcauter will be retracted as a unit thus producing cauterization of the entire biopsy track and thereby preventing any further bleeding of the organ.
  • cryoprobe 37 may be inserted into the needle and the liquid nitrogen may then be circulated through the reservoir 39 so that instantaneous cooling of the probe 38 occurs.
  • the temperature of the liquid nitrogen is approximately I 80C. and the temperature of the distal tip of the probe 38 is approximately -1 00 C. This is sufficient to produce cooling to the degree necessary to prevent any further bleeding of the tissue.
  • the biopsy needle 11 and cryoprobe 37 will also be retracted as a unit so that the biopsy track is progressively and effectively cooled.
  • biopsy specimens may be taken from the spleen, thyroid or similar organs with a minimum of discomfort to the patient. Since little damage occurs to the specimen taken, it has been found that there is little, if any, occasion to repeat the biopsy.
  • a method of obtaining a biopsy specimen from an organ such as a spleen, thyroid or the like comprising penetrating and progressively advancing the distal end portion of an elongate hollow biopsy instrument assembly into a patient, but with the proximal end of the instrument assembly located exteriorly of the patient, the instrument assembly including a biopsy needle having a tissue-collecting medium located interiorly thereof, and an obstructing medium positioned interiorly of thetissue-collecting medium and obstructing the open end of the biopsy needle assembly, continuing the advancement of the distal end portion of the needle assembly until the distal end portion of the assembly is disposed in close proximal relation to the organ from which the tissue is to be removed, removing the obstructing medium from the assembly, and thereafter advancing the needle and tissue-collecting medium as a unit into the tissue whereby a tissue specimen is cut and collected in the tissue-collecting medium,
  • the heat transfer medium having a temperature substantially higher or substantially lower than the body temperature of the patient to perform cauterization of the tissue, retracting the needle and heat transfer medium from the biopsy whereby the heat transfer medium serves to stop bleeding of the tissue, and continuing retractive movement of the needle and its heat transfer medium from the patient.
  • tissue specimen collected in the tissue-collecting medium is progressively urged into an expanding collection zone during removal of the specimen from the patient.
  • a biopsy needle device comprising v an elongate hollow biopsy needle having open distal and proximal ends, said distal end defining a cutting edge, said needle being of uniform cylindrical configuration throughout the major portion of its length, and having a distal end portion tapered generally uniformly toward the tip of the distal end,
  • an elongate hollow sleeve member positioned within said out diameter substantially equal to the inner diameter of needle and corresponding in length and shape to said neesaid sleeve at the distal end thereof so that said stylet obdle, said sleeve member having a bore formed therein and structs the distal end of theneedle and sleeve to facilitate being of uniformly cylindrical configuration throughout in e ti n of th e d e, s ee e em e and style!

Abstract

A biopsy needle device and method of using the same includes an elongate needle having a tapered distal end portion which terminates in a distal cutting edge. An elongate sleeve member is inserted into the needle and corresponds in shape and length to the needle. An elongate stylet is positioned interiorly of the telescopically disposed needle and sleeve member and projects from the needle to close the distal end thereof so that the needle assembly may penetrate exterior tissue when a specimen is to be taken from a deeply located organ or tissue of a patient. The stylet is first removed and the biopsy specimen is collected in the sleeve member which is then removed from the needle while the needle is allowed to remain in place so that a heat transfer means such as a microcauter or a cryoprobe may be introduced into the needle. The distal end of the microcauter or cryoprobe projects into the biopsy track, and the needle and heat transfer means are removed as a unit whereby cauterization or cooling of the biopsy track occurs and intro-organ bleeding is prevented. The expanding or tapered distal end portions of the sleeve and biopsy needle permit the specimen to be collected in the sleeve with little if any damage to the specimen.

Description

United States Patent f 72] Inventors Khosrow Jamshidi 3146 Minnehaha Ave., Minneapolis, Minn. 55406; William R. Swaim, 152 Taylor Ave., Fort Snelling, Minneapolis, Minn. S5413; lhrold E. Windsehitl, 1275 MacArthur Ave., West St. Paul, Minn. 55118 [2!] Appl. No. 803,193 [22] Filed Feb. 28,1969 [45] Patented Aug. 10, 1971 [54] BIOPSY TECHNIQUE AND BIOPSY DEVICE 5 Claims, 4 Drawing Figs. [52] US. Cl 128/2 B, 128/303.17, 128/310, 1281347 [51] Int. Cl A6lb 10/00 [50] FieldotSeareh 128/2,2B, 303.1, 303.13, 303.17, 303.14, 347, 310 [56] References Cited UNITED STATES PATENTS 3,540,447 1 1/ 1970 Howe 128/221 2,496,111 1/1950 Turkel 128/2 3,020,912 2/1962 Chester 128/310 3,175,554 3/1965 Stewart 128/2 3,336,916 8/1967 Edlich 128/2 3,391,690 7/1968 Armad 128/2 FOREIGN PATENTS 135,689 SH 952 Sweden 1 28/22 l 142,879 1 H1953 Sweden 128/347 Primary ExaminerRichard A. Gaudet Assistant Examiner-Kyle L. Howell Attorney-Orrin M. Haugen ABSTRACT: A biopsy needle device and method of using the same includes an elongate needle having a tapered distal end portion which terminates in a distal cutting edge. An elongate sleeve member is inserted into the needle and corresponds in shape and length to the needle. An elongate stylet is positioned interiorly of the telescopically disposed needle and sleeve member and projects from the needle to close the distal end thereof so that the needle assembly may penetrate exterior tissue when a specimen is to be taken from a deeply located organ or tissue of a patient. The stylet is first removed and the biopsy specimen is collected in the sleeve member which is then removed from the needle while the needle is allowed to remain in place so that a heat transfer means such as a microcauter or a cryoprobe may be introduced into the needle. The distal end of the microcauter or cryoprobe projects into the biopsy track, and the needle and heat transfer means are removed as a unit whereby cauterization or cooling of the biopsy track occurs and intro-organ bleeding is prevented. The expanding or tapered distal end portions of the sleeve and biopsy needle permit the specimen to be collected in the sleeve with little if any damage to the specimen.
BIOPSY TECHNIQUE AND BIOPSY DEVICE SUMMARY OF THE INVENTION Although there are many kinds specialized biopsy instruments used for obtaining biopsy specimens from various organs, it has been found thatsuch instruments are quite often unsatisfactory in obtaining biopsy specimens from organs such as the spleen, thyroid or other organs which tend to bleed profusely if a biopsy specimen is taken. Therefore when biopsy specimens are taken from the spleen, thyroid or similar organ, it is necessary to resort to a surgical procedure in order to manage and prevent bleeding after removal of the biopsy specimen.
It is therefore a general object of this invention to provide a novel biopsy technique and device for obtaining an effective biopsy specimen from an organ such as a spleen or thyroid which tends to bleed profusely but in a manner in which bleeding is minimized if not substantially precluded.
The present biopsy technique and device involves the insertion of a biopsy needle into the tissue from which the specimen is to be taken, the needle having a sleeve member and stylet therein, the stylet being removed and the biopsy being collected in the sleeve which is also thereafter removed. A hear transfer means such as a microcauter or a cryoprobe is inserted through the needle to project from the distal end thereof, and which serves to cauterize the biopsy track as the needle and heat transfer means are removed as a unit.
Through the use of this technique and device, biopsy specimens may be obtained from organs such as the spleen'or thyroid without requiring surgical procedures which is normally required when obtaining such biopsy specimens.
BRIEF DESCRIPTION OF THE FIGURES OF THE DRAWING FIG. I is an exploded perspective view illustrating the biopsy needle device including the biopsy needle, sleeve member and stylet,
FIG. 2 is a cross-sectional view illustrating the microcauter projecting through the needle,
FIG. 3 is a side-elevational view of a cryoprobe which may be used as an alternative to the microcauter and,
FIG. 4 is a fragmentary perspective view of a modified form of the cutting edge ofa biopsy needle.
DETAILED DESCRIPTION OF THE INVENTION Referring now to the drawings and most specifically to FIG. 1, it will be seen that one embodiment of the novel biopsy needle device, designated generally by the reference numeral is there shown. The biopsy needle device 10 is comprised of an elongate biopsy needle 11 having an elongate cylindrical body 12 which terminates in a uniformly distal tapered end portion 13. Opposite ends of the needle 11 are open and it will be noted that a cutting edge 14 is defined by the distal end. The biopsy needle 11 is preferably formed of a suitable metallic material and the lumen 12a of the cylindrical body portion communicated smoothly with the lumen or interior 13a of the tapered distal end portion 13. In the embodiment shown, the cutting edge defined by the distal end is bevelled or obliquely disposed with respect to the longitudinal axis of the needle 11.
The biopsy needle I1 is also provided with a pair of outwardly projecting oppositely disposed finger grip elements 15 and terminates in an enlarged cylindrical proximal end portion 16. It will be noted that the enlarged cylindrical proximal end portion 16 has a distal end wall l7 which in the embodiment shown engages the finger grip elements 15. This proximal end portion l6 also has a notch l8 therein which extends in a general longitudinal direction and which terminates in an offset'portion.
The biopsy needle device also includes an elongate sleeve member 19 which serves as a tissue-collecting medium and which is adapted to be positioned interiorly of the needle II.
The sleeve member 19 includes an elongate cylindrical body 20 which terminates in a uniformly tapered distal end portion 21. Opposite ends of this sleeve member 19 are also open and it will be noted that the distal end 22 also defines a cutting edge which is bevelled or obliquely disposed with respect to the longitudinal axis of the sleeve member. The cylindrical body 20 ofthe sleeve member 19 also communicates smoothly with the lumen of the tapered distal end portion 21 in the manner ofthe needle 11.
The sleeve member also has an enlarged cylindrical proximal end portion 23 which is provided with a radially projecting locking pin 24. The locking pin 24 is adapted to engage in the notch 18 to releasably interlock the sleeve member 19 within the needle 11. The proximal end portion 23 also has a generally axially extending notch 25 therein which also terminates in an offset portion. It will be noted that the pin 24 and notch 25 are spaced axially from each other.
The sleeve member 19 is also preferably formed of a suitable metallic material and is adapted to receive therein an elongate metallic stylet 26 which in the embodiment shown is preferably of cylindrical configuration and terminates in a bevelled or obliquely disposed distal end 27. The stylet is also provided with an enlarged cylindrical proximal end portion 28 and terminates in a finger grip portion or handle 29. A locking pin 30 is affixed to the proximal end portion 28 and projects radially therefrom. This locking pin is adapted to engage in the notch 25 of the sleeve member 19. It is pointed out that the sleeve member will have its distal end 22 disposed in substantially aligned relation with the distal end 14 of the needle ll. However, the stylet 26 when interlocked with the sleeve 19 will project approximately one millimeter beyond the end of the biopsy needle 12 and this serves to obstruct the distal end of the assembled biopsy needle device.
Heat transfer means is also provided so that the temperature of the biopsy track may be radically changer to prevent intraorgan bleeding after the removal of the biopsy specimen.
Referring now to FIG. 2, it will be seen that such a heat transfer means may include a microcauter 31 which includes an elongate hollow probe 32 having a closed distal end or tip 33 in which is disposed a resistance element. A pair of electrical conductors 34 extend through the handle 35 of the microcauter into the hollow probe 32 and are connected to the resistance element at the tip interiorly of the probe. The electrical conductors are connected to a suitable source of electrical current so that when current is supplied to the tip, it will be heated rapidly to a temperature sufficient to produce cauterization of the tissue defining the biopsy track. In this regard, it will be noted that the microcauter may be inserted into and through the biopsy needle 11 so that the tip 31 of the microcauter projects exteriorly thereof. The probe 32 is provided with a small cylindrical spacer element 36 which is adapted to engage the inner surface of the needle adjacent the proximal end thereof to space the the probe from the inner surface of the biopsy needle.
An alternative heat transfer means comprises a cryoprobe illustrated in FIG. 3 and designated generally by the reference numeral 37. The cryoprobe 37 includes an elongate substantially solid metallic probe 38 which is preferably formed of a material such as silver or the like which is characterized by its high thermal conductivity. The probe is of a length corresponding to the length of the hollow probe 32 of the microcauter 31. The proximal end portion of the probe 38 is connected to a reservoir 39 and a handle 40 is secured to the proximal end portion of the reservoir 39. A small cylindrical spacer element 41 is positioned concentrically around the proximal end portion of the probe 38 and serves to space the probe from the inner surface of the needle I] when the cryoprobe is inserted into the needle.
A pair of conduits 42 extend through the handle 40 and communicate with the interior of the reservoir 39 to circulate liquid nitrogen through the reservoir 39 from a source of supply. In this regard, the conduits are also connected toa source of supply of liquid nitrogen with suitable means being provided to force the liquid nitrogen through the conduits. Suitable valving will also be provided. it will therefore beseen that when liquid nitrogen is circulated through the reservoir, because of the high thermal conductivity of the probe 38, the probe will be cooled to a temperature of approximately 1 80 C., so that the temperature of the tip of the probe is approximately l C. This is sufficiently cold enough to produce freezing of the tissue defining the biopsy track and to prevent any further bleeding thereof.
Referring now to FIG. 4, it will be seen that a modified form of the distal cutting edge of the biopsy needle is there shown and this cutting edge is designated by the reference numeral 42. It is pointed out that the biopsy needle of which the cutting edge 42 constitutes the .distal end thereof is otherwise of identical construction to the biopsy needle illustrated in FIGS. 1 and 2, and includes a tubular body (not shown) having a uniformly tapered distal end portion 43. The cutting edge 42 is provided with a pair of diametrically opposed teeth 44 which project axially of the needle. Each tooth 44 defines an axial cutting edge 45 which is disposed substantially parallel to the longitudinal axis of the needle. These axial cutting edges 45 are of substantially the same length and the points of the teeth I are disposed in substantially coplanar relation.
The cutting surface defined between each axial cutting edge 45 is generallyof spiralled configuration and facilitates the cutting of a tissue as the needle is urged forwardly in an axial direction. However, the axial cutting edges 45 permit radial cutting when the needle is revolved about its longitudinal axis. it is also pointed out that the needle illustrated in FIG. 4 will also be provided with a stylet having a distal end configuration which will present a closed end surface to facilitate insertion of the needle for access to a deeply located organ.
In use, the sleeve member 19 will be releasably interlocked within the biopsy needle 11 and the stylet 26 will be interlocked within the sleeve member 19. The assembled needle device will then be inserted from the exterior through the exterior tissue to the more deeply located organ such as a thyroid or spleen. When the distal end 14 of the needle 11 is disposed in close proximal relation to the organ from which the tissue specimen is to be taken the stylet 26 will be unlocked from the sleeve member 19 and retracted therefrom. The interlocked biopsy needle 11 and sleeve member 19 will then be advanced into the organ while simultaneously producing a revolving or oscillating movement of the assembly about its longitudinal axis. A tissue specimen will be cut by this augering action and will be collected in the distal end portion of the sleeve member 19 which, as set forth above, expands uniformly in a proximal direction. Because of this expansion configuration of the sleeve member, the tissue specimen will not be subjected to any compression as it is collected in the sleeve member, and the tissue specimen will therefore not be damaged. After the specimen has been collected within the sleeve member 19, the sleeve member will then be unlocked and retracted from the needle I l.
Thereafter, the microcauter 31 will be inserted through the needle so that the tip thereof projects into the biopsy track. The microcauter will be energized so that the tip instantaneously heats to a temperature sufficient to cauterize the biopsy track. The biopsy needle 11 and microcauter will be retracted as a unit thus producing cauterization of the entire biopsy track and thereby preventing any further bleeding of the organ.
As an alternative, the cryoprobe 37 may be inserted into the needle and the liquid nitrogen may then be circulated through the reservoir 39 so that instantaneous cooling of the probe 38 occurs. As pointed out above, the temperature of the liquid nitrogen is approximately I 80C. and the temperature of the distal tip of the probe 38 is approximately -1 00 C. This is sufficient to produce cooling to the degree necessary to prevent any further bleeding of the tissue. The biopsy needle 11 and cryoprobe 37 will also be retracted as a unit so that the biopsy track is progressively and effectively cooled.
It has been found that through the use of the abovedescribed technique and biopsy device, not only can highly effective tissue specimens be obtained, but biopsies may be performed on such organs as the spleen, thyroid and the like through nonsurgical techniques. Profuse bleeding of such organs is prevented by the unique application of heat transfer means such as a cryoprobe or microcauter, which are introduced through the biopsy needle. Therefore, biopsy specimens may be taken from the spleen, thyroid or similar organs with a minimum of discomfort to the patient. Since little damage occurs to the specimen taken, it has been found that there is little, if any, occasion to repeat the biopsy.
It will therefore be seen from the preceding paragraphs that we have provided a novel technique and biopsy needle device which not only permits excellent specimens to be obtained but such specimens may be obtained from organs such as the spleen, the thyroid and the like through nonsurgical techniques.
It will, of course, be understood that various changes may be made in the form, details, arrangement and proportions of the various parts without departing from the scope'of my invention.
We claim:
1. A method of obtaining a biopsy specimen from an organ such as a spleen, thyroid or the like, said method comprising penetrating and progressively advancing the distal end portion of an elongate hollow biopsy instrument assembly into a patient, but with the proximal end of the instrument assembly located exteriorly of the patient, the instrument assembly including a biopsy needle having a tissue-collecting medium located interiorly thereof, and an obstructing medium positioned interiorly of thetissue-collecting medium and obstructing the open end of the biopsy needle assembly, continuing the advancement of the distal end portion of the needle assembly until the distal end portion of the assembly is disposed in close proximal relation to the organ from which the tissue is to be removed, removing the obstructing medium from the assembly, and thereafter advancing the needle and tissue-collecting medium as a unit into the tissue whereby a tissue specimen is cut and collected in the tissue-collecting medium,
retracting the tissue-collecting medium from the needle through the proximal end thereof,
inserting a heat transfer medium into the needle and exteriorly of the distal end thereof, the heat transfer medium having a temperature substantially higher or substantially lower than the body temperature of the patient to perform cauterization of the tissue, retracting the needle and heat transfer medium from the biopsy whereby the heat transfer medium serves to stop bleeding of the tissue, and continuing retractive movement of the needle and its heat transfer medium from the patient.
2. The method as defined in claim I wherein the tissue specimen collected in the tissue-collecting medium is progressively urged into an expanding collection zone during removal of the specimen from the patient.
3. The method as defined in claim I wherein said heat transfer medium heats the tissue defining the biopsy track to a differential temperature level sufficient to cauterize the same.
4. ,The method as defined in claim 1 wherein said heat transfer medium cools the tissue defining the biopsy track to a differential temperature level sufficient to completely stop any bleeding of the tissue.
5. A biopsy needle device comprising v an elongate hollow biopsy needle having open distal and proximal ends, said distal end defining a cutting edge, said needle being of uniform cylindrical configuration throughout the major portion of its length, and having a distal end portion tapered generally uniformly toward the tip of the distal end,
an elongate hollow sleeve member positioned within said out diameter substantially equal to the inner diameter of needle and corresponding in length and shape to said neesaid sleeve at the distal end thereof so that said stylet obdle, said sleeve member having a bore formed therein and structs the distal end of theneedle and sleeve to facilitate being of uniformly cylindrical configuration throughout in e ti n of th e d e, s ee e em e and style! as a the major portion of its length and defining a biopsy tissue unit into a P whereby when said y is removed receiving nd retaini it dj h di l d from the needle and sleeve after insertion into a tissue, thereof, and having a distal end portion with inner and and P mahiphlahfm of needle, distal chmhg outer diameters tapered generally uniformly toward the edge of h needle f" 3 tissue pl and the S-' tip of the distal end and defining an opening to said bore, sample will be collected the tapered dlstal end Pomoh an elongate stylet positioned within said sleeve and having a ofthe sleeve length dimension slightly greater than said sleeve and an

Claims (5)

1. A method of obtaining a biopsy specimen from an organ such as a spleen, thyroid or the like, said method comprising penetrating and progressively advancing the distal end portion of an elongate hollow biopsy instrument assembly into a patient, but with the proximal end of the instrument assEmbly located exteriorly of the patient, the instrument assembly including a biopsy needle having a tissue-collecting medium located interiorly thereof, and an obstructing medium positioned interiorly of the tissue-collecting medium and obstructing the open end of the biopsy needle assembly, continuing the advancement of the distal end portion of the needle assembly until the distal end portion of the assembly is disposed in close proximal relation to the organ from which the tissue is to be removed, removing the obstructing medium from the assembly, and thereafter advancing the needle and tissue-collecting medium as a unit into the tissue whereby a tissue specimen is cut and collected in the tissue-collecting medium, retracting the tissue-collecting medium from the needle through the proximal end thereof, inserting a heat transfer medium into the needle and exteriorly of the distal end thereof, the heat transfer medium having a temperature substantially higher or substantially lower than the body temperature of the patient to perform cauterization of the tissue, retracting the needle and heat transfer medium from the biopsy track whereby the heat transfer medium serves to stop bleeding of the tissue, and continuing retractive movement of the needle and its heat transfer medium from the patient.
2. The method as defined in claim 1 wherein the tissue specimen collected in the tissue-collecting medium is progressively urged into an expanding collection zone during removal of the specimen from the patient.
3. The method as defined in claim 1 wherein said heat transfer medium heats the tissue defining the biopsy track to a differential temperature level sufficient to cauterize the same.
4. The method as defined in claim 1 wherein said heat transfer medium cools the tissue defining the biopsy track to a differential temperature level sufficient to completely stop any bleeding of the tissue.
5. A biopsy needle device comprising, an elongate hollow biopsy needle having open distal and proximal ends, said distal end defining a cutting edge, said needle being of uniform cylindrical configuration throughout the major portion of its length, and having a distal end portion tapered generally uniformly toward the tip of the distal end, an elongate hollow sleeve member positioned within said needle and corresponding in length and shape to said needle, said sleeve member having a bore formed therein and being of uniformly cylindrical configuration throughout the major portion of its length and defining a biopsy tissue receiving and retaining cavity adjacent the distal end thereof, and having a distal end portion with inner and outer diameters tapered generally uniformly toward the tip of the distal end and defining an opening to said bore, an elongate stylet positioned within said sleeve and having a length dimension slightly greater than said sleeve and an outer diameter substantially equal to the inner diameter of said sleeve at the distal end thereof so that said stylet obstructs the distal end of the needle and sleeve to facilitate insertion of the needle, sleeve member, and stylet as a unit into a patient, whereby when said stylet is removed from the needle and sleeve after insertion into a tissue, and upon manipulation of the needle, the distal cutting edge of the needle will cut a tissue sample and the tissue sample will be collected in the tapered distal end portion of the sleeve.
US803193*A 1969-02-28 1969-02-28 Biopsy technique and biopsy device Expired - Lifetime US3598108A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80319369A 1969-02-28 1969-02-28

Publications (1)

Publication Number Publication Date
US3598108A true US3598108A (en) 1971-08-10

Family

ID=25185844

Family Applications (1)

Application Number Title Priority Date Filing Date
US803193*A Expired - Lifetime US3598108A (en) 1969-02-28 1969-02-28 Biopsy technique and biopsy device

Country Status (1)

Country Link
US (1) US3598108A (en)

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719186A (en) * 1971-04-22 1973-03-06 Univ Alabama In Birmingham Surgical instrument for placement of bone pins and holes therefor
US3886944A (en) * 1973-11-19 1975-06-03 Khosrow Jamshidi Microcautery device
US4026301A (en) * 1975-04-21 1977-05-31 Medtronic, Inc. Apparatus and method for optimum electrode placement in the treatment of disease syndromes such as spinal curvature
US4256119A (en) * 1979-09-17 1981-03-17 Gauthier Industries, Inc. Biopsy needle
US4262676A (en) * 1979-08-24 1981-04-21 Khosrow Jamshidi Biopsy needle having integral stylet locking device
US4266555A (en) * 1979-11-09 1981-05-12 Khosrow Jamshidi Biopsy needle with stylet and cannula orientation
US4269174A (en) * 1979-08-06 1981-05-26 Medical Dynamics, Inc. Transcutaneous vasectomy apparatus and method
US4314565A (en) * 1978-03-03 1982-02-09 Lee Peter F Biopsy and aspiration needle unit
US4356828A (en) * 1980-03-03 1982-11-02 Khosrow Jamshidi Bone marrow aspiration needle
US4512351A (en) * 1982-11-19 1985-04-23 Cordis Corporation Percutaneous lead introducing system and method
US4513754A (en) * 1978-03-03 1985-04-30 Southland Instruments, Inc. Biopsy and aspiration unit with a replaceable cannula
US4532935A (en) * 1982-11-01 1985-08-06 Wang Ko P Bronchoscopic needle assembly
US4565200A (en) * 1980-09-24 1986-01-21 Cosman Eric R Universal lesion and recording electrode system
US4655226A (en) * 1983-12-16 1987-04-07 Southland Instruments, Inc. Disposable biopsy needle unit
US4696308A (en) * 1986-04-09 1987-09-29 The Cleveland Clinic Foundation Core sampling apparatus
US4766906A (en) * 1981-05-06 1988-08-30 Ko Pen Wang Bronchoscopic needle assembly
US4785826A (en) * 1987-03-02 1988-11-22 Ward John L Biopsy instrument
US4799494A (en) * 1986-10-22 1989-01-24 Wang Ko P Percutaneous aspiration lung biopsy needle assembly
US4821717A (en) * 1988-03-28 1989-04-18 Wehrli Janet M M Barbed electrolysis and thermolysis needle
US5357974A (en) * 1993-03-04 1994-10-25 Thomas F. Robinson Bone marrow biopsy instrument
US5366490A (en) * 1992-08-12 1994-11-22 Vidamed, Inc. Medical probe device and method
US5385544A (en) * 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
US5388589A (en) * 1991-09-27 1995-02-14 Dlp, Inc. Core biopsy needle with spacer
US5409453A (en) * 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
US5421819A (en) * 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US5429138A (en) * 1993-06-03 1995-07-04 Kormed, Inc. Biopsy needle with sample retaining means
US5435805A (en) * 1992-08-12 1995-07-25 Vidamed, Inc. Medical probe device with optical viewing capability
US5456662A (en) * 1993-02-02 1995-10-10 Edwards; Stuart D. Method for reducing snoring by RF ablation of the uvula
US5470308A (en) * 1992-08-12 1995-11-28 Vidamed, Inc. Medical probe with biopsy stylet
US5514131A (en) * 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
WO1996014018A1 (en) * 1994-11-04 1996-05-17 Levin John M Biopsy needle with cauterization feature
US5526821A (en) * 1993-06-03 1996-06-18 Medical Biopsy, Inc. Biopsy needle with sample retaining means
US5542915A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Thermal mapping catheter with ultrasound probe
US5556377A (en) * 1992-08-12 1996-09-17 Vidamed, Inc. Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe
US5599295A (en) * 1992-08-12 1997-02-04 Vidamed, Inc. Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities
US5630794A (en) * 1992-08-12 1997-05-20 Vidamed, Inc. Catheter tip and method of manufacturing
US5672153A (en) * 1992-08-12 1997-09-30 Vidamed, Inc. Medical probe device and method
US5720719A (en) * 1992-08-12 1998-02-24 Vidamed, Inc. Ablative catheter with conformable body
US5807277A (en) * 1995-12-15 1998-09-15 Swaim; William R. Biopsy hand tool for capturing tissue sample
US6306132B1 (en) 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US6312426B1 (en) 1997-05-30 2001-11-06 Sherwood Services Ag Method and system for performing plate type radiofrequency ablation
EP1333759A1 (en) * 2000-10-16 2003-08-13 Sanarus Medical, Inc. Device for biopsy of tumors
US6679886B2 (en) 2000-09-01 2004-01-20 Synthes (Usa) Tools and methods for creating cavities in bone
US20040167432A1 (en) * 1998-03-03 2004-08-26 Senorx, Inc. Breast biopsy system and methods
US6938680B2 (en) * 2003-07-14 2005-09-06 Thermal Corp. Tower heat sink with sintered grooved wick
US20050228312A1 (en) * 2004-03-31 2005-10-13 Vihar Surti Biopsy needle system
US6962586B2 (en) 1999-05-04 2005-11-08 Afx, Inc. Microwave ablation instrument with insertion probe
US6976986B2 (en) 2000-04-12 2005-12-20 Afx, Inc. Electrode arrangement for use in a medical instrument
US7033352B1 (en) 2000-01-18 2006-04-25 Afx, Inc. Flexible ablation instrument
US7052491B2 (en) 1998-10-23 2006-05-30 Afx, Inc. Vacuum-assisted securing apparatus for a microwave ablation instrument
US7099717B2 (en) 2002-01-03 2006-08-29 Afx Inc. Catheter having improved steering
US7192427B2 (en) 2002-02-19 2007-03-20 Afx, Inc. Apparatus and method for assessing transmurality of a tissue ablation
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
AU2005232255B2 (en) * 2000-10-16 2007-05-10 Sanarus Medical, Inc. Device for biopsy of tumors
US7226446B1 (en) 1999-05-04 2007-06-05 Dinesh Mody Surgical microwave ablation assembly
US7303560B2 (en) 2000-12-29 2007-12-04 Afx, Inc. Method of positioning a medical instrument
US20080033422A1 (en) * 2006-08-04 2008-02-07 Turner Paul F Microwave applicator with margin temperature sensing element
US7346399B2 (en) 1999-05-28 2008-03-18 Afx, Inc. Monopole tip for ablation catheter
US20080221650A1 (en) * 2006-08-04 2008-09-11 Turner Paul F Microwave applicator with adjustable heating length
US20080281323A1 (en) * 1999-01-27 2008-11-13 Burbank Fred H Tissue specimen isolating and damaging device and method
US20080281224A1 (en) * 2007-05-11 2008-11-13 Johnson Michael E Biopsy device needle tip
US7465304B1 (en) * 2003-04-14 2008-12-16 Spine Design, Inc. Anterior cervical facet discectomy surgery kit and method for its use
US7468042B2 (en) 2002-04-16 2008-12-23 Vivant Medical, Inc. Localization element with energized tip
US20110035005A1 (en) * 2002-12-03 2011-02-10 Trans1 Inc. Methods for push distraction and for provision of therapy to adjacent motion segments
US20110082387A1 (en) * 2002-05-31 2011-04-07 Miller Larry J Biopsy Devices and Related Methods
US7942826B1 (en) 2005-06-06 2011-05-17 Nuvasive, Inc. Insulated pedicle access system and related methods
US20110118724A1 (en) * 2009-11-17 2011-05-19 Bsd Medical Corporation Microwave coagulation applicator and system with fluid injection
US20110118720A1 (en) * 2009-11-17 2011-05-19 Bsd Medical Corporation Microwave coagulation applicator and system
US20110125148A1 (en) * 2009-11-17 2011-05-26 Turner Paul F Multiple Frequency Energy Supply and Coagulation System
US7987001B2 (en) 2007-01-25 2011-07-26 Warsaw Orthopedic, Inc. Surgical navigational and neuromonitoring instrument
US20110263922A1 (en) * 2010-04-22 2011-10-27 Susanne Dornberger Method, device and apparatus system for prostate cancer therapy
US8068921B2 (en) 2006-09-29 2011-11-29 Vivant Medical, Inc. Microwave antenna assembly and method of using the same
US20120041430A1 (en) * 2008-04-01 2012-02-16 The General Hospital Corporation Method and apparatus for tissue grafting
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US8374673B2 (en) 2007-01-25 2013-02-12 Warsaw Orthopedic, Inc. Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US8551083B2 (en) 2009-11-17 2013-10-08 Bsd Medical Corporation Microwave coagulation applicator and system
US9216012B2 (en) 1998-09-01 2015-12-22 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
US9226732B2 (en) 2011-11-23 2016-01-05 Harvest Technologies Corporation Bone marrow aspiration device and needle
US9545243B2 (en) 2002-05-31 2017-01-17 Vidacare LLC Bone marrow aspiration devices and related methods
US9730679B1 (en) * 2012-12-21 2017-08-15 University Of South Florida Device for sterile uterine sampling and drug delivery
US9743949B2 (en) 2015-04-22 2017-08-29 Medline Industries, Inc. Two-dimensional needle array device and method of use
US9750508B1 (en) 2009-11-11 2017-09-05 Nuvasive, Inc. Insulated pedicle access system and related methods
US9895162B2 (en) 2010-05-07 2018-02-20 The General Hospital Corporation Method and apparatus for tissue grafting and copying
US9901393B2 (en) 2015-11-09 2018-02-27 First Pass, Llc Cautery device
US10251792B2 (en) 2013-02-20 2019-04-09 Cytrellis Biosystems, Inc. Methods and devices for skin tightening
US10555754B2 (en) 2013-08-09 2020-02-11 Cytrellis Biosystems, Inc. Methods and apparatuses for skin treatment using non-thermal tissue ablation
US10582914B2 (en) 2016-01-15 2020-03-10 Covidien Lp Navigable endobronchial tool to access tissue outside a bronchus
US10953143B2 (en) 2013-12-19 2021-03-23 Cytrellis Biosystems, Inc. Methods and devices for manipulating subdermal fat
US10959776B2 (en) * 2016-11-30 2021-03-30 Traceless Biopsy, Llc Biopsy tract ablation system for tumor seeding prevention and cauterization
US11103282B1 (en) 2002-05-31 2021-08-31 Teleflex Life Sciences Limited Powered drivers, intraosseous devices and methods to access bone marrow
US11166743B2 (en) 2016-03-29 2021-11-09 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US11234683B2 (en) 2002-05-31 2022-02-01 Teleflex Life Sciences Limited Assembly for coupling powered driver with intraosseous device
US11246637B2 (en) * 2020-05-11 2022-02-15 Alphatec Spine, Inc. Stimulating targeting needle
US11266441B2 (en) 2002-05-31 2022-03-08 Teleflex Life Sciences Limited Penetrator assembly for accessing bone marrow
US11298202B2 (en) 2002-05-31 2022-04-12 Teleflex Life Sciences Limited Biopsy devices and related methods
US11324534B2 (en) 2014-11-14 2022-05-10 Cytrellis Biosystems, Inc. Devices and methods for ablation of the skin
US11324521B2 (en) 2002-05-31 2022-05-10 Teleflex Life Sciences Limited Apparatus and method to access bone marrow
US11337728B2 (en) 2002-05-31 2022-05-24 Teleflex Life Sciences Limited Powered drivers, intraosseous devices and methods to access bone marrow
US11426249B2 (en) 2006-09-12 2022-08-30 Teleflex Life Sciences Limited Vertebral access system and methods
US11457909B2 (en) * 2017-11-14 2022-10-04 Min Ho Jung Sheath device for biportal endoscopic spinal surgery
US11464954B2 (en) 2016-09-21 2022-10-11 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US11771439B2 (en) 2007-04-04 2023-10-03 Teleflex Life Sciences Limited Powered driver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496111A (en) * 1947-09-26 1950-01-31 Turkel Henry Biopsy needle
US3020912A (en) * 1958-10-06 1962-02-13 Martin H Chester Motor driven surgical knife
US3175554A (en) * 1963-03-26 1965-03-30 Becton Dickinson Co Split biopsy needle
US3336916A (en) * 1963-10-30 1967-08-22 Richard F Edlich Electrocautery process
US3391690A (en) * 1965-04-05 1968-07-09 Armao Thomas Anthony Biopsy instrument including tissue heating or cooling means and method of use
US3540447A (en) * 1967-09-29 1970-11-17 Becton Dickinson Co Spinal needle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496111A (en) * 1947-09-26 1950-01-31 Turkel Henry Biopsy needle
US3020912A (en) * 1958-10-06 1962-02-13 Martin H Chester Motor driven surgical knife
US3175554A (en) * 1963-03-26 1965-03-30 Becton Dickinson Co Split biopsy needle
US3336916A (en) * 1963-10-30 1967-08-22 Richard F Edlich Electrocautery process
US3391690A (en) * 1965-04-05 1968-07-09 Armao Thomas Anthony Biopsy instrument including tissue heating or cooling means and method of use
US3540447A (en) * 1967-09-29 1970-11-17 Becton Dickinson Co Spinal needle

Cited By (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719186A (en) * 1971-04-22 1973-03-06 Univ Alabama In Birmingham Surgical instrument for placement of bone pins and holes therefor
US3886944A (en) * 1973-11-19 1975-06-03 Khosrow Jamshidi Microcautery device
US4026301A (en) * 1975-04-21 1977-05-31 Medtronic, Inc. Apparatus and method for optimum electrode placement in the treatment of disease syndromes such as spinal curvature
US4513754A (en) * 1978-03-03 1985-04-30 Southland Instruments, Inc. Biopsy and aspiration unit with a replaceable cannula
US4314565A (en) * 1978-03-03 1982-02-09 Lee Peter F Biopsy and aspiration needle unit
US4269174A (en) * 1979-08-06 1981-05-26 Medical Dynamics, Inc. Transcutaneous vasectomy apparatus and method
US4262676A (en) * 1979-08-24 1981-04-21 Khosrow Jamshidi Biopsy needle having integral stylet locking device
US4256119A (en) * 1979-09-17 1981-03-17 Gauthier Industries, Inc. Biopsy needle
US4266555A (en) * 1979-11-09 1981-05-12 Khosrow Jamshidi Biopsy needle with stylet and cannula orientation
US4356828A (en) * 1980-03-03 1982-11-02 Khosrow Jamshidi Bone marrow aspiration needle
US4565200A (en) * 1980-09-24 1986-01-21 Cosman Eric R Universal lesion and recording electrode system
US4766906A (en) * 1981-05-06 1988-08-30 Ko Pen Wang Bronchoscopic needle assembly
US4532935A (en) * 1982-11-01 1985-08-06 Wang Ko P Bronchoscopic needle assembly
US4512351A (en) * 1982-11-19 1985-04-23 Cordis Corporation Percutaneous lead introducing system and method
US4655226A (en) * 1983-12-16 1987-04-07 Southland Instruments, Inc. Disposable biopsy needle unit
US4696308A (en) * 1986-04-09 1987-09-29 The Cleveland Clinic Foundation Core sampling apparatus
US4799494A (en) * 1986-10-22 1989-01-24 Wang Ko P Percutaneous aspiration lung biopsy needle assembly
US4785826A (en) * 1987-03-02 1988-11-22 Ward John L Biopsy instrument
US4821717A (en) * 1988-03-28 1989-04-18 Wehrli Janet M M Barbed electrolysis and thermolysis needle
US5388589A (en) * 1991-09-27 1995-02-14 Dlp, Inc. Core biopsy needle with spacer
US5607389A (en) * 1992-08-12 1997-03-04 Vidamed, Inc. Medical probe with biopsy stylet
US5672153A (en) * 1992-08-12 1997-09-30 Vidamed, Inc. Medical probe device and method
US5385544A (en) * 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
US5366490A (en) * 1992-08-12 1994-11-22 Vidamed, Inc. Medical probe device and method
US5409453A (en) * 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
US5421819A (en) * 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US6464661B2 (en) 1992-08-12 2002-10-15 Vidamed, Inc. Medical probe with stylets
US5435805A (en) * 1992-08-12 1995-07-25 Vidamed, Inc. Medical probe device with optical viewing capability
US6206847B1 (en) 1992-08-12 2001-03-27 Vidamed, Inc. Medical probe device
US5470308A (en) * 1992-08-12 1995-11-28 Vidamed, Inc. Medical probe with biopsy stylet
US5470309A (en) * 1992-08-12 1995-11-28 Vidamed, Inc. Medical ablation apparatus utilizing a heated stylet
US5514131A (en) * 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US6022334A (en) * 1992-08-12 2000-02-08 Vidamed, Inc. Medical probe device with optic viewing capability
US5895370A (en) * 1992-08-12 1999-04-20 Vidamed, Inc. Medical probe (with stylets) device
US5542915A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Thermal mapping catheter with ultrasound probe
US5554110A (en) * 1992-08-12 1996-09-10 Vidamed, Inc. Medical ablation apparatus
US5556377A (en) * 1992-08-12 1996-09-17 Vidamed, Inc. Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe
US5720718A (en) * 1992-08-12 1998-02-24 Vidamed, Inc. Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities
US5599295A (en) * 1992-08-12 1997-02-04 Vidamed, Inc. Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities
US5599294A (en) * 1992-08-12 1997-02-04 Vidamed, Inc. Microwave probe device and method
US5720719A (en) * 1992-08-12 1998-02-24 Vidamed, Inc. Ablative catheter with conformable body
US5630794A (en) * 1992-08-12 1997-05-20 Vidamed, Inc. Catheter tip and method of manufacturing
US5370675A (en) * 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US5456662A (en) * 1993-02-02 1995-10-10 Edwards; Stuart D. Method for reducing snoring by RF ablation of the uvula
US5357974A (en) * 1993-03-04 1994-10-25 Thomas F. Robinson Bone marrow biopsy instrument
US5526821A (en) * 1993-06-03 1996-06-18 Medical Biopsy, Inc. Biopsy needle with sample retaining means
US5429138A (en) * 1993-06-03 1995-07-04 Kormed, Inc. Biopsy needle with sample retaining means
US5578030A (en) * 1994-11-04 1996-11-26 Levin; John M. Biopsy needle with cauterization feature
WO1996014018A1 (en) * 1994-11-04 1996-05-17 Levin John M Biopsy needle with cauterization feature
US5807277A (en) * 1995-12-15 1998-09-15 Swaim; William R. Biopsy hand tool for capturing tissue sample
US6312426B1 (en) 1997-05-30 2001-11-06 Sherwood Services Ag Method and system for performing plate type radiofrequency ablation
US20050187491A1 (en) * 1998-03-03 2005-08-25 Senorx, Inc. Breast biopsy system and methods
US20050197593A1 (en) * 1998-03-03 2005-09-08 Senorx, Inc. Breast biopsy system and methods
US20040167432A1 (en) * 1998-03-03 2004-08-26 Senorx, Inc. Breast biopsy system and methods
US20050004492A1 (en) * 1998-03-03 2005-01-06 Senorx, Inc. Breast biopsy system and methods
US20050010131A1 (en) * 1998-03-03 2005-01-13 Senorx, Inc. Breast biopsy system and methods
US9216012B2 (en) 1998-09-01 2015-12-22 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
US7115126B2 (en) 1998-10-23 2006-10-03 Afx Inc. Directional microwave ablation instrument with off-set energy delivery portion
US7052491B2 (en) 1998-10-23 2006-05-30 Afx, Inc. Vacuum-assisted securing apparatus for a microwave ablation instrument
US7387627B2 (en) 1998-10-23 2008-06-17 Maquet Cardiovascular Llc Vacuum-assisted securing apparatus for a microwave ablation instrument
US20080281323A1 (en) * 1999-01-27 2008-11-13 Burbank Fred H Tissue specimen isolating and damaging device and method
US9510809B2 (en) 1999-01-27 2016-12-06 Senorx, Inc. Tissue specimen isolating and damaging device and method
US8636734B2 (en) 1999-01-27 2014-01-28 Senorx, Inc. Tissue specimen isolating and damaging device and method
US7226446B1 (en) 1999-05-04 2007-06-05 Dinesh Mody Surgical microwave ablation assembly
US6962586B2 (en) 1999-05-04 2005-11-08 Afx, Inc. Microwave ablation instrument with insertion probe
US20060116672A1 (en) * 1999-05-04 2006-06-01 Dany Berube Microwave ablation instrument with insertion probe
US7346399B2 (en) 1999-05-28 2008-03-18 Afx, Inc. Monopole tip for ablation catheter
US6652520B2 (en) 1999-06-17 2003-11-25 Vivant Medical, Inc. Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US8690868B2 (en) 1999-06-17 2014-04-08 Covidien Lp Needle kit and method for microwave ablation, track coagulation, and biopsy
US6355033B1 (en) 1999-06-17 2002-03-12 Vivant Medical Track ablation device and methods of use
US6582426B2 (en) 1999-06-17 2003-06-24 Vivant Medical, Inc. Needle kit and method for microwave ablation, track coagulation, and biopsy
US7160292B2 (en) 1999-06-17 2007-01-09 Vivant Medical, Inc. Needle kit and method for microwave ablation, track coagulation, and biopsy
US6306132B1 (en) 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US7033352B1 (en) 2000-01-18 2006-04-25 Afx, Inc. Flexible ablation instrument
US7301131B2 (en) 2000-01-18 2007-11-27 Afx, Inc. Microwave ablation instrument with flexible antenna assembly and method
US6976986B2 (en) 2000-04-12 2005-12-20 Afx, Inc. Electrode arrangement for use in a medical instrument
US7156841B2 (en) 2000-04-12 2007-01-02 Afx, Inc. Electrode arrangement for use in a medical instrument
US20040087956A1 (en) * 2000-09-01 2004-05-06 Synthes (U.S.A) Tools and methods for creating cavities in bone
US7476226B2 (en) 2000-09-01 2009-01-13 Synthes (U.S.A.) Tools and methods for creating cavities in bone
US20040133208A1 (en) * 2000-09-01 2004-07-08 Synthes (Usa) Tools and methods for creating cavities in bone
US6679886B2 (en) 2000-09-01 2004-01-20 Synthes (Usa) Tools and methods for creating cavities in bone
US7311672B2 (en) * 2000-10-16 2007-12-25 Sanarus Medical, Inc. Device for biopsy of tumors
EP1333759A1 (en) * 2000-10-16 2003-08-13 Sanarus Medical, Inc. Device for biopsy of tumors
AU2005232255B2 (en) * 2000-10-16 2007-05-10 Sanarus Medical, Inc. Device for biopsy of tumors
US20030195436A1 (en) * 2000-10-16 2003-10-16 Sanarus Medical Incorporated Device for biopsy of tumors
EP1333759A4 (en) * 2000-10-16 2007-04-25 Sanarus Medical Inc Device for biopsy of tumors
US20080103411A1 (en) * 2000-10-16 2008-05-01 Sanarus Medical Inc. Device for Biopsy of Tumors
US7303560B2 (en) 2000-12-29 2007-12-04 Afx, Inc. Method of positioning a medical instrument
US7099717B2 (en) 2002-01-03 2006-08-29 Afx Inc. Catheter having improved steering
US7192427B2 (en) 2002-02-19 2007-03-20 Afx, Inc. Apparatus and method for assessing transmurality of a tissue ablation
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
US11045253B2 (en) 2002-04-16 2021-06-29 Covidien Lp Electrosurgical energy channel splitters and systems for delivering electrosurgical energy
US8808282B2 (en) 2002-04-16 2014-08-19 Covidien Lp Microwave antenna having a curved configuration
US7468042B2 (en) 2002-04-16 2008-12-23 Vivant Medical, Inc. Localization element with energized tip
US7846108B2 (en) 2002-04-16 2010-12-07 Vivant Medical, Inc. Localization element with energized tip
US10039602B2 (en) 2002-04-16 2018-08-07 Covidien Lp Electrosurgical energy channel splitters and systems for delivering electrosurgical energy
US10143520B2 (en) 2002-04-16 2018-12-04 Covidien Lp Microwave antenna guide assembly
US10363097B2 (en) 2002-04-16 2019-07-30 Coviden Lp Ablation system having multiple energy sources
US11291472B2 (en) 2002-05-31 2022-04-05 Teleflex Life Sciences Limited Powered drivers, intraosseous devices and methods to access bone marrow
US9545243B2 (en) 2002-05-31 2017-01-17 Vidacare LLC Bone marrow aspiration devices and related methods
US11298202B2 (en) 2002-05-31 2022-04-12 Teleflex Life Sciences Limited Biopsy devices and related methods
US11103282B1 (en) 2002-05-31 2021-08-31 Teleflex Life Sciences Limited Powered drivers, intraosseous devices and methods to access bone marrow
US11324521B2 (en) 2002-05-31 2022-05-10 Teleflex Life Sciences Limited Apparatus and method to access bone marrow
US11234683B2 (en) 2002-05-31 2022-02-01 Teleflex Life Sciences Limited Assembly for coupling powered driver with intraosseous device
US11337728B2 (en) 2002-05-31 2022-05-24 Teleflex Life Sciences Limited Powered drivers, intraosseous devices and methods to access bone marrow
US11266441B2 (en) 2002-05-31 2022-03-08 Teleflex Life Sciences Limited Penetrator assembly for accessing bone marrow
US9717564B2 (en) * 2002-05-31 2017-08-01 Teleflex Medical Devices S.À R.L. Biopsy devices and related methods
US20110082387A1 (en) * 2002-05-31 2011-04-07 Miller Larry J Biopsy Devices and Related Methods
US8328847B2 (en) 2002-12-03 2012-12-11 Trans1 Inc. Assemblies for provision of therapy to motion segments
US8167947B2 (en) 2002-12-03 2012-05-01 Trans1 Inc. Methods for push distraction and for provision of therapy to adjacent motion segments
US8523918B2 (en) 2002-12-03 2013-09-03 Baxano Surgical, Inc. Therapy to adjacent motion segments
US20110035005A1 (en) * 2002-12-03 2011-02-10 Trans1 Inc. Methods for push distraction and for provision of therapy to adjacent motion segments
US7465304B1 (en) * 2003-04-14 2008-12-16 Spine Design, Inc. Anterior cervical facet discectomy surgery kit and method for its use
US6938680B2 (en) * 2003-07-14 2005-09-06 Thermal Corp. Tower heat sink with sintered grooved wick
US20050228312A1 (en) * 2004-03-31 2005-10-13 Vihar Surti Biopsy needle system
US11213236B2 (en) 2005-06-06 2022-01-04 Nuvasive, Inc. Insulated pedicle access system and related methods
US8784330B1 (en) 2005-06-06 2014-07-22 Nu Vasive, Inc. Insulated pedicle access system and related methods
US7942826B1 (en) 2005-06-06 2011-05-17 Nuvasive, Inc. Insulated pedicle access system and related methods
US10517502B1 (en) 2005-06-06 2019-12-31 Nuvasive, Inc. Insulated pedicle access system and related methods
US20080033422A1 (en) * 2006-08-04 2008-02-07 Turner Paul F Microwave applicator with margin temperature sensing element
US20080221650A1 (en) * 2006-08-04 2008-09-11 Turner Paul F Microwave applicator with adjustable heating length
US11426249B2 (en) 2006-09-12 2022-08-30 Teleflex Life Sciences Limited Vertebral access system and methods
US9333032B2 (en) 2006-09-29 2016-05-10 Covidien Lp Microwave antenna assembly and method of using the same
US8068921B2 (en) 2006-09-29 2011-11-29 Vivant Medical, Inc. Microwave antenna assembly and method of using the same
US8374673B2 (en) 2007-01-25 2013-02-12 Warsaw Orthopedic, Inc. Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US7987001B2 (en) 2007-01-25 2011-07-26 Warsaw Orthopedic, Inc. Surgical navigational and neuromonitoring instrument
US11771439B2 (en) 2007-04-04 2023-10-03 Teleflex Life Sciences Limited Powered driver
US20080281224A1 (en) * 2007-05-11 2008-11-13 Johnson Michael E Biopsy device needle tip
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US10716591B2 (en) 2008-04-01 2020-07-21 The General Hospital Corporation Method and apparatus for tissue grafting
US9827006B2 (en) * 2008-04-01 2017-11-28 The General Hospital Corporation Method and apparatus for tissue grafting
US20120041430A1 (en) * 2008-04-01 2012-02-16 The General Hospital Corporation Method and apparatus for tissue grafting
US9750508B1 (en) 2009-11-11 2017-09-05 Nuvasive, Inc. Insulated pedicle access system and related methods
US20110118724A1 (en) * 2009-11-17 2011-05-19 Bsd Medical Corporation Microwave coagulation applicator and system with fluid injection
US20110118720A1 (en) * 2009-11-17 2011-05-19 Bsd Medical Corporation Microwave coagulation applicator and system
US20110125148A1 (en) * 2009-11-17 2011-05-26 Turner Paul F Multiple Frequency Energy Supply and Coagulation System
US9993294B2 (en) 2009-11-17 2018-06-12 Perseon Corporation Microwave coagulation applicator and system with fluid injection
US11253316B2 (en) 2009-11-17 2022-02-22 Varian Medical Systems, Inc. Microwave coagulation applicator and system
US9968399B2 (en) 2009-11-17 2018-05-15 Perseon Corporation Microwave coagulation applicator and system
US8414570B2 (en) 2009-11-17 2013-04-09 Bsd Medical Corporation Microwave coagulation applicator and system
US8551083B2 (en) 2009-11-17 2013-10-08 Bsd Medical Corporation Microwave coagulation applicator and system
US20110263922A1 (en) * 2010-04-22 2011-10-27 Susanne Dornberger Method, device and apparatus system for prostate cancer therapy
US9895162B2 (en) 2010-05-07 2018-02-20 The General Hospital Corporation Method and apparatus for tissue grafting and copying
US11832845B2 (en) 2010-05-07 2023-12-05 The General Hospital Corporation Method and apparatus for tissue grafting and copying
US10736654B2 (en) 2010-05-07 2020-08-11 The General Hospital Corporation Method and apparatus for tissue grafting and copying
US9226732B2 (en) 2011-11-23 2016-01-05 Harvest Technologies Corporation Bone marrow aspiration device and needle
US9730679B1 (en) * 2012-12-21 2017-08-15 University Of South Florida Device for sterile uterine sampling and drug delivery
US10543127B2 (en) 2013-02-20 2020-01-28 Cytrellis Biosystems, Inc. Methods and devices for skin tightening
US11534344B2 (en) 2013-02-20 2022-12-27 Cytrellis Biosystems, Inc. Methods and devices for skin tightening
US10251792B2 (en) 2013-02-20 2019-04-09 Cytrellis Biosystems, Inc. Methods and devices for skin tightening
US10555754B2 (en) 2013-08-09 2020-02-11 Cytrellis Biosystems, Inc. Methods and apparatuses for skin treatment using non-thermal tissue ablation
US10953143B2 (en) 2013-12-19 2021-03-23 Cytrellis Biosystems, Inc. Methods and devices for manipulating subdermal fat
US11896261B2 (en) 2014-11-14 2024-02-13 Cytrellis Biosystems, Inc. Devices and methods for ablation of the skin
US11324534B2 (en) 2014-11-14 2022-05-10 Cytrellis Biosystems, Inc. Devices and methods for ablation of the skin
US10070886B2 (en) 2015-04-22 2018-09-11 Medline Industries, Inc. Method of harvesting tissue using sequential sections of a two dimensional array of needles
US10743904B2 (en) 2015-04-22 2020-08-18 Medline Industries, Inc. Two-dimensional needle array device and method of use
US10898220B2 (en) 2015-04-22 2021-01-26 Medline Industries, Inc. Method of harvesting tissue using sequential sections of a two dimensional array of needles
US9743949B2 (en) 2015-04-22 2017-08-29 Medline Industries, Inc. Two-dimensional needle array device and method of use
US11819235B2 (en) 2015-04-22 2023-11-21 Medline Industries, Lp Method and system for harvesting biological tissue
US10478212B2 (en) 2015-04-22 2019-11-19 Medline Industries, Inc. Method and system for harvesting biological tissue
US9901393B2 (en) 2015-11-09 2018-02-27 First Pass, Llc Cautery device
US11116567B2 (en) 2015-11-09 2021-09-14 Single Pass, Llc Cautery device
US11559290B2 (en) 2016-01-15 2023-01-24 Covidien Lp Navigable endobronchial tool to access tissue outside a bronchus
US10582914B2 (en) 2016-01-15 2020-03-10 Covidien Lp Navigable endobronchial tool to access tissue outside a bronchus
US11166743B2 (en) 2016-03-29 2021-11-09 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US11464954B2 (en) 2016-09-21 2022-10-11 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US20210205015A1 (en) * 2016-11-30 2021-07-08 Traceless Biopsy, Llc Biopsy tract ablation system for tumor seeding prevention and cauterization
US10959776B2 (en) * 2016-11-30 2021-03-30 Traceless Biopsy, Llc Biopsy tract ablation system for tumor seeding prevention and cauterization
US11457909B2 (en) * 2017-11-14 2022-10-04 Min Ho Jung Sheath device for biportal endoscopic spinal surgery
US11819254B2 (en) 2020-05-11 2023-11-21 Alphatec Spine, Inc. Stimulating targeting needle
US11246637B2 (en) * 2020-05-11 2022-02-15 Alphatec Spine, Inc. Stimulating targeting needle

Similar Documents

Publication Publication Date Title
US3598108A (en) Biopsy technique and biopsy device
US3630192A (en) Instrument for internal organ biopsy
US6176834B1 (en) Minimally invasive biopsy device
US6036698A (en) Expandable ring percutaneous tissue removal device
US4177797A (en) Rotary biopsy device and method of using same
US3628524A (en) Biopsy needle
US5005585A (en) Biopsy needle construction
US20030097079A1 (en) Biopsy needle sheath
US6027458A (en) Device for taking a tissue sample
US6976968B2 (en) Methods and devices for collection of soft tissue
JP3710475B2 (en) Biopsy sampling instrument
US6083237A (en) Biopsy instrument with tissue penetrating spiral
US5470308A (en) Medical probe with biopsy stylet
US20070203427A1 (en) Devices and methods for performing procedures on a breast
US20050228312A1 (en) Biopsy needle system
US20040030263A1 (en) Undamaged tissue collection assembly and method
US11806042B2 (en) Perforating trocar
CA2129639A1 (en) Apparatus and method for interstitial treatment
WO2000012010A1 (en) Percutaneous tissue removal device
DE19713797A1 (en) Electrosurgical instrument for use in e.g. myoma necrosis
GB2099703A (en) Biopsy needle
US9237906B2 (en) Combination of a bone drill and a sleeve
CN210447158U (en) Novel puncture biopsy trocar
US20050070818A1 (en) Biopsy device with viewing assembly
WO2014014336A1 (en) Biopsy track ablation device and method thereof