US3599244A - Dynamic action valveless artificial heart utilizing dual fluid oscillator - Google Patents

Dynamic action valveless artificial heart utilizing dual fluid oscillator Download PDF

Info

Publication number
US3599244A
US3599244A US3599244DA US3599244A US 3599244 A US3599244 A US 3599244A US 3599244D A US3599244D A US 3599244DA US 3599244 A US3599244 A US 3599244A
Authority
US
United States
Prior art keywords
blood
pumping
capacitance
mainstream
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Donald E Wortman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3599244A publication Critical patent/US3599244A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/562Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/117Extracorporeal pumps, i.e. the blood being pumped outside the patient's body for assisting the heart, e.g. transcutaneous or external ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/869Compliance chambers containing a gas or liquid other than blood to compensate volume variations of a blood chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/10Fluid amplifiers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2273Device including linearly-aligned power stream emitter and power stream collector

Definitions

  • the present invention relates generally to an artificial heart and more particularly to an electromechanical system that incorporates the principles of fluidics to provide a device for use as a temporary replacement for or as an aid to the heart in circulating blood throughout the body.
  • valves tend to wear out, leak, lose their efficiency and promote blood clots; pumps and collapsible chambers tend to exert large compressive forces upon the blood to the point where the blood would become damaged; and many other moving parts wear out or become inefficient.
  • an artificial heart for use as either a supplement to for the natural heart to be implanted in the chest of the user or as an external temporary replacement during surgery or the like.
  • the device of the present invention is characterized by two interdependent fluid oscillators and two free-running fluid pumps.
  • the oscillators are separated by a-common flexible diaphragm which allows alternate pulsing to the two pumps.
  • the pumps an: run continuously at a preselected speed and have pressurevolume flow responses which simulate the natural heart.
  • the present invention provides great improvement over prior art in that is simulates the action of the natural heart and yet has no valves to clog the blood and no collapsible chambers to squeeze or. crush theblood thus minimizing deterioration-and wear of the device itself while allowing more efficient and dependable operation.
  • the drawing is a schematic partial cross section illustration of an artificial heart in accordance with the present invention.
  • the heart is a muscular organ divided into four chambers.
  • the upper chamber on each side of the heart is called an auricle and below each auricle is another chamber called the ventricle.
  • Deoxygenated blood from the body enters the right auricle of the heart through two large veins.
  • the blood-filled right auricle then contracts, sending the blood into the right ventricle through the tricuspid valve.
  • the right ventricle contracts, which simultaneously closes the tricuspid valve and opens the semilunar valve leading to the lungs via the pulmonary artery.
  • oxygen-enriched blood flows into the left auricle through the pulmonary vein.
  • the filled left auricle contracts, forcing blood through the mitral valve into the left ventricle which in turn will contract and force the blood through another semilunar valve into the aorta which is the main artery to the body.
  • the drawing illustrates the artificial heart of the present invention, showing a cross-sectional view of a preferred embodiment of the dual fluidic oscillator and a schematic representation of the pumps and associated hardware.
  • the dual fluidic oscillator is comprised of two back-to-back RCR (resistancecupacitancc-resistance) fluid oscillators shown at It) and I2 and internally separated by a flexible diaphragm [8 which is made of a'suitable nonporous materialsuch as silicone rubber.
  • the two oscillators l0 and i2 provide a pulsed flow of blood to two fluid pumps 14 and 16 by way of the conduits 44 and 46, respectively.
  • the input to oscillators l0 and I2 is received from conduits 20 and 22, respectively, and proceeds to travel the RCR flow paths in each oscillator as defined by resistance conduits 28 and 30, capacitance tanks 32 and 34 and resistance conduits 40 and 42, before exiting to pumps 14 and 16 by way of conduits 44 and 46, respectively.
  • the oscillators l0 and i2 alternately oscillate at a frequency that varies directly as the flow of blood through the body varies, When the body is at rest, there exists a low blood flow and the frequency of oscillation will automatically lower. When the body is at work and more blood flows in the system, the oscillation will increase in frequency to pump more blood.
  • the back-to-hack fluid oscillators l0 and 12 each operate much like a'standard RCR fluid oscillator but for the addition of the flexible diaphragm 18 which separates capacitance chambers 32 and 34 and allows the device a certain compliance with" blood plCSSUJC variations and provides the pulsing action of the artificial heart.
  • the pumps thus respond to pressure variations at their inlets 44 and 46 and outlets 24 and 26 in a fashion analogous to the natural heart.
  • a centrifugal pump posses sing such characteristics that could be utilized in the present invention is known in the art as a centrifugal pump. Centrifugal pumps have been shown to pump blood ina highly etficient and nondestructive manner. as evidenced by the F. Dorman et al. paper in Vol.
  • conduit 44 which leads to pump [4 which pumps the oxygen-rich blood out conduit 24 to the body.
  • pump [4 which pumps the oxygen-rich blood out conduit 24 to the body.
  • tank 32 is nearly empty and diaphragm 18 is fully in position 51, which would imply a nearly full supply of deoxygenated blood in tank 34.
  • the control jet will cease to issue from conduit 40.
  • Part of the blood entering along conduit 20 will then reattach to resistance conduit Zll'and begin to fill tank 32 once more.
  • diaphragm 18 will move towards position 50 and exert pressure on the blood in nearly filled tank 34 forcing the blood to exit through resistance conduit 42 which now acts as a control jet to impinge upon the main stream of blood entering conduit 22 from the body.
  • the main stream entering conduit 22 is thus deflected and attaches to conduit 46 which leads to pump 16, which pumps the deoxygenatcd blood out conduit 26 to the lungs.
  • the control jet from conduit 42 will slow to a trickle and eventually cease. Part of the blood subsequently entering conduit 22 will reattach along conduit 30 and the above cycle will repeat itself.
  • An artificial heart to act as a circulatory aid for the natural heart either internally or externally of the body comprising a. first and second pulsing means for producing first and second pulsed flows of blood, respectively, each of said pulsing means comprising an input conduit for receiving a mainstream of blood, 2. a capacitance chamber to store said mainstream of blood until a certain volume is attained, 3. a control conduit for transmitting the blood from said capacitance chamber to deflect said mainstream of blood upon the application of forcing means.
  • said forcing means comprising a flexible diaphragm located between and physically separating said capacitance chambers whereby blood is ejected from one of said capacitance chambers by a force on the diaphragm applied by the blood that is filling the other of the said capacitance chambers, said filling and ejecting being a continuous alternating action whose repetition frequencyfis dependent upon the rate of flow of blood through the system, and
  • first and second pumping means for receiving and pumping said first and second pulsed flows of blood to the remainder of the circulatory system, the output volume flow of said first and second pumping means being directly proportional to the input pressure of the said first and second pulsed flows of blood and inversely proportional to the pressure against which they are pumping;
  • first and second pumping means each are comprised of a centrifugal pump.

Abstract

An artificial heart intended for supplementing or temporarily replacing the natural heart for circulating blood through the body. The heart relies on the dynamic flow properties of the blood for its operation, utilizing a unique dual fluid oscillator with a common diaphragm for providing the pulsing action to a pair of pumps that have pressure-volume flow relationships that simulate the natural heart.

Description

United States Patent Donald E. Wortmol 609 Mm'lel'SL, Rockville, Md. 20852 I783 Nov. 20. I969 All. I7. I97] [72] lmientor l 21 Appl. No. [22] Filed {45} Patented I54] DYNAMKI ACTION VALVELESS ARTIFICIAL IIEAI'I UTILIZING DUAL FLUID OSCILLATOR 3Clnhl. I Dre-h Fig.
[52] 0.8.0.... 3/1,!28/1 R,- l28/DIG. 10. 3/016. 2,417/350, |37/8l.5 [5t] A6" 1/24 [501 FieldolSeueh ..3/l,DlG.2; H8. 214, DIG. 3,D[G. l0; l37l8l.5;417/350 (56] ReIereneesClted UNITED STATES PATENTS 3.l48,624 9/l964 Baldwin 3/DIG. 2 3,208,448 9/!965 Woodward l28/l 3,481,784 l/l970 Rafferty et al. 128/! X OTHER REFERENCES l. An Ideal Heart Pump With Hydrodynamic Characteristics Analogous To The Mammalian Heart" by G. A. Saxton et al., Trans. Amer. Soc. Artif. lnt. Organs, Vol. VI, I960, pp. 288- 291.
2. Progress In The Design Of A Centrifugal Cardiac Assist Pump With Trans-cutaneous Energy Transmission By Magnetic Coupling" by F. Dorman et al., Trans. Amer. Soc. Artit'. lnt. Organs, Vol. XV, I969.
Primary Examiner-Richard A. Gaudet Assistant Examiner-Ronald L. Frinks Auorneys-Harry M. Saragovitz, Edward J. Kelly, Herbert Berl and J. D. Edgerton ABSTRACT: An artificial heart intended for supplementing or temporarily replacing the natural heart for circulating blood through the body. The heart relies on the dynamic flow properties of the-blood for its operation, utilizing a unique dual fluid oscillator with a common diaphragm for providing the pulsing action to a pair of pumps that have pressurevolume flow relationships that simulate the natural heart.
PATENTEU AUG! 7 an FQOM BODY EWM DYNAMIC ACTION VALVELESS ARTIFICIAL HEART UTILIZING DUAL FLUID OSCILLATOR RIGHTS OF GOVERNMENT The invention described herein may be manufactured, used, and licensed by or for the United States Government for governmental purposes without the payment to me of any royalty thereon.
BACKGROUND OF THE INVENTION The present invention relates generally to an artificial heart and more particularly to an electromechanical system that incorporates the principles of fluidics to provide a device for use as a temporary replacement for or as an aid to the heart in circulating blood throughout the body.
Devices heretofore developed and intended for use as artificial hearts have fallen far short of their expectations, one reason being their inherent complexity. Earlier embodiments of artificial hearts while attempting to simulate as closely as possible the action of' the human heart, were dependent for their operation upon a multitude of moving parts such as valves, flexible chambers, and displacement-type pumps, plus sophisticated synchronous control systems and sensors for either speeding up or slowing down the pumping action or heartbeat." Such devices have been found to require relatively large power supplies and to occupy large volumes in addition to being prohibitively expensive, thus detracting from their usefulness as an aid to the natural heart. Additionally, such devices have not been suited for prolonged service: valves tend to wear out, leak, lose their efficiency and promote blood clots; pumps and collapsible chambers tend to exert large compressive forces upon the blood to the point where the blood would become damaged; and many other moving parts wear out or become inefficient.
It is therefore an object of the present invention to provide an artificial'heart that is capable of temporarily replacing or aiding the natural heart by completely or partially taking over the operation of pumping blood through the circulatory system. I
It is another object of the present invention to provide an artificial heart that is inherently pressure sensitive and thus does not require any external regulating mechanism for long term use.
It is an additional object of the present invention to provide tlon.
SUMMARY OF THE INVENTION Briefly, in accordance with this invention, an artificial heart is provided for use as either a supplement to for the natural heart to be implanted in the chest of the user or as an external temporary replacement during surgery or the like. The device of the present invention is characterized by two interdependent fluid oscillators and two free-running fluid pumps. The oscillators are separated by a-common flexible diaphragm which allows alternate pulsing to the two pumps. The pumps an: run continuously at a preselected speed and have pressurevolume flow responses which simulate the natural heart. The present invention provides great improvement over prior art in that is simulates the action of the natural heart and yet has no valves to clog the blood and no collapsible chambers to squeeze or. crush theblood thus minimizing deterioration-and wear of the device itself while allowing more efficient and dependable operation.
BRIEF DESCRIPTION OF THE DRAWING v The specific nature of the invention as well as other objects, aspects, uses, and advantages thereof will clearly appear from the following description and from the accompanying drawing, in which:
The drawing is a schematic partial cross section illustration of an artificial heart in accordance with the present invention.
DESCRlPTlON OF THE PREFERRED EMBODlMENT A brief review of the natural heart's pumping action will facilitate understanding of the efficiency with which the present invention simulates the actions ofthe natural heart.
The heart is a muscular organ divided into four chambers. The upper chamber on each side of the heart is called an auricle and below each auricle is another chamber called the ventricle. Deoxygenated blood from the body enters the right auricle of the heart through two large veins. The blood-filled right auricle then contracts, sending the blood into the right ventricle through the tricuspid valve. The right ventricle then contracts, which simultaneously closes the tricuspid valve and opens the semilunar valve leading to the lungs via the pulmonary artery. From the lungs, oxygen-enriched blood flows into the left auricle through the pulmonary vein. The filled left auricle contracts, forcing blood through the mitral valve into the left ventricle which in turn will contract and force the blood through another semilunar valve into the aorta which is the main artery to the body.
It is evident that an artificial heart built to the above specifications to operate over an extended period of time would encounter many mechanical difficulties due to inevitable deteriorations ofits numerous valves, chambers and contraction apparatus. The present invention, while efficiently aiding the final result of the natural heart, does not attempt to duplicate its actions. Rather it employs well-known fluidic principles in a unique dual fluid oscillator that provides alternate pulsing to a pair of fluid pumps that respond to pressure input variations as would the natural heart.
The drawing illustrates the artificial heart of the present invention, showing a cross-sectional view ofa preferred embodiment of the dual fluidic oscillator and a schematic representation of the pumps and associated hardware. The dual fluidic oscillator is comprised of two back-to-back RCR (resistancecupacitancc-resistance) fluid oscillators shown at It) and I2 and internally separated by a flexible diaphragm [8 which is made of a'suitable nonporous materialsuch as silicone rubber. The two oscillators l0 and i2 provide a pulsed flow of blood to two fluid pumps 14 and 16 by way of the conduits 44 and 46, respectively. The input to oscillators l0 and I2 is received from conduits 20 and 22, respectively, and proceeds to travel the RCR flow paths in each oscillator as defined by resistance conduits 28 and 30, capacitance tanks 32 and 34 and resistance conduits 40 and 42, before exiting to pumps 14 and 16 by way of conduits 44 and 46, respectively. The oscillators l0 and i2 alternately oscillate at a frequency that varies directly as the flow of blood through the body varies, When the body is at rest, there exists a low blood flow and the frequency of oscillation will automatically lower. When the body is at work and more blood flows in the system, the oscillation will increase in frequency to pump more blood. ln-other words, the operation of thcsystcm is based on the dynamic properties of blood flow. The back-to-hack fluid oscillators l0 and 12 each operate much like a'standard RCR fluid oscillator but for the addition of the flexible diaphragm 18 which separates capacitance chambers 32 and 34 and allows the device a certain compliance with" blood plCSSUJC variations and provides the pulsing action of the artificial heart.
Pumps 14 and if have the characteristics that their outputs are directlyrclated to their input pressure and inversely related to the pressure head against which they-are pumping. The pumps thus respond to pressure variations at their inlets 44 and 46 and outlets 24 and 26 in a fashion analogous to the natural heart. One embodiment of a pump posses sing such characteristics that could be utilized in the present invention is known in the art as a centrifugal pump. Centrifugal pumps have been shown to pump blood ina highly etficient and nondestructive manner. as evidenced by the F. Dorman et al. paper in Vol. XV of The Transactions of the American Society of Artificial Internal Organs 1969, entitled "Progress in the Design of a Centrifugal Cardiac Assist Pump with Trans-cutaneous Energy Transmission by Magnetic Coupling." Pumps 14 and [6 are powered by a motor 48 which drives shafts 52 and 54, and a power supply 56. Much effort has been directed towards perfecting implantable motors and power supplies for the uses described herein, whereas external equivalents are also well known in the art. The entire heart .can be constructed of a material that is noncorrosive, has nonoccluding surfaces, and ,does not damage theblood in any way. a
In operation, consider the deoxygenated blood to be entering the artificial heart from the body through conduit 22 to fill a nearly empty capacitance tank 34 through resistance conduit 30. The near-emptiness of capacitance tank 34 implies that capacitance tank 32 of oscillator I is nearly full and diaphragm 18 is in position 50. As tank 34 becomes filled with blood, diaphragm 18 moves from position 50 towards position 51. The increased pressure on diaphragm 18 from the blood in tank 34 will force the oxygen-rich blood in nearly full tank 32 to exit through resistance conduit 40 which acts as a control jet for blood subsequently entering conduit 20 from the lungs. The control jet issuing from conduit will impinge upon the blood entering interaction region 60 and divert it to conduit 44 which leads to pump [4 which pumps the oxygen-rich blood out conduit 24 to the body. This action continues until tank 32 is nearly empty and diaphragm 18 is fully in position 51, which would imply a nearly full supply of deoxygenated blood in tank 34. Once the diaphragm is in position 51, no force is exerted on the blood remaining in tank 32 and thus the control jet will cease to issue from conduit 40. Part of the blood entering along conduit 20 will then reattach to resistance conduit Zll'and begin to fill tank 32 once more. As tank 32 fills with blood, diaphragm 18 will move towards position 50 and exert pressure on the blood in nearly filled tank 34 forcing the blood to exit through resistance conduit 42 which now acts as a control jet to impinge upon the main stream of blood entering conduit 22 from the body. The main stream entering conduit 22 is thus deflected and attaches to conduit 46 which leads to pump 16, which pumps the deoxygenatcd blood out conduit 26 to the lungs. Once the blood has been nearly emptied from tank 34 and diaphragm I8 is in position 50. the control jet from conduit 42 will slow to a trickle and eventually cease. Part of the blood subsequently entering conduit 22 will reattach along conduit 30 and the above cycle will repeat itself. I The foregoing description encompasses one cycle in the operation of the artificial heart; i.e. one pulse has issued from each oscillator to each pump. The duration of a single cycle is controlled in part by the dimensions of the resistance conduits and the capacitance tanks which can be varied for each patient: needs by the positioning of the partitions 36 and 38$ During the alternate pulsing of oscillators IO-and l2. pumps 14 and 16 are running continuously and at the same speed.- The pumps will pump only that blood thatis present at their inlets. Thus if the blood pressure increases or decreases and forces the frequency of oscillation to do likewise, the pumps would automatically adjust to the change in pulsatile flow.
From the'foregoing it is apparent that l have provided a greatly improved artificial heart capable of assisting the natural heart by complete implantation within the body or for use as an external temporary aid to circulation. The device heretofore described is simple and uncomplicated, relying on the dynamic flow properties of the blood for its operation. No valves or collapsible chambers are used, which makes the device less susceptible to wear and tear while insuring further that the blood remains undamaged. The entire apparatus can be constructed with a material that is noncorrosive and easily adaptable to the use intended.
I wish to be understood that I do not desire to be limited to the exact details of construction shown and described, for obvious modifications will occur to a person skilled in the art. For example, the positions of the pumps and oscillators could be interchanged if greater compliance with the circulating system could be attained.
lclairn as my invention:
1. An artificial heart to act as a circulatory aid for the natural heart either internally or externally of the body comprising a. first and second pulsing means for producing first and second pulsed flows of blood, respectively, each of said pulsing means comprising an input conduit for receiving a mainstream of blood, 2. a capacitance chamber to store said mainstream of blood until a certain volume is attained, 3. a control conduit for transmitting the blood from said capacitance chamber to deflect said mainstream of blood upon the application of forcing means. said forcing means comprising a flexible diaphragm located between and physically separating said capacitance chambers whereby blood is ejected from one of said capacitance chambers by a force on the diaphragm applied by the blood that is filling the other of the said capacitance chambers, said filling and ejecting being a continuous alternating action whose repetition frequencyfis dependent upon the rate of flow of blood through the system, and
an output conduit for receiving said mainstream of blood after its deflection by the blood issuing from said control conduit;
b. first and second pumping means for receiving and pumping said first and second pulsed flows of blood to the remainder of the circulatory system, the output volume flow of said first and second pumping means being directly proportional to the input pressure of the said first and second pulsed flows of blood and inversely proportional to the pressure against which they are pumping; and
c. power means to drive said first and second pumping means at a continuous and nonvarying speed.
2. The artificial heart of claim I wherein said first and second pumping means each are comprised of a centrifugal pump. I
3. The invention according to claim 1 wherein said first and second pumping means are located at the inlets of said first and second pulsing means.

Claims (6)

1. An artificial heart to act as a circulatory aid for the natural heart either internally or externally of the body comprising a. first and second pulsing means for producing first and second pulsed flows of blood, respectively, each of said pulsing means comprising 1. an input conduit for receiving a mainstream of blood, 2. a capacitance chamber to store said mainstream of blood until a certain volume is attained, 3. a control conduit for transmitting the blood from said capacitance chamber to deflect said mainstream of blood upon the application of forcing means, said forcing means comprising a flexible diaphragm located between and physically separating said capacitance chambers whereby blood is ejected from one of said capacitance chambers by a force on the diaphragm applied by the blood that is filling the other of the said capacitance chambers, said filling and ejecting being a continuous alternating action whose repetition frequency is dependent upon the rate of flow of blood through the system, and 4. an output conduit for receiving said mainstream of blood after its deflection by the blood issuing from said control conduit; b. first and second pumping means for receiving and pumping said first and second pulsed flows of blood to the remainder of the circulatory system, the output volume flow of said first and second pumping means being directly proportional to the input pressure of the said first and second pulsed flows of blood and inversely proportional to the pressure against which they are pumping; and c. power means to drive said first and second pumping means at a continuous and nonvarying speed.
2. a capacitance chamber to store said mainstream of blood until a certain volume is attained,
2. The artificial heart of claim 1 wherein said first and second puMping means each are comprised of a centrifugal pump.
3. The invention according to claim 1 wherein said first and second pumping means are located at the inlets of said first and second pulsing means.
3. a control conduit for transmitting the blood from said capacitance chamber to deflect said mainstream of blood upon the application of forcing means, said forcing means comprising a flexible diaphragm located between and physically separating said capacitance chambers whereby blood is ejected from one of said capacitance chambers by a force on the diaphragm applied by the blood that is filling the other of the said capacitance chambers, said filling and ejecting being a continuous alternating action whose repetition frequency is dependent upon the rate of flow of blood through the system, and
4. an output conduit for receiving said mainstream of blood after its deflection by the blood issuing from said control conduit; b. first and second pumping means for receiving and pumping said first and second pulsed flows of blood to the remainder of the circulatory system, the output volume flow of said first and second pumping means being directly proportional to the input pressure of the said first and second pulsed flows of blood and inversely proportional to the pressure against which they are pumping; and c. power means to drive said first and second pumping means at a continuous and nonvarying speed.
US3599244D 1969-11-20 1969-11-20 Dynamic action valveless artificial heart utilizing dual fluid oscillator Expired - Lifetime US3599244A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87848469A 1969-11-20 1969-11-20

Publications (1)

Publication Number Publication Date
US3599244A true US3599244A (en) 1971-08-17

Family

ID=25372124

Family Applications (1)

Application Number Title Priority Date Filing Date
US3599244D Expired - Lifetime US3599244A (en) 1969-11-20 1969-11-20 Dynamic action valveless artificial heart utilizing dual fluid oscillator

Country Status (1)

Country Link
US (1) US3599244A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771174A (en) * 1972-04-28 1973-11-13 D Wortman Artificial heart utilizing blood pulsing fluid oscillators
US4105016A (en) * 1976-11-18 1978-08-08 Donovan Jr Francis M Heart pump
US4369530A (en) * 1981-05-19 1983-01-25 Foxcroft Associates Hydraulically actuated cardiac prosthesis and method of actuation
US4376312A (en) * 1981-05-19 1983-03-15 Foxcroft Associates Hydraulically actuated cardiac prosthesis
US4381567A (en) * 1981-09-15 1983-05-03 Foxcroft Associates Hydraulically actuated total cardiac prosthesis with reversible pump and three-way ventricular valving
US4389737A (en) * 1981-09-15 1983-06-28 Foxcroft Associates Hydraulically actuated cardiac prosthesis with three-way ventricular valving
US4397049A (en) * 1981-09-15 1983-08-09 Foxcroft Associates Hydraulically actuated cardiac prosthesis with three-way ventricular valving
US6527698B1 (en) 2000-05-30 2003-03-04 Abiomed, Inc. Active left-right flow control in a two chamber cardiac prosthesis
US6540658B1 (en) 2000-05-30 2003-04-01 Abiomed, Inc. Left-right flow control algorithm in a two chamber cardiac prosthesis
US20070083077A1 (en) * 2005-10-06 2007-04-12 Alpha Dev, Llc. Total artificial heart system for auto-regulating flow and pressure balance
US20080192178A1 (en) * 2001-06-11 2008-08-14 Ilan Ben-David Device, system and method for color display
US20090149695A1 (en) * 2003-09-02 2009-06-11 Pulsecath B.V. Catheter pump, catheter and fittings therefore and methods of using a catheter pump
US8870951B1 (en) 2008-06-13 2014-10-28 Newheart Medical Devices Llc Total artificial heart system for auto-regulating flow and pressure
US20150297813A1 (en) * 2012-11-06 2015-10-22 Queen Mary University Of London Mechanical circulatory support

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148624A (en) * 1961-06-21 1964-09-15 Alan W Baldwin Hydraulic pump
US3208448A (en) * 1962-02-02 1965-09-28 Kenneth E Woodward Artificial heart pump circulation system
US3487784A (en) * 1967-10-26 1970-01-06 Edson Howard Rafferty Pumps capable of use as heart pumps

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148624A (en) * 1961-06-21 1964-09-15 Alan W Baldwin Hydraulic pump
US3208448A (en) * 1962-02-02 1965-09-28 Kenneth E Woodward Artificial heart pump circulation system
US3487784A (en) * 1967-10-26 1970-01-06 Edson Howard Rafferty Pumps capable of use as heart pumps

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. An Ideal Heart Pump With Hydrodynamic Characteristics Analogous To The Mammalian Heart by G. A. Saxton et al., Trans. Amer. Soc. Artif. Int. Organs, Vol. VI, 1960, pp. 288 291. *
2. Progress In The Design Of A Centrifugal Cardiac Assist Pump With Trans-cutaneous Energy Transmission By Magnetic Coupling by F. Dorman et al., Trans. Amer. Soc. Artif. Int. Organs, Vol. XV, 1969. *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771174A (en) * 1972-04-28 1973-11-13 D Wortman Artificial heart utilizing blood pulsing fluid oscillators
US4105016A (en) * 1976-11-18 1978-08-08 Donovan Jr Francis M Heart pump
US4369530A (en) * 1981-05-19 1983-01-25 Foxcroft Associates Hydraulically actuated cardiac prosthesis and method of actuation
US4376312A (en) * 1981-05-19 1983-03-15 Foxcroft Associates Hydraulically actuated cardiac prosthesis
US4381567A (en) * 1981-09-15 1983-05-03 Foxcroft Associates Hydraulically actuated total cardiac prosthesis with reversible pump and three-way ventricular valving
US4389737A (en) * 1981-09-15 1983-06-28 Foxcroft Associates Hydraulically actuated cardiac prosthesis with three-way ventricular valving
US4397049A (en) * 1981-09-15 1983-08-09 Foxcroft Associates Hydraulically actuated cardiac prosthesis with three-way ventricular valving
US6527698B1 (en) 2000-05-30 2003-03-04 Abiomed, Inc. Active left-right flow control in a two chamber cardiac prosthesis
US6540658B1 (en) 2000-05-30 2003-04-01 Abiomed, Inc. Left-right flow control algorithm in a two chamber cardiac prosthesis
US20080192178A1 (en) * 2001-06-11 2008-08-14 Ilan Ben-David Device, system and method for color display
US7988655B2 (en) * 2003-09-02 2011-08-02 Pulsecath B.V. Catheter pump, catheter and fittings therefore and methods of using a catheter pump
US20090149695A1 (en) * 2003-09-02 2009-06-11 Pulsecath B.V. Catheter pump, catheter and fittings therefore and methods of using a catheter pump
WO2007044601A2 (en) 2005-10-06 2007-04-19 Alpha Dev, Llc Total artificial heart system for auto-regulating flow and pressure balance
EP1942965A2 (en) * 2005-10-06 2008-07-16 Alpha Dev., Llc. Total artificial heart system for auto-regulating flow and pressure balance
WO2007044601A3 (en) * 2005-10-06 2008-01-24 Alpha Dev Llc Total artificial heart system for auto-regulating flow and pressure balance
US20110098807A1 (en) * 2005-10-06 2011-04-28 Frazier Oscar H Total Artificial Heart System For Auto-Regulating Flow And Pressure Balance
US20070083077A1 (en) * 2005-10-06 2007-04-12 Alpha Dev, Llc. Total artificial heart system for auto-regulating flow and pressure balance
EP1942965A4 (en) * 2005-10-06 2011-08-03 Alpha Dev Llc Total artificial heart system for auto-regulating flow and pressure balance
AU2006302329B2 (en) * 2005-10-06 2012-12-06 Alpha Dev, Llc Total artificial heart system for auto-regulating flow and pressure balance
US8790399B2 (en) 2005-10-06 2014-07-29 Newheart Medical Devices, Llc Total artificial heart system for auto-regulating flow and pressure balance
US8870951B1 (en) 2008-06-13 2014-10-28 Newheart Medical Devices Llc Total artificial heart system for auto-regulating flow and pressure
US20150297813A1 (en) * 2012-11-06 2015-10-22 Queen Mary University Of London Mechanical circulatory support

Similar Documents

Publication Publication Date Title
USRE27849E (en) Dynamic action valveless artifjcial heart utilizing dual fluid oscillator
US3208448A (en) Artificial heart pump circulation system
US3599244A (en) Dynamic action valveless artificial heart utilizing dual fluid oscillator
US6632169B2 (en) Optimized pulsatile-flow ventricular-assist device and total artificial heart
US3771173A (en) Artificial heart
US3860968A (en) Compact, implantable apparatus for pumping blood to sustain blood circulation in a living body
US5222980A (en) Implantable heart-assist device
US3771174A (en) Artificial heart utilizing blood pulsing fluid oscillators
Babbs New versus old theories of blood flow during CPR
US3919722A (en) Totally implantable artificial replacement heart
EP0902689B1 (en) Pulsatile flow generation in heart-lung machines
US3550162A (en) Blood pump control system
CA1329450C (en) Quick-connect, totally implantable cardiac prosthesis with floating membranes and removable sensitive elements
US5397349A (en) Muscle and air powered LVAD
WO1992008500A1 (en) Cardiac assist method and apparatus
US4046137A (en) Solenoid operated blood pump drive system
US3513486A (en) Heart assistance pump
US5314469A (en) Artificial heart
JPH0550296B2 (en)
JPS60225570A (en) Blood pump
US3456444A (en) Actuating unit for circulatory assist systems
US4750903A (en) Artificial heart
Liotta et al. RECENT MODIFICATIONS IN THE IMPIANTARLE LEFT VENTRICULAR BYPASS
US3585648A (en) Ultrasonic method and apparatus for pumping fluids through a human
Goldfarb Mechanical circulatory assistance in the treatment of cardiac failure