US3618777A - Low-flow contaminated fuel transfer system for a fuel control - Google Patents

Low-flow contaminated fuel transfer system for a fuel control Download PDF

Info

Publication number
US3618777A
US3618777A US885215A US3618777DA US3618777A US 3618777 A US3618777 A US 3618777A US 885215 A US885215 A US 885215A US 3618777D A US3618777D A US 3618777DA US 3618777 A US3618777 A US 3618777A
Authority
US
United States
Prior art keywords
fuel
line
flow
valve
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US885215A
Inventor
Gene A Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colt Industries Operating Corp
Colt Industries Inc
Original Assignee
Chandler Evans Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chandler Evans Inc filed Critical Chandler Evans Inc
Application granted granted Critical
Publication of US3618777A publication Critical patent/US3618777A/en
Assigned to COLT INDUSTRIES INC., A PA CORP. reassignment COLT INDUSTRIES INC., A PA CORP. MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 10/28/1986 PENNSYLVANIA Assignors: CENTRAL MOLONEY INC., A DE CORP., COLT INDUSTRIES OPERATING CORP., A DE CORP.
Assigned to COLT INDUSTRIES OPERATING CORPORATION, A CORP. OF DE reassignment COLT INDUSTRIES OPERATING CORPORATION, A CORP. OF DE MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 10/24/1986 DELAWARE Assignors: CHANDLER EVANS INC., A DE CORP., HOLLEY BOWLING GREEN INC., A DE CORP., LEWIS ENGINEERING COMPANY, THE, A CT CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/08Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred

Definitions

  • a fuel control system adapted to handle contaminated fuel, has a primary fuel supply line incorporating a pump and a wash flow filter downstream of the pump.
  • a bypass line containing a bypass valve communicates with the primary line at respective positions upstream of the pump and downstream of the filter.
  • a secondary fuel supply line communicates with the filter to receive a flow of filtered fuel.
  • a main fuel supply line includes a window-type metering valve which receives fuel from either the primary or secondary line via a transfer valve. At low flows the metering valve receives fuel from the secondary line so that it will not become clogged by contaminants in the fuel and at high flows contaminated fuel is delivered to the metering valve through the primary line.
  • This invention relates to fuel control systems which embody a metering valve.
  • Metering valves of the window type are quite common in prior art fuel control systems. A requirement frequently imposed upon these systems is that they be able to accommodate a flow of contaminated fuel. At low flow setting the outlet opening of the metering valve is rather small and therefore is likely to become obstructed by contaminants in the fuel.
  • metering valves in the prior art are frequently contoured to provide a minimum opening which is larger than the largest of the anticipated contaminants.
  • a prominent drawback to this approach is that large metering heads are not feasible because of minimum flow requirements. It is highly desirable to impress a large metering head across the metering valve to minimize the effects of metering head regulator friction and flow forces and thereby enhance the accuracy of the fuel control.
  • the invention utilizes a standard wash flow filter positioned in a primary fuel supply line downstream of a pump.
  • a secondary fuel supply line communicates with the filter.
  • a mainfuel metering valve is positioned in a main fuel supply line to receive either a filtered or contaminated flow of fuel, depending on the position of a control valve, which functions to fluidly interconnect the primary, secondary and main fuel supply lines.
  • the position of the control valve is dependent on the position of the main metering valve such that filtered flows and contaminated flows are delivered to the main metering valve when it occupies respective low-flow and normal-flow positions.
  • the invention is unique in that it allows the minimum metering valve opening to be reduced to the extent necessary to meter filtered fuel and thus provides a means to precisely control low fuel flows.
  • Another object is to provide a fuel control system for contaminated fuel in which the valve is capable of metering low fuel flows.
  • Yet another object is to provide a wash flow filter arrangement in a fuel control system for contaminated fuels, in which the filtered fuel not only serves as servo fluid and wash fluid, but also is directed to a main fuel supply line which incorporates a metering valve.
  • FIG. I is a schematic view of a portion of a fuel control system incorporating an embodiment of the invention.
  • FIG. 2 is a schematic view of a portion of a fuel control system incorporating another embodiment of the invention.
  • a primary fuel supply line receives a flow of fuel from an inlet conduit (not shown) which may incorporate a boost pump such as a centrifugal impeller pump.
  • An engine-driven gear pump 12 mounted within primary fuel supply line 10 delivers fuel through the primary line. Pump 12 is drivingly connected to the engine by means of pump drive 14.
  • a conventional cylindrical wash flow filter 16v is secured within an annular recess 18 in primary line 10 in such a manner that the filter's inner surface is flush with the inner surface of the primary line.
  • Recess 18 fluidly communicates with a secondary fuel supply line 20 which carries a filtered flow of fuel emerging from the outer surface of filter 18.
  • Secondary line 20 fluidly interconnects with a branch conduit 22 which directs filtered fuel to the remainder of the fuel system for use as servo fluid in the various components thereof and for use as wash fluid in the system's valving (including the main metering valve) to prevent contaminants in the fuel from hindering movement of movable elements in the system.
  • a window-type main fuel metering valve is positioned in main fuel supply line 26, the main line embodying a conventional pressurizing valve (not shown) and a metered fuel outlet (not shown).
  • the structure of the main metering valve which is generally conventional, includes a spool 28 having two spaced lands 30 and 32 thereon. Spool 28 functions to meter the fuel flow in main line 26 through a metering orifice or opening defined by window 34 and land 32.
  • a pressure balance conduit 36 interconnects the outboard portions of the spool 28 to axially balance the spool.
  • the valve spool is positioned by a positioning mechanism 29.
  • a transfer valve fluidly interconnects the primary line 10 and secondary line 20 with the main line 26.
  • Valve 37 comprises a spool 38 having lands 42 and 44.
  • Spool 38 is axially positionable between an upper limit of travel (illustrated in the drawing), in which land 44 prevents a flow from primary line 10 to metering valve 24, while permitting a flow from the secondary line 20 to the main line 26, and a lower limit of travel, in which land 42 blocks flow from secondary line 20 to main line 26, while allowing a flow from primary line 10 to main line 26.
  • Transfer valve 37 is operable in a bang-bang" manner by means of a differential pressure imposed upon the outboard faces of lands 42 and 44.
  • Pressure conduits 46 and 48 respectively communicate with these faces to transmit pressure thereto from a suitable valve operator 50, which is connected to sources of high and low pressure.
  • the valve operator 50 causes pressure conduits 46 and 48 to either respectively communicate with the low and high-pressure sources or the highand low-pressure sources, in accordance with signals conveyed thereto by metering valve position indicator 51.
  • the transfer valve 38 occupies the illustrated position in which the pressure conduits 46 and 48 respectively communicate with the lowand high-pressure sources, thereby allowing only filtered fuel to pass therethrough.
  • the order of communication between the pressure conduits and sources is reversed such that spool 38 is impelled to its lower limit of axial travel, whereby only unfiltered fuel traverses the transfer valve.
  • the invention is not limited to mutually exclusive flows of filtered and unfiltered fuel, but that a transfer valve may be fashioned to provide an intermixture of filtered and unfiltered fuel in the main fuel supply line, should design considerations sanction such operation.
  • a bypass line 60 fluidly communicates with portions of primary line 10 at respective locations upstream and downstream of pump 12.
  • a conventional bypass valve 62 is positioned within bypass line 60 to control the flow of bypassed fuel to the inlet side of pump 12.
  • the bypass valve serves to regulate the pressure differential (metering head) across the main metering valve 24.
  • Lower member 63 of bypass valve 62 is fixedly and sealingly secured to a diaphragm 64 which is sealed to the walls of a chamber 66 so as to divide the chamber into an upper chamber and a lower chamber.
  • the upper and lower chambers defined by diaphragm 64 each communicates with respective upstream and downstream locations in main line 26, as referenced to metering valve 24, by means of interconnecting conduits 68 and 70.
  • Bypass valve 62 is resiliently urged to a seated position in the bypass line by spring 72.
  • contaminated fuel enters primary line 10 and is accelerated by gear pump 12.
  • Transfer valve 37 remains in its illustrated position until the opening in window 34 is enlarged to a predetermined extent.
  • Fuel pressure rises rapidly within primary line l after rotation of the pump 12 is initiated, thus causing bypass valve 62 to unseat and permit a flow in bypass line 60 back to the inlet side of pump 12.
  • bypass valve 62 unseat and permit a flow in bypass line 60 back to the inlet side of pump 12.
  • a recirculation of contaminants in the fuel develops.
  • Contaminants which would otherwise ad here to filter 15, are washed from the inner surface thereof and progressively accumulated in the recirculating flow as long as land 44 blocks primary line 10.
  • Fuel within the primary line also passes radially through the filter 16 to emerge at the outer surface thereof, from where it enters secondary line 20 as a filtered flow. A portion of this filtered flow in secondary line 20 enters branch conduit 22 and thence is distributed to the fuel system to wash the valves and function as servo fluid. Filtered flow emerges from secondary line 20 to pass through transfer valve 38 and enter main line 26.
  • Fuel flowing in main line 26 is metered through window 34 by land 32 of metering valve 24. Since the metering head across the valve is maintained at a constant value by the bypass valve, the rate of flow through the opening 34 is substantially a function of the metering valves area. Because of the fact that the metering orifice, defined by opening 34 and land 32, for low flows, may be smaller than that which would ordinarily be required to accommodate contaminated fuel at low flows, the bypass valve may be designed to maintain a metering head larger than that which would ordinarily be permissible. This is a significant advantage as it is highly desirable to maintain a metering head of a large magnitude in order to mitigate the effects of bypass valve friction and thereby enhance the accuracy of the fuel control system.
  • main metering valve position indicator 51 transmits a signal to valve operator 50.
  • Valve operator 50 which is in constant communication with the sources of high and low pressure, functions to communicate pressure conduits 46 and 48 respectively with the sources of high and low pressure.
  • the pressure differential occasioned across the spool 38 results in downward axial movement of the spool until it reaches its lower limit of downward axial travel. In this position, the secondary line 20 is blocked by land 42 and the primary line 10 freely communicates with the main line 26.
  • FIG. 2 wherein like numerals designate elements similar to those of FIG. 1, another embodiment of the invention is shown which operates in a manner similar to that of the previous embodiment, but differs slightly therefrom in construction.
  • a pressure-responsive spring-loaded shut-off valve 80 is positioned between primary line 10 and main line 26 to prevent contaminated flow from entering main line 26 until the metering orifice is sufficiently enlarged.
  • Bypass valve 82 metering head regulator
  • This type of bypass valve provides flow force compensation which enables it to regulate the metering head more accurately than the bypass valve 62 of FIG. I.
  • Spool 84 of bypass valve 82 is biased by a spring preload exerted by an adjustable spring 86.
  • the spring preload determines the nominal value of the metering head and consequently may be varied to compensate for changes in fuel density and maintain the proper fuel flow schedules.
  • Secondary line 20 incorporates a check valve 88 to permit only a one-way flow of filtered fuel therein from the filter 16 to the main line 26.
  • Secondary line 20 also incorporates a variable resistance (orifice) 89, which may be employed to adjust the pressure drop (P -P Since P P is held constant by valve 82, the pressure drop (P -P increases as flow increases through secondary line 20.
  • the differential pressure (Pg-P3), produced by the filter element 16 and orifice 89, can be used as a parameter of metered flow and hence the area of the metering orifice, as the metered flow is essentially a function of this area. Therefore, the spring preload acting on valve is selected so that the valve 80 cracks open when Pr-P, attains a value which is indicative of a metering orifice area large enough to permit contaminants to pass freely therethrough. The valve 80 is thus responsive to the position of the metering valve.
  • differential pressure may no longer be representative of the metered flow unless orifice 89 is adjusted to effect a pressure drop thereacross, which is large in comparison to the pressure drop across the filter. If orifice 89 is so adjusted, the pressure drop P,P,is representative of the metered flow, but may be of a magnitude which is unacceptable for the fuel control. If the pressure drop is impractical, two solutions are available:
  • FIGS. 1 and 2 operate in two basic modes, namely, a filtered flow and a contaminated flow mode. It will be appreciated that during periods of operation in the former mode, the entire filtered output flow (through secondary line 20) equals the contaminated inlet flow, while the stored contaminants recirculate in the flow path defined by primary line 10 and bypass line 60.
  • the invention is not limited to the construction specifically illustrated.
  • the metering valve need not be of the window type but may embody other varieties of valves such as a poppet valve.
  • the spool-type transfer valve illustrated could readily be replaced with a rotary transfer valve.
  • the disclosed bypass valves could be replaced with other available varieties and need not function as metering head regulators, inasmuch as a separate and distinct valve would be suitable for that purpose.
  • a primary fuel supply line for receiving a flow of fuel
  • a pump mounted in said primary line for pumping fuel therethrough;
  • a main fuel supply line adapted to receive a flow of fuel from said primary line
  • secondary fuel supply line means to communicate with said primary line for carrying a flow of filtered fuel to said main line upstream of said metering valve;
  • a wash flow filter positioned in said primary line to fluidly interconnect said primary line and said secondary line means;
  • a fuel bypass line fluidly connected to said primary line downstream of said filter and upstream of said pump for bypassing fuel to the inlet side of said pump;
  • bypass valve located in said bypass line to control the flow in said bypass line
  • a metering valve for defining a metering opening located in said main line for metering a flow of fuel therethrough;
  • control valve positioned between said primary line and said main line to prevent the flow of fuel from said primameans responsiveto the position of said metering valve toposition said control valve when the metering opening exceeds said predetermined area so as to permit the flow of 5 fuel from said primary line to said metering valve.
  • said positionresponsive means comprises:
  • valve operator operatively connected to the control valve for imposing a differential pressure thereacross, said differential pressure sewing to position said valve
  • a metering valve position indicator operatively connected to said operator to transmit a signal thereto.
  • control valve means to bias said control valve to a position in which flow from said primary line to said main line is prevented, said control valve being positionable by a sufficient differential pressure between said primary line and said main line to permit a flow of fuel from said primary line to said main line;
  • a primary fuel supply line for receiving a flow of fuel
  • a pump mounted in said primary line for pumping fuel therethrough;
  • a main fuel supply line adapted to receive a flow from said primary line
  • secondary fuel supply line means to communicate with said primary line for carrying a flow of filtered fuel to said main line upstream of said metering valve;
  • a wash flow filter positioned in said primary line to fluidly interconnect said primary line and said secondary line means;
  • a fuel bypass line fluidly connected to said primary line downstream of said filter and upstream of said pump for bypassing fuel to the inlet side of said pump;
  • bypass valve located in said bypass line to control the flow in said bypass line
  • a metering valve for defining a metering opening located in said main line for metering a flow of fuel therethrough;

Abstract

A fuel control system, adapted to handle contaminated fuel, has a primary fuel supply line incorporating a pump and a wash flow filter downstream of the pump. A bypass line containing a bypass valve communicates with the primary line at respective positions upstream of the pump and downstream of the filter. A secondary fuel supply line communicates with the filter to receive a flow of filtered fuel. A main fuel supply line includes a window-type metering valve which receives fuel from either the primary or secondary line via a transfer valve. At low flows the metering valve receives fuel from the secondary line so that it will not become clogged by contaminants in the fuel and at high flows contaminated fuel is delivered to the metering valve through the primary line.

Description

United States Patent Primary Examiner-John Adee Auorney- Radford W. Luther ABSTRACT: A fuel control system, adapted to handle contaminated fuel, has a primary fuel supply line incorporating a pump and a wash flow filter downstream of the pump. A bypass line containing a bypass valve communicates with the primary line at respective positions upstream of the pump and downstream of the filter. A secondary fuel supply line communicates with the filter to receive a flow of filtered fuel. A main fuel supply line includes a window-type metering valve which receives fuel from either the primary or secondary line via a transfer valve. At low flows the metering valve receives fuel from the secondary line so that it will not become clogged by contaminants in the fuel and at high flows contaminated fuel is delivered to the metering valve through the primary line.
LOW-FLOW CONTAMINATED FUEL TRANSFER SYSTEM FOR A FUEL CONTROL BACKGROUND OF THE INVENTION This invention relates to fuel control systems which embody a metering valve.
Metering valves of the window type are quite common in prior art fuel control systems. A requirement frequently imposed upon these systems is that they be able to accommodate a flow of contaminated fuel. At low flow setting the outlet opening of the metering valve is rather small and therefore is likely to become obstructed by contaminants in the fuel.
In order to overcome the problem alluded to above, metering valves in the prior art are frequently contoured to provide a minimum opening which is larger than the largest of the anticipated contaminants. A prominent drawback to this approach is that large metering heads are not feasible because of minimum flow requirements. It is highly desirable to impress a large metering head across the metering valve to minimize the effects of metering head regulator friction and flow forces and thereby enhance the accuracy of the fuel control.
SUMMARY OF THE INVENTION The invention utilizes a standard wash flow filter positioned in a primary fuel supply line downstream of a pump. A secondary fuel supply line communicates with the filter. A mainfuel metering valve is positioned in a main fuel supply line to receive either a filtered or contaminated flow of fuel, depending on the position of a control valve, which functions to fluidly interconnect the primary, secondary and main fuel supply lines. The position of the control valve is dependent on the position of the main metering valve such that filtered flows and contaminated flows are delivered to the main metering valve when it occupies respective low-flow and normal-flow positions.
The invention is unique in that it allows the minimum metering valve opening to be reduced to the extent necessary to meter filtered fuel and thus provides a means to precisely control low fuel flows.
Accordingly, it is a primary object of the invention to provide a fuel control system for contaminated fuel having a metering valve, in which the system is adapted to direct either a filtered or unfiltered flow through the valve.
Another object is to provide a fuel control system for contaminated fuel in which the valve is capable of metering low fuel flows.
Yet another object is to provide a wash flow filter arrangement in a fuel control system for contaminated fuels, in which the filtered fuel not only serves as servo fluid and wash fluid, but also is directed to a main fuel supply line which incorporates a metering valve.
Other objects and advantageous features of the invention will become apparent from the following description and the accompanying drawing, wherein for purposes of illustration only, a specific form of the invention is set forth in detail BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a schematic view of a portion of a fuel control system incorporating an embodiment of the invention.
FIG. 2 is a schematic view of a portion of a fuel control system incorporating another embodiment of the invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENT Referring in detail to FIG. 1, wherein there is shown only a portion of a fuel control system adapted to control the flow of a contaminated fuel to an engine (not shown), a primary fuel supply line receives a flow of fuel from an inlet conduit (not shown) which may incorporate a boost pump such as a centrifugal impeller pump. An engine-driven gear pump 12 mounted within primary fuel supply line 10 delivers fuel through the primary line. Pump 12 is drivingly connected to the engine by means of pump drive 14.
A conventional cylindrical wash flow filter 16v is secured within an annular recess 18 in primary line 10 in such a manner that the filter's inner surface is flush with the inner surface of the primary line. Recess 18 fluidly communicates with a secondary fuel supply line 20 which carries a filtered flow of fuel emerging from the outer surface of filter 18. Secondary line 20 fluidly interconnects with a branch conduit 22 which directs filtered fuel to the remainder of the fuel system for use as servo fluid in the various components thereof and for use as wash fluid in the system's valving (including the main metering valve) to prevent contaminants in the fuel from hindering movement of movable elements in the system.
A window-type main fuel metering valve, generally indicated at 24, is positioned in main fuel supply line 26, the main line embodying a conventional pressurizing valve (not shown) and a metered fuel outlet (not shown). The structure of the main metering valve, which is generally conventional, includes a spool 28 having two spaced lands 30 and 32 thereon. Spool 28 functions to meter the fuel flow in main line 26 through a metering orifice or opening defined by window 34 and land 32. A pressure balance conduit 36 interconnects the outboard portions of the spool 28 to axially balance the spool. The valve spool is positioned by a positioning mechanism 29.
A transfer valve, generally designated at 37, fluidly interconnects the primary line 10 and secondary line 20 with the main line 26. Valve 37 comprises a spool 38 having lands 42 and 44. Spool 38 is axially positionable between an upper limit of travel (illustrated in the drawing), in which land 44 prevents a flow from primary line 10 to metering valve 24, while permitting a flow from the secondary line 20 to the main line 26, and a lower limit of travel, in which land 42 blocks flow from secondary line 20 to main line 26, while allowing a flow from primary line 10 to main line 26.
Transfer valve 37 is operable in a bang-bang" manner by means of a differential pressure imposed upon the outboard faces of lands 42 and 44. Pressure conduits 46 and 48 respectively communicate with these faces to transmit pressure thereto from a suitable valve operator 50, which is connected to sources of high and low pressure. The valve operator 50 causes pressure conduits 46 and 48 to either respectively communicate with the low and high-pressure sources or the highand low-pressure sources, in accordance with signals conveyed thereto by metering valve position indicator 51. At small openings of window 34, the transfer valve 38 occupies the illustrated position in which the pressure conduits 46 and 48 respectively communicate with the lowand high-pressure sources, thereby allowing only filtered fuel to pass therethrough. Conversely, at a predetermined larger opening, the order of communication between the pressure conduits and sources is reversed such that spool 38 is impelled to its lower limit of axial travel, whereby only unfiltered fuel traverses the transfer valve.
It will be apprehended that the invention is not limited to mutually exclusive flows of filtered and unfiltered fuel, but that a transfer valve may be fashioned to provide an intermixture of filtered and unfiltered fuel in the main fuel supply line, should design considerations sanction such operation.
A bypass line 60 fluidly communicates with portions of primary line 10 at respective locations upstream and downstream of pump 12. A conventional bypass valve 62 is positioned within bypass line 60 to control the flow of bypassed fuel to the inlet side of pump 12. The bypass valve serves to regulate the pressure differential (metering head) across the main metering valve 24. Lower member 63 of bypass valve 62 is fixedly and sealingly secured to a diaphragm 64 which is sealed to the walls of a chamber 66 so as to divide the chamber into an upper chamber and a lower chamber. The upper and lower chambers defined by diaphragm 64 each communicates with respective upstream and downstream locations in main line 26, as referenced to metering valve 24, by means of interconnecting conduits 68 and 70. Bypass valve 62 is resiliently urged to a seated position in the bypass line by spring 72.
In operation, contaminated fuel enters primary line 10 and is accelerated by gear pump 12. Transfer valve 37 remains in its illustrated position until the opening in window 34 is enlarged to a predetermined extent. Fuel pressure rises rapidly within primary line l after rotation of the pump 12 is initiated, thus causing bypass valve 62 to unseat and permit a flow in bypass line 60 back to the inlet side of pump 12. As a result of this bypass flow, a recirculation of contaminants in the fuel develops. Contaminants, which would otherwise ad here to filter 15, are washed from the inner surface thereof and progressively accumulated in the recirculating flow as long as land 44 blocks primary line 10.
Fuel within the primary line also passes radially through the filter 16 to emerge at the outer surface thereof, from where it enters secondary line 20 as a filtered flow. A portion of this filtered flow in secondary line 20 enters branch conduit 22 and thence is distributed to the fuel system to wash the valves and function as servo fluid. Filtered flow emerges from secondary line 20 to pass through transfer valve 38 and enter main line 26.
Fuel flowing in main line 26 is metered through window 34 by land 32 of metering valve 24. Since the metering head across the valve is maintained at a constant value by the bypass valve, the rate of flow through the opening 34 is substantially a function of the metering valves area. Because of the fact that the metering orifice, defined by opening 34 and land 32, for low flows, may be smaller than that which would ordinarily be required to accommodate contaminated fuel at low flows, the bypass valve may be designed to maintain a metering head larger than that which would ordinarily be permissible. This is a significant advantage as it is highly desirable to maintain a metering head of a large magnitude in order to mitigate the effects of bypass valve friction and thereby enhance the accuracy of the fuel control system.
When main metering valve positioning mechanism 29 repositions the metering valve to a higher flow position, in which contaminants passing through the metering orifice are not likely to cause a clogging thereof, main metering valve position indicator 51 transmits a signal to valve operator 50. Valve operator 50, which is in constant communication with the sources of high and low pressure, functions to communicate pressure conduits 46 and 48 respectively with the sources of high and low pressure. The pressure differential occasioned across the spool 38 results in downward axial movement of the spool until it reaches its lower limit of downward axial travel. In this position, the secondary line 20 is blocked by land 42 and the primary line 10 freely communicates with the main line 26.
Referring now to FIG. 2, wherein like numerals designate elements similar to those of FIG. 1, another embodiment of the invention is shown which operates in a manner similar to that of the previous embodiment, but differs slightly therefrom in construction. Instead of the transfer valve 37 of FIG. ll, a pressure-responsive spring-loaded shut-off valve 80 is positioned between primary line 10 and main line 26 to prevent contaminated flow from entering main line 26 until the metering orifice is sufficiently enlarged. Bypass valve 82 (metering head regulator) is of the well-known "hour glass" variety. This type of bypass valve provides flow force compensation which enables it to regulate the metering head more accurately than the bypass valve 62 of FIG. I. Spool 84 of bypass valve 82 is biased by a spring preload exerted by an adjustable spring 86. The spring preload determines the nominal value of the metering head and consequently may be varied to compensate for changes in fuel density and maintain the proper fuel flow schedules. Secondary line 20 incorporates a check valve 88 to permit only a one-way flow of filtered fuel therein from the filter 16 to the main line 26. Secondary line 20 also incorporates a variable resistance (orifice) 89, which may be employed to adjust the pressure drop (P -P Since P P is held constant by valve 82, the pressure drop (P -P increases as flow increases through secondary line 20. Consequently, the differential pressure (Pg-P3), produced by the filter element 16 and orifice 89, can be used as a parameter of metered flow and hence the area of the metering orifice, as the metered flow is essentially a function of this area. Therefore, the spring preload acting on valve is selected so that the valve 80 cracks open when Pr-P, attains a value which is indicative of a metering orifice area large enough to permit contaminants to pass freely therethrough. The valve 80 is thus responsive to the position of the metering valve.
If it is necessary to connect a branch conduit to the line 20 of FIG. 2, in order to draw filtered flow therefrom for operation of servos associated with the fuel control or for other purposes, differential pressure (PgPg) may no longer be representative of the metered flow unless orifice 89 is adjusted to effect a pressure drop thereacross, which is large in comparison to the pressure drop across the filter. If orifice 89 is so adjusted, the pressure drop P,P,is representative of the metered flow, but may be of a magnitude which is unacceptable for the fuel control. If the pressure drop is impractical, two solutions are available:
A. Install a second wash flow filter for servo flow only; or
B. Replace valve 80 with either an appropriate spool or poppet valve and provide suitable pressure conduits on respective sides of the orifice to communicate pressures to the selected replacement valve. In solution B, as the communicated pressure differential will be indicative of the area of the metering orifice, the replacement valve should be openable to permit a flow from primary line 10 to main line 26 after the pressure differential attains a sufficient value.
It will be observed that the embodiments of FIGS. 1 and 2 operate in two basic modes, namely, a filtered flow and a contaminated flow mode. It will be appreciated that during periods of operation in the former mode, the entire filtered output flow (through secondary line 20) equals the contaminated inlet flow, while the stored contaminants recirculate in the flow path defined by primary line 10 and bypass line 60.
It will be understood that the invention is not limited to the construction specifically illustrated. For example, the metering valve need not be of the window type but may embody other varieties of valves such as a poppet valve. Also, the spool-type transfer valve illustrated could readily be replaced with a rotary transfer valve. Further, the disclosed bypass valves could be replaced with other available varieties and need not function as metering head regulators, inasmuch as a separate and distinct valve would be suitable for that purpose.
While I have shown a particular embodiment of my invention it will be understood, of course, that I do not wish to be limited thereto, since many modifications may be made, as fall within the scope and spirit of my invention.
I claim:
ll. In a fuel control system for an engine, the combination comprising:
a primary fuel supply line for receiving a flow of fuel;
a pump mounted in said primary line for pumping fuel therethrough;
a main fuel supply line adapted to receive a flow of fuel from said primary line;
secondary fuel supply line means to communicate with said primary line for carrying a flow of filtered fuel to said main line upstream of said metering valve;
a wash flow filter positioned in said primary line to fluidly interconnect said primary line and said secondary line means;
a fuel bypass line fluidly connected to said primary line downstream of said filter and upstream of said pump for bypassing fuel to the inlet side of said pump;
a bypass valve located in said bypass line to control the flow in said bypass line;
a metering valve for defining a metering opening located in said main line for metering a flow of fuel therethrough;
a control valve positioned between said primary line and said main line to prevent the flow of fuel from said primameans responsiveto the position of said metering valve toposition said control valve when the metering opening exceeds said predetermined area so as to permit the flow of 5 fuel from said primary line to said metering valve.
2. The combination of claim 1, wherein said positionresponsive means comprises:
a valve operator operatively connected to the control valve for imposing a differential pressure thereacross, said differential pressure sewing to position said valve; and
a metering valve position indicator operatively connected to said operator to transmit a signal thereto.
3. The combination of claim 1, wherein said positionresponsive means comprises:
means to bias said control valve to a position in which flow from said primary line to said main line is prevented, said control valve being positionable by a sufficient differential pressure between said primary line and said main line to permit a flow of fuel from said primary line to said main line; and
a restriction in said secondary line means to produce said sufficient differential pressure.
4. In a fuel control system for an engine, the combination comprising:
a primary fuel supply line for receiving a flow of fuel;
a pump mounted in said primary line for pumping fuel therethrough;
a main fuel supply line adapted to receive a flow from said primary line;
secondary fuel supply line means to communicate with said primary line for carrying a flow of filtered fuel to said main line upstream of said metering valve;
a wash flow filter positioned in said primary line to fluidly interconnect said primary line and said secondary line means;
a fuel bypass line fluidly connected to said primary line downstream of said filter and upstream of said pump for bypassing fuel to the inlet side of said pump;
a bypass valve located in said bypass line to control the flow in said bypass line;
a metering valve for defining a metering opening located in said main line for metering a flow of fuel therethrough; and
means responsive to the position of said metering valve to prevent the flow of fuel from said primary line to said metering valve when said metering opening does not exceed a predetermined area and to permit the flow of fuel from said primary line to said metering valve when said metering opening exceeds the predetermined area.
i t i t

Claims (3)

  1. 2. The combination of claim 1, wherein said position-responsive means comprises: a valve operator operatively connected to the control valve for imposing a differential pressure thereacross, said differential pressure serving to position said valve; and a metering valve position indicator operatively connected to said operator to transmit a signal thereto.
  2. 3. The combination of claim 1, wherein said position-responsive means comprises: means to bias said control valve to a position in which flow from said primary line to said main line is prevented, said control valve being positionable by a sufficient differential pressure between said primary line and said main line to permit a flow of fuel from said primary line to said main line; and a restriction in said secondary line means to produce said sufficient differential pressure.
  3. 4. In a fuel control system for an engine, the combination comprising: a primary fuel supply line for receiving a flow of fuel; a pump mounted in said primary line for pumping fuel therethrough; a main fuel supply line adapted to receive a flow from said primary line; secondary fuel supply line means to communicate with said primary line for carrying a flow of filtered fuel to said main line upstream of said metering valve; a wash flow filter positioned in said primary line to fluidly interconnect said primary line and said secondary line means; a fuel bypass line fluidly connected to said primary line downstream of said filter and upstream of said pump for bypassing fuel to the inlet side of said pump; a bypass valve located in said bypass line to control the flow in said bypass line; a metering valve for defining a metering opening located in said main line for metering a flow of fuel therethrough; and means responsive to the position of said metering valve to prevent the flow of fuel from said primary line to said metering valve when said metering opEning does not exceed a predetermined area and to permit the flow of fuel from said primary line to said metering valve when said metering opening exceeds the predetermined area.
US885215A 1969-12-15 1969-12-15 Low-flow contaminated fuel transfer system for a fuel control Expired - Lifetime US3618777A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88521569A 1969-12-15 1969-12-15

Publications (1)

Publication Number Publication Date
US3618777A true US3618777A (en) 1971-11-09

Family

ID=25386414

Family Applications (1)

Application Number Title Priority Date Filing Date
US885215A Expired - Lifetime US3618777A (en) 1969-12-15 1969-12-15 Low-flow contaminated fuel transfer system for a fuel control

Country Status (1)

Country Link
US (1) US3618777A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777888A (en) * 1970-05-21 1973-12-11 Bosch Gmbh Robert Arrangement for pumping a filtered fluid
US4170551A (en) * 1976-11-18 1979-10-09 The British Petroleum Company Limited Waste oil recovery unit
US5922199A (en) * 1993-09-15 1999-07-13 Parker Hannifin Corporation Double pass fuel filter assembly
US5961824A (en) * 1997-12-22 1999-10-05 Caiozza; Joseph Metal particle removal and retention apparatus
US6520162B1 (en) * 1998-12-11 2003-02-18 Robert Bosch Gmbh Fuel injection system
US6596174B1 (en) * 1998-09-11 2003-07-22 Alexander C. Marcus Diesel fuel cleaning and re-circulation system
US20230383715A1 (en) * 2022-05-27 2023-11-30 Hamilton Sundstrand Corporation Dual valve fuel metering systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734523A (en) * 1956-02-14 Protective
US2865442A (en) * 1953-07-29 1958-12-23 Havilland Engine Co Ltd Fuel supply systems for liquid fuel engines
US3120490A (en) * 1960-09-06 1964-02-04 Holley Carburetor Co High velocity filter
US3360199A (en) * 1965-05-04 1967-12-26 Gen Motors Corp Fuel nozzle fuel proportioning system utilizing a fuel pressure responsive valve
US3485368A (en) * 1967-11-03 1969-12-23 Caterpillar Tractor Co Hydraulic circuit with filter control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734523A (en) * 1956-02-14 Protective
US2865442A (en) * 1953-07-29 1958-12-23 Havilland Engine Co Ltd Fuel supply systems for liquid fuel engines
US3120490A (en) * 1960-09-06 1964-02-04 Holley Carburetor Co High velocity filter
US3360199A (en) * 1965-05-04 1967-12-26 Gen Motors Corp Fuel nozzle fuel proportioning system utilizing a fuel pressure responsive valve
US3485368A (en) * 1967-11-03 1969-12-23 Caterpillar Tractor Co Hydraulic circuit with filter control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777888A (en) * 1970-05-21 1973-12-11 Bosch Gmbh Robert Arrangement for pumping a filtered fluid
US4170551A (en) * 1976-11-18 1979-10-09 The British Petroleum Company Limited Waste oil recovery unit
US5922199A (en) * 1993-09-15 1999-07-13 Parker Hannifin Corporation Double pass fuel filter assembly
US6248236B1 (en) 1993-09-15 2001-06-19 Parker-Hannifin Corporation Double pass fuel filter assembly
US5961824A (en) * 1997-12-22 1999-10-05 Caiozza; Joseph Metal particle removal and retention apparatus
US6596174B1 (en) * 1998-09-11 2003-07-22 Alexander C. Marcus Diesel fuel cleaning and re-circulation system
US6520162B1 (en) * 1998-12-11 2003-02-18 Robert Bosch Gmbh Fuel injection system
US20230383715A1 (en) * 2022-05-27 2023-11-30 Hamilton Sundstrand Corporation Dual valve fuel metering systems

Similar Documents

Publication Publication Date Title
US4885084A (en) Nozzle/venturi with pressure differentiating bypass
US4617116A (en) Automotive type fuel feed system
GB1385696A (en) Method and apparatus for mixing chemical solutions for use in agriculture
US4535678A (en) Hydraulic control apparatus for a servo-motor, particularly for vehicle steering
US3739799A (en) Continuous flow anesthesia apparatus
US3618777A (en) Low-flow contaminated fuel transfer system for a fuel control
US5398721A (en) Compressed gas integral regulator and flowmeter
ES457407A1 (en) Flow control device for example for the intravenous administration of liquids
US3777888A (en) Arrangement for pumping a filtered fluid
GB1314375A (en) Emergency supply system for a hydraulic circuit
US3820556A (en) Fluid flow control system
GB1015774A (en) Improvements in or relating to a filter device
US3999572A (en) Fluid flow instrumentality
US3896843A (en) Pilot valve for controlling a fluid pressure operated valve
US3389796A (en) Balanced pressure relief valve
US3066530A (en) Rate of flow indicator
US3229816A (en) Flow control fitting
US3128783A (en) Bypass valve with limited reset
US3246669A (en) Flow control structure for use with pilot operated pressure reducing valve
ES345101A1 (en) Pump
GB1444613A (en) Control valve with flow control means
GB2216807A (en) Gas-ratio control device for an anaesthetising apparatus
US2671989A (en) Membrane fluid pressure regulator
US4520841A (en) Four-way valve
GB1203377A (en) Fluid by-pass valve mechanism including jet fluid pump means

Legal Events

Date Code Title Description
AS Assignment

Owner name: COLT INDUSTRIES INC., A PA CORP.

Free format text: MERGER;ASSIGNORS:COLT INDUSTRIES OPERATING CORP., A DE CORP.;CENTRAL MOLONEY INC., A DE CORP.;REEL/FRAME:004747/0300

Effective date: 19861028

Owner name: COLT INDUSTRIES OPERATING CORPORATION, A CORP. OF

Free format text: MERGER;ASSIGNORS:LEWIS ENGINEERING COMPANY, THE, A CT CORP.;CHANDLER EVANS INC., A DE CORP.;HOLLEY BOWLING GREEN INC., A DE CORP.;REEL/FRAME:004747/0285

Effective date: 19870706