US3616452A - Production of deposits by cathode sputtering - Google Patents

Production of deposits by cathode sputtering Download PDF

Info

Publication number
US3616452A
US3616452A US739029A US3616452DA US3616452A US 3616452 A US3616452 A US 3616452A US 739029 A US739029 A US 739029A US 3616452D A US3616452D A US 3616452DA US 3616452 A US3616452 A US 3616452A
Authority
US
United States
Prior art keywords
anode
target
filament
diaphragm
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US739029A
Inventor
Jean Jacques Bessot
Jean Claude Burlurut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alsacienne de Constructions Atomiques de Telecommunications et dElectronique ALCATEL
Original Assignee
Alsacienne de Constructions Atomiques de Telecommunications et dElectronique ALCATEL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alsacienne de Constructions Atomiques de Telecommunications et dElectronique ALCATEL filed Critical Alsacienne de Constructions Atomiques de Telecommunications et dElectronique ALCATEL
Application granted granted Critical
Publication of US3616452A publication Critical patent/US3616452A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/355Introduction of auxiliary energy into the plasma using electrons, e.g. triode sputtering

Definitions

  • the invention eliminates the drawbacks of the prior methods for cathode-sputtering deposition by providing basically the use of a substantially neutral plasma adapted to be carried in the form of a stable parallel beam to a substantial distance from the source without resorting to intricate electrode arrangements.
  • the invention relates to improvements to the method whereby a deposit in thin-layer form can be obtained by cathode sputtering.
  • the invention also relates to the devices for carrying such improvements into effect.
  • a further prior art proposal was to place a tubular anode in front of a filament heated to a high temperature and to establish within the tubular anode a magnetic field parallel to the axis of said tubular anode, the electrons and ions formed being then caused to follow helical paths around the electrode axis, while a still further increase in the degree of gas ionization was provided by locating near the tubular electrode a second electrode of annular shape, also called extraction electrode, at a negative potential with respect to the tubular electrode. This extraction electrode acts to repell the electrons towards the tubular electrode and to direct the ions towards the target to be bombarded.
  • the result is an excellent electron concentration in the interior of the tubular electrode and a high-density electron flow at the outlet of the second electrode.
  • the resulting ion flux tends to be divergent and further electrodes must be so arranged as to render it parallel or convergent. Consequently, the devices for carrying such a method into effect become intricate, all the more as the voltages and relative positions of the electrodes are to be carefully controlled.
  • the purpose of the invention is to eliminate the drawbacks of the prior methods for cathode-sputtering deposition, mainly by providing the use of a substantially neutral plasma which can be carried in the form of a stable parallel beam to a rather great distance from the source without resorting to intricate electrode arrangements.
  • the method for producing a thin-layer deposit onto an object by cathode sputtering consists basically in establishing in vacuo at some distance from said target a substantially neutral plasma in pencil form by ionizing an inert gas by means of a diaphragm-delineated beam of electrons issuing from a heated filament and by subjecting said electrons to the concurrent action of an electric field which is created by a tubular anode located adjacent said diaphragm, and of a magnetic field which extends parallel to said anode axis, and in so arranging said target, which is at a negative potential, that said plasma pencil will lie level with the surface thereof, said object to be coated standing in close vicinity and opposite to said surface.
  • an advantageous feature of the method of the invention is that the substantially neutral plasma can be formed. within one compartment of the vacuum chamber and the target be arranged in another compartment, which may be under higher vacuum.
  • the compartments where the plasma is formed is connected to the target-containing compartment through an aperture of a low size sufficient to allow free passage of the plasma beam.
  • the invention affords operational facilities which are an advance over the prior art
  • the rate of deposition can reach a few tens of microns per hour, while the prior methods allowed but for deposition rates of some 23 u/hour.
  • the material used for sputtering may be silver, nickel, titanium, tantalium or other materials useful for thin-layer deposition.
  • the objects to be coated may be any articles especially insulating parts for the production of thin-layer circuits.
  • the inert gas used to form the plasma is advantageously argon.
  • FIG. 1 shows the first device
  • FIG. 2 shows the second device, which is to be preferred in practice.
  • FIG. 1 there is shown at l a vacuum vessel and reference 2 designates a filament which is brought by resistance heating through wires 20, 2b to a temperature of 2,000-2,800 C.
  • F ilament 2 is arranged within a bent tube 3, cooled by water circulated through 4 and provided in its upper portion with a diaphragm having a central hole 5.
  • An anode6, fed through 6a consists of a copper tube open at both ends which, as illustrated, has a diameter of 90 mm. and a height of l5 0 mm.
  • a coil 7 coaxial with the anode tube 6 creates in said tube a magnetic field of 200-500 gauss.
  • a target 8 made of the material to be sputtered, is suspended by means over the anode tube 6, lying parallel and relatively close to the anode tube axis. Oil circulated through 9 acts to cool the targetwhen the targetforming material cannot withstand the temperatures which may be attained by said target.
  • the plate 10 to be coated is disposed on a support I] of stainless'steel which is directly connected to earth at Ma.
  • An inlet valve 12 serves to admit an inert gas such as argon, which flows into vessel 1 through duct 120.
  • a vacuum unit, not shown, is connected to the vacuum vessel through a tube 13.
  • the anode current is of the order of 9 a.
  • the ion current is of the order of 300-500 ma. across a target of 25 cm. area, Le. a current density of l2-20 ma./cm.
  • the ion flow is attracted by the target, which is at a negative potential of 800 volts.
  • the voltage used on the target is caused to be alternatively positive and negative at a frequency from 13 to 20 Ml-lz., so that the target under sputtering by the ion bombardment be neutralized by the electron bombardment.
  • the target is arranged close and parallel to said axis so as to be at the highest ion density location.
  • the part to be coated or workpiece is spaced from the target by less then cm., so that the average free travel of the gas molecules is higher than said spacing and that the sputtered particles are not driven outside the space between the target and the workpiece.
  • the rate of deposition can be five to times higher than that obtained with the usual arrangements.
  • FIG. 2 shows an embodiment of the same device affording better handling facilities.
  • the vacuum vessel is formed of two compartments l4, 15 which can be connected through a coupling 16.
  • a magnetic coil 20 or a tubular magnet is coaxial with the anode tube 19.
  • a valve 21 serves to admit an inert gas or any other gas through duct 21a.
  • Compartment 15 is closed at its upper portion by a removable cover 15a.
  • Within compartment 15 are a target 23 fed at 23a and cooled by oil or air circulated through 24 and a support 25 for the object 26 to be coated.
  • a vacuum unit not shown is connected to compartment 15 by a tube 27.
  • Compartment 14 has a length substantially equal to the length of the plasma flow travel. Compartment 15a is of sufficient capacity to accommodate objects of relatively great extent lying on support 25.
  • the coil creating the longitudinal magnetic field can be placed closer to the tubular electrode axis and, on the other hand, higher vacuum may be obtained in the sputtering chamber than in the portion where the plasma is formed.
  • higher vacuum may be obtained in the sputtering chamber than in the portion where the plasma is formed.
  • Sputtering apparatus for depositing thin layers on substrates by ion-bombarding a target and sputtering material from the target to a substrate comprising: a vacuum chamber, evacuating means connected to the chamber for reducing pressure therein, an electron beam source mounted in the chamber comprising a filament, a diaphragm substantially covering the filament and having a central opening through which an electron beam projects, an elongated hollow cylindrical anode on an opposite side of the diaphragm from the filament and encircling the electron beam and extending substantially along an axis of the electron beam as it emerges through the diaphragm opening, ion beam generating means including said cylindrical anode and an electromagnetic coil surrounding said cylindrical anode, and gas injection means connected to the vessel and positioned therein for flowing gas into the cylindrical anode, first power supply means connected to the cylindrical anode for positively biasing the cylindrical anode and second power supply means connected to the coil for energizing the coil, whereby the cylindrical anode pulls electrons
  • filament comprises a helical wire having an axis and wherein axes of the filament, diaphragm opening, cylindrical anode and electromagnetic coil are concurrent.
  • the vacuum vessel comprises a main chamber and a tube opening into the main chamber and extending outward from an open connection therewith, wherein the filament, diaphragm and cylindrical anode are positioned within the tube and wherein the diaphragm opening, cylindrical anode have axes concurrent with a center of the open connection.

Abstract

The invention eliminates the drawbacks of the prior methods for cathode-sputtering deposition by providing basically the use of a substantially neutral plasma adapted to be carried in the form of a stable parallel beam to a substantial distance from the source without resorting to intricate electrode arrangements.

Description

United States Patent [72] Inventors Jean Jacques Bessot Arpajon; Jean Claude Burlurut, Versailles, both of France [21] Appl. No. 739,029
[22] Filed June 21, 1968 [45] Patented Oct. 26, 1971 [73] Assignee Societe Anonymey, Societe Alsacienne de Construction Atomiques de Telecommunications et dElectronique Alcatel Paris, France [32] Priority June 22, 1967 3 3] France [541 PRODUCTION OF DEPOSITS BY CATHODE SPUTTERING 3 Claims, 2 Drawing Figs. [52] US. Cl... 204/298 [51] Int. CL... C23c 15/00 [50] Field of Search [56] References Cited UNITED STATES PATENTS 3,436,332 4/1969 Oda et a1. 204/298 3,409,529 11/1968 Chopra et al. 204/298 3,393,142 7/1968 Moseson 204/298 3,507,774 4/1970 Muly 204/298 3,516,919 4/1970 Gaydou et al 204/298 FOREIGN PATENTS 1,102,175 2/1968 Great Britain 204/298 Primary Examiner-John H. Mack Assistant ExaminerSidney S. Kanter Attorney-Littlepage, Quaintance, Wray & Aisenberg ABSTRACT: The invention eliminates the drawbacks of the prior methods for cathode-sputtering deposition by providing basically the use of a substantially neutral plasma adapted to be carried in the form of a stable parallel beam to a substantial distance from the source without resorting to intricate electrode arrangements.
'IIIIII/III/IM PRODUCTION OF DEPOSITS BY CATIIODE SPUTTERING BACKGROUND OF THE INVENTION The invention relates to improvements to the method whereby a deposit in thin-layer form can be obtained by cathode sputtering. The invention also relates to the devices for carrying such improvements into effect.
lt-has for long been proposed to use the cathode sputtering phenomenon for producing deposits onto objects or substrates.
The most ancient methods of this type consisted in using a cathode mode of the material to be sputtered and in depositing said material onto an anode through a conducting medium consisting of an inert gas which was ionized by the electrons travelling from the cathode to the anode. Such methods involved high power consumption since they used a cold cathode, so that voltages of several thousand volts were required to produce satisfactory electron flow between the cathode and anode. Moreover, this type of discharge required a rather high gas pressure (from 10 to 100 microns Hg).
An initial improvement to the prior art, which afforded a reduction in the power necessary to provide the ion flow, was the use of a hot cathode. As a matter of fact, an electron-accelerating voltage of less than 100 volts across the anode and cathode is then sufficient for extraction of the electrons. In such a system, the source of gas-ionizing electrons and the source of material to be sputtered are distinct. The material being sputtered is removed from a target which is bombarded by the ions formed between the cathode and anode, said ions being accelerated by said target.
To further increase the electron density within the gas to be ionized, a further prior art proposal was to place a tubular anode in front of a filament heated to a high temperature and to establish within the tubular anode a magnetic field parallel to the axis of said tubular anode, the electrons and ions formed being then caused to follow helical paths around the electrode axis, while a still further increase in the degree of gas ionization was provided by locating near the tubular electrode a second electrode of annular shape, also called extraction electrode, at a negative potential with respect to the tubular electrode. This extraction electrode acts to repell the electrons towards the tubular electrode and to direct the ions towards the target to be bombarded. The result is an excellent electron concentration in the interior of the tubular electrode and a high-density electron flow at the outlet of the second electrode. However, the resulting ion flux tends to be divergent and further electrodes must be so arranged as to render it parallel or convergent. Consequently, the devices for carrying such a method into effect become intricate, all the more as the voltages and relative positions of the electrodes are to be carefully controlled.
SUMMARY OF THE INVENTION The purpose of the invention is to eliminate the drawbacks of the prior methods for cathode-sputtering deposition, mainly by providing the use of a substantially neutral plasma which can be carried in the form of a stable parallel beam to a rather great distance from the source without resorting to intricate electrode arrangements.
According to the invention, the method for producing a thin-layer deposit onto an object by cathode sputtering, the material to be sputtered being taken from a target, consists basically in establishing in vacuo at some distance from said target a substantially neutral plasma in pencil form by ionizing an inert gas by means of a diaphragm-delineated beam of electrons issuing from a heated filament and by subjecting said electrons to the concurrent action of an electric field which is created by a tubular anode located adjacent said diaphragm, and of a magnetic field which extends parallel to said anode axis, and in so arranging said target, which is at a negative potential, that said plasma pencil will lie level with the surface thereof, said object to be coated standing in close vicinity and opposite to said surface.
An advantageous feature of the method of the invention is that the substantially neutral plasma can be formed. within one compartment of the vacuum chamber and the target be arranged in another compartment, which may be under higher vacuum.
It is easy to extract the positive ions fromthe plasma and to accelerate these for directing them onto the target. by bringing said target to a negative potential of some hundreds volts.
Part of the electrons emanating from the filament and passing through the diaphragm aperture are not confined within the tubular anode and become mingled with the positive ion flow, e.g. argon ion flow, thus providing outside the.tubular electrode a substantially neutralplasma comprised of, -f
filament and the tubular anode, which is at a positive potential with respect to the filament, and of the magnetic field which lies parallel to the ,tubular anode axis and is advantageously I generated by a coil external to the vacuum chamber.
When the method according to the invention is carried into effect in a vacuum chamber including two compartments, then the compartments where the plasma is formed is connected to the target-containing compartment through an aperture of a low size sufficient to allow free passage of the plasma beam.
Thus, the invention affords operational facilities which are an advance over the prior art According to the invention, the rate of deposition can reach a few tens of microns per hour, while the prior methods allowed but for deposition rates of some 23 u/hour.
The material used for sputtering may be silver, nickel, titanium, tantalium or other materials useful for thin-layer deposition. The objects to be coated may be any articles especially insulating parts for the production of thin-layer circuits. The inert gas used to form the plasma is advantageously argon.
BRIEF DESCRIPTION OF THE DRAWINGS Two devices for carrying the method of the invention into effect will now be described by way of examples with, reference to the accompanying drawings which are diagrammatic views in axial section, of which:
FIG. 1 shows the first device;
FIG. 2 shows the second device, which is to be preferred in practice.
DETAILED DESCRIPTION In FIG. 1, there is shown at l a vacuum vessel and reference 2 designates a filament which is brought by resistance heating through wires 20, 2b to a temperature of 2,000-2,800 C. F ilament 2 is arranged within a bent tube 3, cooled by water circulated through 4 and provided in its upper portion with a diaphragm having a central hole 5. An anode6, fed through 6a, consists of a copper tube open at both ends which, as illustrated, has a diameter of 90 mm. and a height of l5 0 mm. A coil 7 coaxial with the anode tube 6 creates in said tube a magnetic field of 200-500 gauss. A target 8, made of the material to be sputtered, is suspended by means over the anode tube 6, lying parallel and relatively close to the anode tube axis. Oil circulated through 9 acts to cool the targetwhen the targetforming material cannot withstand the temperatures which may be attained by said target. The plate 10 to be coated is disposed on a support I] of stainless'steel which is directly connected to earth at Ma. An inlet valve 12 serves to admit an inert gas such as argon, which flows into vessel 1 through duct 120. A vacuum unit, not shown, is connected to the vacuum vessel through a tube 13.
In this device, electrons are emitted by filament 2 which is heated to a temperature of 2,500 C. Said electrons are directed by tube 3 to the anode 6, which is at a positive potential ranging from 50 to I00 volts. The magnetic field of coil 7.
which ranges from 100 to 500 gauss and is parallel to the axis of anode 6, repels the electrons towards the anode axis by causing them to whirl around said axis. Argon coming in through valve 12 at a pressure from l to 10 torr is forced through the anode tube 6 and is ionized by the electrons from tube 3. Since the electrons are confined within the anode, the amount of argon molecules being ionized per unit volume is considerably increased. A 25 percent ionization ratio may be reached.
The anode current is of the order of 9 a. The ion current is of the order of 300-500 ma. across a target of 25 cm. area, Le. a current density of l2-20 ma./cm. The ion flow is attracted by the target, which is at a negative potential of 800 volts. When the material to be sputtered is insulating, the voltage used on the target is caused to be alternatively positive and negative at a frequency from 13 to 20 Ml-lz., so that the target under sputtering by the ion bombardment be neutralized by the electron bombardment.
Since the ion flow is concentrated near the anode tube axis, the target is arranged close and parallel to said axis so as to be at the highest ion density location. Usually, the part to be coated or workpiece is spaced from the target by less then cm., so that the average free travel of the gas molecules is higher than said spacing and that the sputtered particles are not driven outside the space between the target and the workpiece.
With this arrangement, the rate of deposition can be five to times higher than that obtained with the usual arrangements.
FIG. 2 shows an embodiment of the same device affording better handling facilities.
The vacuum vessel is formed of two compartments l4, 15 which can be connected through a coupling 16. Compartment [4, which is cooled through a coil 17, contains the filament fed by wires 18a, 18b and a tubular electrode forming the anode 19, which is fed at 19a. A diaphragm 22, with an axial aperture 22a, is arranged in front of filament 18. A magnetic coil 20 or a tubular magnet is coaxial with the anode tube 19. A valve 21 serves to admit an inert gas or any other gas through duct 21a. Compartment 15 is closed at its upper portion by a removable cover 15a. Within compartment 15 are a target 23 fed at 23a and cooled by oil or air circulated through 24 and a support 25 for the object 26 to be coated. A vacuum unit not shown is connected to compartment 15 by a tube 27.
The values of the various parameters, viz, filament temperature, anode voltage, anode current, ion current density, target voltage, magnetic field, are of the same order as in the case of the device in FIG. 1.
It should be noted that, for the two devices illustrated, these parameters can vary within the following ranges:
target voltage magnetic field ll up to 500 gnuss The device in FIG. 2 permits to increase the travel of the neutral plasma flow emerging from the anode tube and to coat objects of reasonable size. For this purpose, compartments l4, 15 are made separable so as to be more easy to construct. Compartment 14 has a length substantially equal to the length of the plasma flow travel. Compartment 15a is of sufficient capacity to accommodate objects of relatively great extent lying on support 25.
This device provides the following advantages: on the one hand, the coil creating the longitudinal magnetic field can be placed closer to the tubular electrode axis and, on the other hand, higher vacuum may be obtained in the sputtering chamber than in the portion where the plasma is formed. Thus, optimum sputtering conditions are afforded by the maintenance within the tubular electrode of the best environment for the formation of a highdensit lasma. We claini:
1. Sputtering apparatus for depositing thin layers on substrates by ion-bombarding a target and sputtering material from the target to a substrate comprising: a vacuum chamber, evacuating means connected to the chamber for reducing pressure therein, an electron beam source mounted in the chamber comprising a filament, a diaphragm substantially covering the filament and having a central opening through which an electron beam projects, an elongated hollow cylindrical anode on an opposite side of the diaphragm from the filament and encircling the electron beam and extending substantially along an axis of the electron beam as it emerges through the diaphragm opening, ion beam generating means including said cylindrical anode and an electromagnetic coil surrounding said cylindrical anode, and gas injection means connected to the vessel and positioned therein for flowing gas into the cylindrical anode, first power supply means connected to the cylindrical anode for positively biasing the cylindrical anode and second power supply means connected to the coil for energizing the coil, whereby the cylindrical anode pulls electrons through the opening in the diaphragm whereupon plasma having positively charged ions is formed, whereby the cylindrical anode radially focuses positive ions, forming along its axis an ion beam, and whereby the magnetic coil propels the ion beam along the axis away from the diaphragm opening, a target mounted in the vessel on one side of the ion beam on an opposite end of the cylindrical anode from the diaphragm, a third power source connected to the target for negatively biasing the target and attracting ions to a surface thereof containing material to be sputtered, and a substrate mounted in the vessel adjacent the ion beam and having a surface to be coated positioned opposite the target for receiving material sputtered from the target.
2. The apparatus of claim 1 wherein filament comprises a helical wire having an axis and wherein axes of the filament, diaphragm opening, cylindrical anode and electromagnetic coil are concurrent.
3. The apparatus of claim 1 wherein the vacuum vessel comprises a main chamber and a tube opening into the main chamber and extending outward from an open connection therewith, wherein the filament, diaphragm and cylindrical anode are positioned within the tube and wherein the diaphragm opening, cylindrical anode have axes concurrent with a center of the open connection.
l t 4' i l

Claims (2)

  1. 2. The apparatus of claim 1 wherein filament comprises a helical wire having an axis and wherein axes of the filament, diaphragm opening, cylindrical anode and electromagnetic coil are concurrent.
  2. 3. The apparatus of claim 1 wherein the vacuum vessel comprises a main chamber and a tube opening into the main chamber and extending outward from an open connection therewith, wherein the filament, diaphragm and cylindrical anode are positioned within the tube and wherein the diaphragm opening, cylindrical anode have axes concurrent with a center of the open connection.
US739029A 1967-06-22 1968-06-21 Production of deposits by cathode sputtering Expired - Lifetime US3616452A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR111571A FR1534917A (en) 1967-06-22 1967-06-22 Improvements in obtaining deposits by cathodic sputtering

Publications (1)

Publication Number Publication Date
US3616452A true US3616452A (en) 1971-10-26

Family

ID=8633649

Family Applications (1)

Application Number Title Priority Date Filing Date
US739029A Expired - Lifetime US3616452A (en) 1967-06-22 1968-06-21 Production of deposits by cathode sputtering

Country Status (4)

Country Link
US (1) US3616452A (en)
CH (1) CH473908A (en)
FR (1) FR1534917A (en)
GB (1) GB1233404A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839182A (en) * 1971-10-06 1974-10-01 Balzers Patent Beteilig Ag Triode device for sputtering material by means of a low voltage discharge
US4038171A (en) * 1976-03-31 1977-07-26 Battelle Memorial Institute Supported plasma sputtering apparatus for high deposition rate over large area
US4175029A (en) * 1978-03-16 1979-11-20 Dmitriev Jury A Apparatus for ion plasma coating of articles
US4440108A (en) * 1982-09-24 1984-04-03 Spire Corporation Ion beam coating apparatus
US5082545A (en) * 1988-12-15 1992-01-21 Matsushita Electric Industrial Co., Ltd. Sputtering apparatus
US5962923A (en) * 1995-08-07 1999-10-05 Applied Materials, Inc. Semiconductor device having a low thermal budget metal filling and planarization of contacts, vias and trenches
US6045666A (en) * 1995-08-07 2000-04-04 Applied Materials, Inc. Aluminum hole filling method using ionized metal adhesion layer
US6348764B1 (en) * 2000-08-17 2002-02-19 Taiwan Semiconductor Manufacturing Company, Ltd Indirect hot cathode (IHC) ion source
US20050020080A1 (en) * 1997-11-26 2005-01-27 Tony Chiang Method of depositing a diffusion barrier layer and a metal conductive layer
US20050208767A1 (en) * 1997-11-26 2005-09-22 Applied Materials, Inc. Method of depositing a tantalum nitride / tantalum diffusion barrier layer system
US20060049042A1 (en) * 2004-08-20 2006-03-09 Jds Uniphase Corporation Cathode for sputter coating
US20060049041A1 (en) * 2004-08-20 2006-03-09 Jds Uniphase Corporation Anode for sputter coating
US20060049044A1 (en) * 2004-08-20 2006-03-09 Jds Uniphase Corporation Substrate holder for a vapour deposition system
US20060081468A1 (en) * 2004-10-19 2006-04-20 Jds Uniphase Corporation Magnetic latch for a vapour deposition system
US20070017804A1 (en) * 2005-07-22 2007-01-25 Sandvik Intellectual Property Ab Device for improving plasma activity PVD-reactors
US20080006529A1 (en) * 2004-08-20 2008-01-10 Jds Uniphase Corporation Substrate Holder Assembly Device
US20090250341A1 (en) * 2004-08-20 2009-10-08 Ockenfuss Georg J Anode for sputter coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2599587C1 (en) * 2015-05-27 2016-10-10 Российская Федерация от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Device for application of diffusion coatings

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839182A (en) * 1971-10-06 1974-10-01 Balzers Patent Beteilig Ag Triode device for sputtering material by means of a low voltage discharge
US4038171A (en) * 1976-03-31 1977-07-26 Battelle Memorial Institute Supported plasma sputtering apparatus for high deposition rate over large area
US4175029A (en) * 1978-03-16 1979-11-20 Dmitriev Jury A Apparatus for ion plasma coating of articles
US4440108A (en) * 1982-09-24 1984-04-03 Spire Corporation Ion beam coating apparatus
US5082545A (en) * 1988-12-15 1992-01-21 Matsushita Electric Industrial Co., Ltd. Sputtering apparatus
US6313027B1 (en) 1995-08-07 2001-11-06 Applied Materials, Inc. Method for low thermal budget metal filling and planarization of contacts vias and trenches
US5962923A (en) * 1995-08-07 1999-10-05 Applied Materials, Inc. Semiconductor device having a low thermal budget metal filling and planarization of contacts, vias and trenches
US6136095A (en) * 1995-08-07 2000-10-24 Applied Materials, Inc. Apparatus for filling apertures in a film layer on a semiconductor substrate
US6217721B1 (en) 1995-08-07 2001-04-17 Applied Materials, Inc. Filling narrow apertures and forming interconnects with a metal utilizing a crystallographically oriented liner layer
US6238533B1 (en) 1995-08-07 2001-05-29 Applied Materials, Inc. Integrated PVD system for aluminum hole filling using ionized metal adhesion layer
US6045666A (en) * 1995-08-07 2000-04-04 Applied Materials, Inc. Aluminum hole filling method using ionized metal adhesion layer
US20070020922A1 (en) * 1997-11-26 2007-01-25 Tony Chiang Method of depositing a metal seed layer on semiconductor substrates
US20050020080A1 (en) * 1997-11-26 2005-01-27 Tony Chiang Method of depositing a diffusion barrier layer and a metal conductive layer
US20050085068A1 (en) * 1997-11-26 2005-04-21 Tony Chiang Method of depositing a metal seed layer on semiconductor substrates
US20050208767A1 (en) * 1997-11-26 2005-09-22 Applied Materials, Inc. Method of depositing a tantalum nitride / tantalum diffusion barrier layer system
US9390970B2 (en) 1997-11-26 2016-07-12 Applied Materials, Inc. Method for depositing a diffusion barrier layer and a metal conductive layer
US7687909B2 (en) 1997-11-26 2010-03-30 Applied Materials, Inc. Metal / metal nitride barrier layer for semiconductor device applications
US7381639B2 (en) 1997-11-26 2008-06-03 Applied Materials, Inc. Method of depositing a metal seed layer on semiconductor substrates
US7253109B2 (en) 1997-11-26 2007-08-07 Applied Materials, Inc. Method of depositing a tantalum nitride/tantalum diffusion barrier layer system
US7074714B2 (en) 1997-11-26 2006-07-11 Applied Materials, Inc. Method of depositing a metal seed layer on semiconductor substrates
US20070178682A1 (en) * 1997-11-26 2007-08-02 Tony Chiang Damage-free sculptured coating deposition
US6348764B1 (en) * 2000-08-17 2002-02-19 Taiwan Semiconductor Manufacturing Company, Ltd Indirect hot cathode (IHC) ion source
US20060070877A1 (en) * 2004-08-20 2006-04-06 Jds Uniphase Corporation, State Of Incorporation: Delaware Magnetron sputtering device
US7879209B2 (en) 2004-08-20 2011-02-01 Jds Uniphase Corporation Cathode for sputter coating
EP1628323B1 (en) * 2004-08-20 2017-03-29 Viavi Solutions Inc. Anode for sputter coating
US20080006529A1 (en) * 2004-08-20 2008-01-10 Jds Uniphase Corporation Substrate Holder Assembly Device
US20060049044A1 (en) * 2004-08-20 2006-03-09 Jds Uniphase Corporation Substrate holder for a vapour deposition system
US20090250341A1 (en) * 2004-08-20 2009-10-08 Ockenfuss Georg J Anode for sputter coating
US20060049041A1 (en) * 2004-08-20 2006-03-09 Jds Uniphase Corporation Anode for sputter coating
US20060049042A1 (en) * 2004-08-20 2006-03-09 Jds Uniphase Corporation Cathode for sputter coating
US7790004B2 (en) 2004-08-20 2010-09-07 Jds Uniphase Corporation Substrate holder for a vapour deposition system
US8500973B2 (en) 2004-08-20 2013-08-06 Jds Uniphase Corporation Anode for sputter coating
US7954219B2 (en) 2004-08-20 2011-06-07 Jds Uniphase Corporation Substrate holder assembly device
CN1737188B (en) * 2004-08-20 2011-12-14 Jds尤尼弗思公司 Anode for sputter coating
US8163144B2 (en) 2004-08-20 2012-04-24 Tilsch Markus K Magnetron sputtering device
CN1737190B (en) * 2004-08-20 2012-05-23 Jds尤尼弗思公司 Magnetic control sputtering device
US7785456B2 (en) 2004-10-19 2010-08-31 Jds Uniphase Corporation Magnetic latch for a vapour deposition system
US20060081468A1 (en) * 2004-10-19 2006-04-20 Jds Uniphase Corporation Magnetic latch for a vapour deposition system
US20070017804A1 (en) * 2005-07-22 2007-01-25 Sandvik Intellectual Property Ab Device for improving plasma activity PVD-reactors

Also Published As

Publication number Publication date
FR1534917A (en) 1968-08-02
CH473908A (en) 1969-06-15
GB1233404A (en) 1971-05-26
DE1765625B2 (en) 1976-01-29
DE1765625A1 (en) 1972-04-13

Similar Documents

Publication Publication Date Title
US3616452A (en) Production of deposits by cathode sputtering
US2239642A (en) Coating of articles by means of cathode disintegration
US5269898A (en) Apparatus and method for coating a substrate using vacuum arc evaporation
EP0275021B1 (en) Sputtering process and an apparatus for carrying out the same
US7327089B2 (en) Beam plasma source
US4448802A (en) Method and apparatus for evaporating material under vacuum using both an arc discharge and electron beam
US5457298A (en) Coldwall hollow-cathode plasma device for support of gas discharges
US3619402A (en) Process and device for depositing on surfaces
US5480527A (en) Rectangular vacuum-arc plasma source
US4885070A (en) Method and apparatus for the application of materials
US5022977A (en) Ion generation apparatus and thin film forming apparatus and ion source utilizing the ion generation apparatus
US5656141A (en) Apparatus for coating substrates
KR920003789B1 (en) Thin film forming apparatus and ion source utilizing plasma sputtering
US5036252A (en) Radio frequency ion beam source
US7626135B2 (en) Electrode systems and methods of using electrodes
US4461689A (en) Method and apparatus for coating a graphite member
US6337001B1 (en) Process for sputter coating, a sputter coating source, and sputter coating apparatus with at least one such source
US4810347A (en) Penning type cathode for sputter coating
US3305473A (en) Triode sputtering apparatus for depositing uniform coatings
EP0064288A1 (en) Method and apparatus for the production and utilization of activated molecular beams
US5288386A (en) Sputtering apparatus and an ion source
US3210518A (en) Hollow cathode device
JP2001500569A (en) Method and apparatus for coating a substrate by gas flow sputtering
JP3481953B2 (en) Equipment for coating substrates
JPH01108374A (en) Cathodic sputtering apparatus