US3624448A - Ion generation apparatus - Google Patents

Ion generation apparatus Download PDF

Info

Publication number
US3624448A
US3624448A US863522A US3624448DA US3624448A US 3624448 A US3624448 A US 3624448A US 863522 A US863522 A US 863522A US 3624448D A US3624448D A US 3624448DA US 3624448 A US3624448 A US 3624448A
Authority
US
United States
Prior art keywords
bus
recesses
combination
ions
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US863522A
Inventor
Donald G Saurenman
Harold W Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CUMMING Corp A CA CORP
Original Assignee
Consan Pacific Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consan Pacific Inc filed Critical Consan Pacific Inc
Application granted granted Critical
Publication of US3624448A publication Critical patent/US3624448A/en
Assigned to CUMMING CORPORATION, A CA. CORP. reassignment CUMMING CORPORATION, A CA. CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONSAN PACIFIC INCORPORATED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention concerns ion generation and dispensing apparatus having module form with an electrically conductive bus to which groups of ion generating radiants or clusters are connected, the modules being constructed for connection in series; the provision of means to dispense vapor in air flow created by the flow of such ions; means to use such ions to effect particle collection on surfaces; and means to control such ion polarity in relation to external conditions.
  • This invention relates generally to ion generation and dispensing apparatus, and more particularly concerns easily installable equipment for generating ions and dispensing them over large areas.
  • static charge In certain processing industries the buildup of static charge has long been known as a critical problem. For example, in cotton gins static charge accumulates in lint cleaners, slides, feed distributors and rollers; in paper processing static charge builds ,up on printing presses and rollers; textile mill card webs, silver and tow and looms constitute problem areas; and charge collects in dry weather when people walk on certain types of carpeting, as is well known.
  • static charge buildup reduces substantially the efficiency of processing materials in such industries, and static discharge or sparking encountered by people walking over carpets is very objectionable.
  • the apparatus module comprises an elongated insulative member forming a recess or recesses opening sidewardly; an electrically conductive bus extending lengthwise in the member; multiple electrically conductive inserts carried in the recess structure to have electrical connection to the bus, and multiple electrically conductive needles or metal radiants carried by the inserts in the recesses to project toward the recess openings so that electrical charge flowing to the needle tips will leave the tips and generate ions flowing away from the member.
  • several such members may be connected in end-to-end relation so that the busses therein have electrical interconnection, whereby an ion generation system of desired length may readily be' fabricated or assembled, or multiple systems connected.
  • the inserts may have threaded connection to the electrical bus; the needle tips may be located in enlarged portions of the recesses directly inwardly of the recess side openings; and the insulative member may be formed of molded or extruded plastic with a shaped recess extending lengthwise continuously to receive the bus.
  • Another important object of the invention has to do with the provision of an aperture contained by the insulative member or a hollow bus member to pass a stream of gas from within the member toward the recess to assist in carrying ions away from the member.
  • the aperture may for example extend lengthwise within the member, either within or outside of the bus, and when the members are connected in end-to-end relation to form a system, the apertures or channels in the members are placed in end-to-end communication, as will be seen.
  • small side outlets may be formed along the channels to pass the gas in close proximity to the needles to assist in ion separation and flow to penetrate the work area.
  • Further objects include the provision of means to dispense vapor in air flow created by ion flow; means to use ions to clear contaminant particles from a confined zone; means to use ions to efiect particle collection on surfaces, as for example foliage, as will be described in detail; and means to control ion polarity in response to external conditions.
  • FIG. I is a side elevational view of a system of insulative members incorporating the invention.
  • FIG. 2 is an enlarged section taken on line 2-2 of FIG. 1;
  • FIG. 3 is an enlarged section taken on line 3-3 of FIG. 1;
  • FIG. 4 is a section like FIG. 2, but showing a modified member
  • FIG. 5 is a section like that of FIG. 3, but showing insulative members of FIG. 4 modified type;
  • FIG. 6 is a fragmentary side elevation, similar to that of FIG. I, but showing still another modified member
  • FIG. 7 is a section taken on line 7--7 of FIG. 6;
  • FIGS. 8, 9, l l, 12 and 13 show applications of the invention.
  • FIG. 10 is a high voltage multiplying circuit.
  • an elongated insulative plastic member 10 contains a series of recesses 11 which open sidewardly.
  • the member 10 also contains a lengthwise extending electrically conductive bus 12 which may be inserted into a channel 13 forward in member 10 upon extension. Prior to such insertion, the recesses 11 may be formed in the member at spaced locations.
  • multiple electrically conductive inserts are carried in the recesses to have electrical connection to the bus.
  • multiple electrically conductive radiating clusters are carried by the inserts in the recess or recesses to project toward the recess mouths 110, so that electrical charge flowing to the cluster tips will leave the latter and generate ions flowing sidewardly away from the member 10.
  • threaded inserts l5 carry the clusters 16, and are threaded into tapped openings 17 in the bus to depths such that the clusters are received into the'recesses II.
  • the cluster may, for example, include multiple needles directed in mutually diverging relation, with multiple needles 16a clustered about an axis defining central needle 16b.
  • a source 18 of high voltage when connected to the bus, produces a corona effect at the needle tips to generate ions with electrical repulsion effect in the space about the needles, thereby to establish an ion stream flowing rapidly with high ion concentrations penetrating for several yards toward work to be charged or neutralized.
  • One useful circuit to provide the source 18 is described in U.S. Pat. No. 3,308,344 referred to above.
  • Recess 11 is shaped to aid the flow of such ions, and includes a conical shoulder 20 merging with cylindrical bore 21, the latter in turn merging with a conical bevel 22 at the recess mouth. Note that the needle tips are located in the enlarged portions of the recesses formed by the bores 21.
  • the inserts and needles of course are electrically conductive.
  • Member 10 may for example consist of a suitable plastic material such as polyethylene or polyvinylchloride.
  • the members 10 may be connected in end-to-end relation so that the buses therein have electrical interconnection whereby a system of such modular members may be easily constructed to desired length corresponding to the size of work to be treated.
  • unit installations may be made at intervals along ceilings or walls to treat large areas.
  • a hallway is shown in FIG. 8 with such a system installed at 24 along a corner between the wall and ceiling, with the needles directed downwardly to eject ions toward the walkway above carpet 25.
  • the ends of the members 10 in FIG. 3 have interfitting connection, i.e., a nose 26 on one member is received into the recessed end 27 of the other member, with tapered shoulder interfit at 28.
  • the buses 12 also interfit as shown at 29, within the nose 26 for protection.
  • Suitable brackets 30 interconnect the members as shown in FIG. 1.
  • Multiple members 10 of various types may thus be connected to a single power source, by insulated cable.
  • FIG. 8 also shows radiating clusters 16d installed in a ceiling and wall to completely control positive or negative ion conditioning of the room or hall atmosphere. Grounding the floor or walkway, or lower walls 83, as at 84, causes ion charged dust collection on the floor or walls, clearing the atmosphere.
  • Another aspect of the invention concerns the provision of an aperture in the member to pass a stream of gas from within the member toward the recesses 11 to assist in carrying the ions away from the member, as by wiping" them off the cluster. tips.
  • the aperture 31 is formed to extend lengthwise within the member at the side of the bus opposite the recesses, air being delivered via a suitable blower 32.
  • the bus 12a and insert 15a are also apertured at 33 and 34 to pass the gas stream directly toward and through the cluster.
  • a medicated vapor may be delivered to the air stream, as from a source 35 having an outlet passing to the air conduit 36 leading to the aperture 31.
  • FIG. 13 variation is like FIG. 7, and in addition includes means for dispersal of vapor, as for example medicated vapor in the ion stream.
  • liquid 110 is contained in the tubular bus 38a, and a wick 111 has one end in that liquid and its opposite end 111a projecting from insert 42 for exposure to the air stream created and impelled forwardly by the forward movement of ions created by the cluster 41a.
  • Liquid molecules evaporate from the wick end 1110 as vapor and travel forwardly with the air stream.
  • a wick 113 may protrude from a separate container 114 for the liquid, and into the air flow path as shown.
  • a nozzle may be used in place of the wick.
  • FIG. 9 illustrates another application of the invention, the ion delivery device 43 of FIG. 2, 4 or 7 type being carried by a room air conditioner unit 44. ions are caused to flow into the conditioned air stream delivered via the grille 45, for treatment in the room area.
  • FIG. 10 illustrates an unusually advantageous voltage multiplying circuit employing rectifiers and capacitors, and capable of increasing the voltage delivered to the ion gun 16 to 18,000 volts, from a 1 l5 volt AC source 50.
  • the network 51 includes two halves, 510 having a negative output terminal 52, and 51b having a positive output terminal 53.
  • Network half 51a includes a rectifier (diode) 54 between terminal 52 and the end terminal 55 of transformer winding 61.
  • a capacitor 56 is connected between one side of rectifier 54 and ground; series connected rectifier 57 and capacitor 58 are connected between the opposite side of rectifier 54 and ground; and series connected capacitor 59 and rectifier 60 are connected between said opposite side of rectifier 54 and ground.
  • a rectifier 62 is connected between points 63 and 64, as shown.
  • network half 5 lb includes a rectifier 65 connected between positive terminal 53 and end terminal 55 of the winding 61.
  • Capacitor and rectifier elements 66-71 are connected as shown.
  • the line 72 to the ion guns may be connected with either negative or positive high voltage terminals, 52 or 53.
  • FIG. 11 shows sources 18a and 18b of high positive and negative DC voltage, and a switch 80 controllable at 81 (as for example in response to atmospheric charge or vapor conditions) alternately to connect these sources with the member 16a carrying needle clusters, which may be as described above at 16. Solid state switches such as SCRs may be used in place of switch 80. A timed sequence flow of positive and negative ions may thus be created to modulate atmospheric conditions.
  • F I0. 12 shows another application of the invention wherein particulate material such as dust or spray 86 (as for example pesticide) is treated with ions 87, whereby the particles will take on electrical charge so as to attach or cling to objects.
  • particulate material such as dust or spray 86 (as for example pesticide)
  • ions 87 whereby the particles will take on electrical charge so as to attach or cling to objects.
  • sprays can be made to cling to walls and floors within buildings, and pesticide dust can be made to cling to foliage.
  • Limbs and leaves of foliage tend to carry an electrical charge, so that ion treated dust of opposite charge will be attracted to such foliage.
  • a source of spray or dust is indicated at 88 along with nozzle 89, and a high voltage source 90 is connected with an ion dispensing unit 16b which may be similar to that described above at 16.
  • insulative support members each forming recesses opening sidewardly, the exposed exterior of each said member being electrically nonconductive
  • each said recess is circular and defines a central axis extending sidewardly and said tips are spaced about said axis.
  • each said member contains an aperture to pass a stream of gas lengthwise within the member and toward said recesses to assist in carrying said ions away from said member, said aperture communicating with said recesses and apertures in successive members being in end-to-end communication.
  • said bus contains an aperture to pass a stream of gas lengthwise within the bus and toward said recess to assist in carrying said ions away from said member, said aperture communicating with said recesses.
  • said last named means includes sources of plus and negative high DC voltage, and a switch connected to alternately connect the sources with said bus.
  • a. ion generator means having multiple tips located to inject ions of selected polarity into the room to be attracted to the particles in the atmosphere, for changing the particle charge
  • Vapor dispensing apparatus comprising a. ion dispenser means having multiple tips oriented to dispense ions directionally into the atmosphere to create a directional flow of air, and
  • ion dispenser means includes a cluster of electrically energizable needles and said liquid supply means comprises a wick.
  • ion generation and dispensing apparatus for altering the static charge of work, the combination comprising a. an elongated electrically conductive bus,

Abstract

The invention concerns ion generation and dispensing apparatus having module form with an electrically conductive bus to which groups of ion generating radiants or clusters are connected, the modules being constructed for connection in series; the provision of means to dispense vapor in air flow created by the flow of such ions; means to use such ions to effect particle collection on surfaces; and means to control such ion polarity in relation to external conditions.

Description

United States Patent [72] inventors Donald G.Saurenman Whittier; Harold w. Smith, San Marino, both of Calif. [211 App]. No. 863,522 [22] Filed Oct. 3, 1969 [45] Patented Nov. 30, 1971 [73] Assignee Consan Pacific Incorporated Whittier, Calif.
[54] ION GENERATION APPARATUS 15 Claims, 13 Drawing Figs.
[52] U.S.Cl 317/4, 317/262 [51] lnt.Cl 1105113/00 [50] FieldoiSearch 3l7/2,3,4, 262 A, 262 AB, 262 E, 262 S; 239/15, 433, 434
[56] References Cited UNITED STATES PATENTS 1,169,428 6/1916 Rogers 317/2X 1,735,494 11/1929 Chapman 317/2 X 2,019,333 10/1935 Auerbach 317/4 2,302,185 11/1942 Campbell 317/4 2,302,289 1 1/1942 Bramston-cook. 317/262 X 2,765,975 10/1956 Lindenblad 317/3 X 2,866,923 12/1958 Herbert 317/2 X Smith et a1 Lueder Nelson Auerbach.. Yaglou Ronzi McRae Weber Lindenblad Herbert Schweriner'.... Smith et al..... Spengler Lueder Meech et al.
Primary Examiner-D. F. Duggan Assistant Examiner-Ulysses Weldon Attorney-White & l-laefliger 317/2 317/262 317/3 317/4 317/262 3l7/4X 317/4 X 317/3 X 317/3 X 317/2 317/2 317/2 317/2 317/262 317/2 ABSTRACT: The invention concerns ion generation and dispensing apparatus having module form with an electrically conductive bus to which groups of ion generating radiants or clusters are connected, the modules being constructed for connection in series; the provision of means to dispense vapor in air flow created by the flow of such ions; means to use such ions to effect particle collection on surfaces; and means to control such ion polarity in relation to external conditions.
BACKGROUND OF THE INVENTION This invention relates generally to ion generation and dispensing apparatus, and more particularly concerns easily installable equipment for generating ions and dispensing them over large areas. I
In certain processing industries the buildup of static charge has long been known as a critical problem. For example, in cotton gins static charge accumulates in lint cleaners, slides, feed distributors and rollers; in paper processing static charge builds ,up on printing presses and rollers; textile mill card webs, silver and tow and looms constitute problem areas; and charge collects in dry weather when people walk on certain types of carpeting, as is well known. Such static charge buildup reduces substantially the efficiency of processing materials in such industries, and static discharge or sparking encountered by people walking over carpets is very objectionable.
In the past, various devices have been constructed to alleviate these problems, one such device being described in U.S. Pat. No. 3,358,344 to Harold W. Smith et al. While that device is very effective, there remains a need for an easily installable system of such devices capable of distributing ions over large work or walking areas of many different shapes and sizes.
SUMMARY OF THE INVENTION It is a major object of the invention to provide solutions to the above described problems through the provision of ion generation and dispensing apparatus having module form and facilitating ease of assembly of multiple modules to desired length for ready installation in static problem areas of various sizes. Basically, the apparatus module comprises an elongated insulative member forming a recess or recesses opening sidewardly; an electrically conductive bus extending lengthwise in the member; multiple electrically conductive inserts carried in the recess structure to have electrical connection to the bus, and multiple electrically conductive needles or metal radiants carried by the inserts in the recesses to project toward the recess openings so that electrical charge flowing to the needle tips will leave the tips and generate ions flowing away from the member. As will be seen, several such members may be connected in end-to-end relation so that the busses therein have electrical interconnection, whereby an ion generation system of desired length may readily be' fabricated or assembled, or multiple systems connected.
Typically, the inserts may have threaded connection to the electrical bus; the needle tips may be located in enlarged portions of the recesses directly inwardly of the recess side openings; and the insulative member may be formed of molded or extruded plastic with a shaped recess extending lengthwise continuously to receive the bus.
Another important object of the invention has to do with the provision of an aperture contained by the insulative member or a hollow bus member to pass a stream of gas from within the member toward the recess to assist in carrying ions away from the member. The aperture may for example extend lengthwise within the member, either within or outside of the bus, and when the members are connected in end-to-end relation to form a system, the apertures or channels in the members are placed in end-to-end communication, as will be seen. Also, small side outlets may be formed along the channels to pass the gas in close proximity to the needles to assist in ion separation and flow to penetrate the work area.
Further objects include the provision of means to dispense vapor in air flow created by ion flow; means to use ions to clear contaminant particles from a confined zone; means to use ions to efiect particle collection on surfaces, as for example foliage, as will be described in detail; and means to control ion polarity in response to external conditions.
These and other objects and advantages of the invention, as well as the details of illustrative embodiments, will be more fully understood from the following detailed description of the drawings, in which:
DRAWING DESCRIPTION FIG. I is a side elevational view of a system of insulative members incorporating the invention;
FIG. 2 is an enlarged section taken on line 2-2 of FIG. 1;
FIG. 3 is an enlarged section taken on line 3-3 of FIG. 1;
FIG. 4 is a section like FIG. 2, but showing a modified member;
FIG. 5 is a section like that of FIG. 3, but showing insulative members of FIG. 4 modified type;
FIG. 6 is a fragmentary side elevation, similar to that of FIG. I, but showing still another modified member;
FIG. 7 is a section taken on line 7--7 of FIG. 6;
FIGS. 8, 9, l l, 12 and 13 show applications of the invention; and
FIG. 10 is a high voltage multiplying circuit.
DETAILED DESCRIPTION OF THE INVENTION In FIGS. 1 and 2 an elongated insulative plastic member 10 contains a series of recesses 11 which open sidewardly. The member 10 also contains a lengthwise extending electrically conductive bus 12 which may be inserted into a channel 13 forward in member 10 upon extension. Prior to such insertion, the recesses 11 may be formed in the member at spaced locations.
Multiple electrically conductive inserts are carried in the recesses to have electrical connection to the bus. Also, multiple electrically conductive radiating clusters are carried by the inserts in the recess or recesses to project toward the recess mouths 110, so that electrical charge flowing to the cluster tips will leave the latter and generate ions flowing sidewardly away from the member 10. In the illustrated example, threaded inserts l5 carry the clusters 16, and are threaded into tapped openings 17 in the bus to depths such that the clusters are received into the'recesses II.
The cluster may, for example, include multiple needles directed in mutually diverging relation, with multiple needles 16a clustered about an axis defining central needle 16b. A source 18 of high voltage, when connected to the bus, produces a corona effect at the needle tips to generate ions with electrical repulsion effect in the space about the needles, thereby to establish an ion stream flowing rapidly with high ion concentrations penetrating for several yards toward work to be charged or neutralized. One useful circuit to provide the source 18 is described in U.S. Pat. No. 3,308,344 referred to above. Recess 11 is shaped to aid the flow of such ions, and includes a conical shoulder 20 merging with cylindrical bore 21, the latter in turn merging with a conical bevel 22 at the recess mouth. Note that the needle tips are located in the enlarged portions of the recesses formed by the bores 21. The inserts and needles of course are electrically conductive. Member 10 may for example consist of a suitable plastic material such as polyethylene or polyvinylchloride.
Referring to FIG. 3, the members 10 may be connected in end-to-end relation so that the buses therein have electrical interconnection whereby a system of such modular members may be easily constructed to desired length corresponding to the size of work to be treated. Thus, unit installations may be made at intervals along ceilings or walls to treat large areas. For example, a hallway is shown in FIG. 8 with such a system installed at 24 along a corner between the wall and ceiling, with the needles directed downwardly to eject ions toward the walkway above carpet 25. The ends of the members 10 in FIG. 3 have interfitting connection, i.e., a nose 26 on one member is received into the recessed end 27 of the other member, with tapered shoulder interfit at 28. The buses 12 also interfit as shown at 29, within the nose 26 for protection. Suitable brackets 30 interconnect the members as shown in FIG. 1. Multiple members 10 of various types may thus be connected to a single power source, by insulated cable.
FIG. 8 also shows radiating clusters 16d installed in a ceiling and wall to completely control positive or negative ion conditioning of the room or hall atmosphere. Grounding the floor or walkway, or lower walls 83, as at 84, causes ion charged dust collection on the floor or walls, clearing the atmosphere.
Another aspect of the invention concerns the provision of an aperture in the member to pass a stream of gas from within the member toward the recesses 11 to assist in carrying the ions away from the member, as by wiping" them off the cluster. tips. In the example shown in FIGS. 4 and 5, the aperture 31 is formed to extend lengthwise within the member at the side of the bus opposite the recesses, air being delivered via a suitable blower 32. The bus 12a and insert 15a are also apertured at 33 and 34 to pass the gas stream directly toward and through the cluster. if desired, a medicated vapor may be delivered to the air stream, as from a source 35 having an outlet passing to the air conduit 36 leading to the aperture 31.
A variational form of air delivery is shown in F IGS. 6 and 7, with the electrical bus 38 in the form of an air delivery tube received by the V-shaped insulative member 39 and attached thereto. Holes drilled in the tube at 40 pass air to flow over the needle cluster 41. The latter is attached to the tube via insert 42. The FIG. 13 variation is like FIG. 7, and in addition includes means for dispersal of vapor, as for example medicated vapor in the ion stream. In one form, liquid 110 is contained in the tubular bus 38a, and a wick 111 has one end in that liquid and its opposite end 111a projecting from insert 42 for exposure to the air stream created and impelled forwardly by the forward movement of ions created by the cluster 41a. Liquid molecules evaporate from the wick end 1110 as vapor and travel forwardly with the air stream. In another form, a wick 113 may protrude from a separate container 114 for the liquid, and into the air flow path as shown. A nozzle may be used in place of the wick.
FIG. 9 illustrates another application of the invention, the ion delivery device 43 of FIG. 2, 4 or 7 type being carried by a room air conditioner unit 44. ions are caused to flow into the conditioned air stream delivered via the grille 45, for treatment in the room area.
FIG. 10 illustrates an unusually advantageous voltage multiplying circuit employing rectifiers and capacitors, and capable of increasing the voltage delivered to the ion gun 16 to 18,000 volts, from a 1 l5 volt AC source 50. The network 51 includes two halves, 510 having a negative output terminal 52, and 51b having a positive output terminal 53.
Network half 51a includes a rectifier (diode) 54 between terminal 52 and the end terminal 55 of transformer winding 61. A capacitor 56 is connected between one side of rectifier 54 and ground; series connected rectifier 57 and capacitor 58 are connected between the opposite side of rectifier 54 and ground; and series connected capacitor 59 and rectifier 60 are connected between said opposite side of rectifier 54 and ground. Finally, a rectifier 62 is connected between points 63 and 64, as shown.
Similarly, network half 5 lb includes a rectifier 65 connected between positive terminal 53 and end terminal 55 of the winding 61. Capacitor and rectifier elements 66-71 are connected as shown. Thus, the line 72 to the ion guns may be connected with either negative or positive high voltage terminals, 52 or 53.
While AC systems of many varied needle configurations have been used in the past, they have tended to restrict the distance ions can be projected from the needles; further, using AC application to the needles, the latter tend to attract dirt and clog easily. We have found, however, that using either a positive or negative voltage application tends to keep the units clean and in workable condition. The same result can be achieved using positive voltage for some time, then negative voltage for some time, et seq. FIG. 11 shows sources 18a and 18b of high positive and negative DC voltage, and a switch 80 controllable at 81 (as for example in response to atmospheric charge or vapor conditions) alternately to connect these sources with the member 16a carrying needle clusters, which may be as described above at 16. Solid state switches such as SCRs may be used in place of switch 80. A timed sequence flow of positive and negative ions may thus be created to modulate atmospheric conditions.
F I0. 12 shows another application of the invention wherein particulate material such as dust or spray 86 (as for example pesticide) is treated with ions 87, whereby the particles will take on electrical charge so as to attach or cling to objects. Thus sprays can be made to cling to walls and floors within buildings, and pesticide dust can be made to cling to foliage. Limbs and leaves of foliage tend to carry an electrical charge, so that ion treated dust of opposite charge will be attracted to such foliage. A source of spray or dust is indicated at 88 along with nozzle 89, and a high voltage source 90 is connected with an ion dispensing unit 16b which may be similar to that described above at 16.
We claim:
1. in ion generation and dispensing apparatus for altering the static charge of work, the combination comprising:
a. elongated insulative support members each forming recesses opening sidewardly, the exposed exterior of each said member being electrically nonconductive,
b. an electrically conductive bus extending lengthwise in each said member and exposed at the end thereof,
c. multiple electrically conductive inserts carried in said recesses to have threaded connection to said bus, and multiple electrically conductive ion generators carried by said inserts in said recesses to project toward the recess mouths and tenninating at tips proximate the recess mouths so that electrical charge flowing to said tips will leave said tips and generate ions flowing away from said member and d. said members connected in end-to-end interfitting relation so that said buses therein have end-to-end mechanical and electrical connection with one end of the interfitting bus defining a tongue and the other end of the interfitting bus defining a groove thereby to define an elongated system of generators and buses.
2. The combination of claim 1 wherein said recesses are separate and individual and said tips are located in enlarged portions of said recesses directly inwardly of the recess side openings.
3. The combination of claim 2 wherein each said recess is circular and defines a central axis extending sidewardly and said tips are spaced about said axis.
4. The combination of claim 1 wherein each said member contains an aperture to pass a stream of gas lengthwise within the member and toward said recesses to assist in carrying said ions away from said member, said aperture communicating with said recesses and apertures in successive members being in end-to-end communication.
5. The combination of claim 3 wherein said bus and insert are also apertured to pass said gas stream from the aperture within said member to said recess.
6. The combination of claim 1 wherein said bus contains an aperture to pass a stream of gas lengthwise within the bus and toward said recess to assist in carrying said ions away from said member, said aperture communicating with said recesses.
7. The combination of claim 1 including air channels extending lengthwise in said members in intercommunication and having air stream supplying communication with said recesses.
8. The combination of claim 6 wherein said recesses are V- shaped in cross section, and said bus comprises a tube received in said recess.
9. The combination of claim 1 including a chamber having a carpet defining a walkway, said system of buses and generators being installed proximate said walkway to direct ions thereto.
10. The combination of claim 1 including means to supply high voltage of selected polarity to said bus, and operatively connected therewith, whereby said apparatus is kept self cleaning.
11. The combination of claim 7 wherein said last named means includes sources of plus and negative high DC voltage, and a switch connected to alternately connect the sources with said bus.
12. In a room having particles in the atmosphere,
a. ion generator means having multiple tips located to inject ions of selected polarity into the room to be attracted to the particles in the atmosphere, for changing the particle charge,
b. and a charged particle attractor exposed to the room interior at a remote location lower than the generator and c. a source of positive and negative high voltage and a device to electrically connect the generator means to the source to selectively and alternately supply the same generator means with said positive and negative high voltage.
13. Vapor dispensing apparatus comprising a. ion dispenser means having multiple tips oriented to dispense ions directionally into the atmosphere to create a directional flow of air, and
b. means to direct a side stream of dispersed chemical treating agent into the air flow path for flow of said dispersed agent with the ions in said direction. 14. Apparatus as defined in claim 10 wherein said ion dispenser means includes a cluster of electrically energizable needles and said liquid supply means comprises a wick.
15. In ion generation and dispensing apparatus for altering the static charge of work, the combination comprising a. an elongated electrically conductive bus,
b. multiple electrically conductive ion dispensers carried by said bus at spaced locations therealong, the dispensers having ends oriented in the atmosphere so that electrical charge flowing to such ends will leave the ends and generate ions in the atmosphere traveling away from said bus and creating flow of air in a predetermined direction.
c. and means to direct a side stream flow of a dispersed chemical treating agent to travel in the air with the ions away from said spaced locations along the bus.
I '0 i I

Claims (15)

1. In ion generation and dispensing apparatus for altering the static charge of work, the combination comprising: a. elongated insulative support members each forming recesses opening sidewardly, the exposed exterior of each said member being electrically nonconductive, b. an electrically conductive bus extending lengthwise in each said member and exposed at the end thereof, c. multiple electrically conductive inserts carried in said recesses to have threaded connection to said bus, and multiple electrically conductive ion generators carried by said inserts in said recesses to project toward the recess mouths and terminating at tips proximate the recess mouths so that electrical charge flowing to said tips will leave said tips and generate ions flowing away from said member and d. said members connected in end-to-end interfitting relation so that said buses therein have end-to-end mechanical and electrical connection with one end of the iNterfitting bus defining a tongue and the other end of the interfitting bus defining a groove, thereby to define an elongated system of generators and buses.
2. The combination of claim 1 wherein said recesses are separate and individual and said tips are located in enlarged portions of said recesses directly inwardly of the recess side openings.
3. The combination of claim 2 wherein each said recess is circular and defines a central axis extending sidewardly and said tips are spaced about said axis.
4. The combination of claim 1 wherein each said member contains an aperture to pass a stream of gas lengthwise within the member and toward said recesses to assist in carrying said ions away from said member, said aperture communicating with said recesses and apertures in successive members being in end-to-end communication.
5. The combination of claim 3 wherein said bus and insert are also apertured to pass said gas stream from the aperture within said member to said recess.
6. The combination of claim 1 wherein said bus contains an aperture to pass a stream of gas lengthwise within the bus and toward said recess to assist in carrying said ions away from said member, said aperture communicating with said recesses.
7. The combination of claim 1 including air channels extending lengthwise in said members in intercommunication and having air stream supplying communication with said recesses.
8. The combination of claim 6 wherein said recesses are V-shaped in cross section, and said bus comprises a tube received in said recess.
9. The combination of claim 1 including a chamber having a carpet defining a walkway, said system of buses and generators being installed proximate said walkway to direct ions thereto.
10. The combination of claim 1 including means to supply high voltage of selected polarity to said bus, and operatively connected therewith, whereby said apparatus is kept self cleaning.
11. The combination of claim 7 wherein said last named means includes sources of plus and negative high DC voltage, and a switch connected to alternately connect the sources with said bus.
12. In a room having particles in the atmosphere, a. ion generator means having multiple tips located to inject ions of selected polarity into the room to be attracted to the particles in the atmosphere, for changing the particle charge, b. and a charged particle attractor exposed to the room interior at a remote location lower than the generator and c. a source of positive and negative high voltage and a device to electrically connect the generator means to the source to selectively and alternately supply the same generator means with said positive and negative high voltage.
13. Vapor dispensing apparatus comprising a. ion dispenser means having multiple tips oriented to dispense ions directionally into the atmosphere to create a directional flow of air, and b. means to direct a side stream of dispersed chemical treating agent into the air flow path for flow of said dispersed agent with the ions in said direction.
14. Apparatus as defined in claim 10 wherein said ion dispenser means includes a cluster of electrically energizable needles and said liquid supply means comprises a wick.
15. In ion generation and dispensing apparatus for altering the static charge of work, the combination comprising a. an elongated electrically conductive bus, b. multiple electrically conductive ion dispensers carried by said bus at spaced locations therealong, the dispensers having ends oriented in the atmosphere so that electrical charge flowing to such ends will leave the ends and generate ions in the atmosphere traveling away from said bus and creating flow of air in a predetermined direction. c. and means to direct a side stream flow of a dispersed chemical treating agent to travel in the air with the ions away from said spaced locations along the bus.
US863522A 1969-10-03 1969-10-03 Ion generation apparatus Expired - Lifetime US3624448A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86352269A 1969-10-03 1969-10-03

Publications (1)

Publication Number Publication Date
US3624448A true US3624448A (en) 1971-11-30

Family

ID=25341251

Family Applications (1)

Application Number Title Priority Date Filing Date
US863522A Expired - Lifetime US3624448A (en) 1969-10-03 1969-10-03 Ion generation apparatus

Country Status (1)

Country Link
US (1) US3624448A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711743A (en) * 1971-04-14 1973-01-16 Research Corp Method and apparatus for generating ions and controlling electrostatic potentials
US3729898A (en) * 1971-06-01 1973-05-01 Chemical Construction Corp Removal of entrained matter from gas streams
US3757491A (en) * 1970-11-05 1973-09-11 Gourdine Systems Ins Apparatus for suppressing airborne particles
US3802159A (en) * 1973-01-29 1974-04-09 Gen Motors Corp Electrical connector arrangement for air conditioner electrostatic filter
US3818269A (en) * 1971-05-29 1974-06-18 W Stark System for ion production
US3873835A (en) * 1973-11-02 1975-03-25 Vladimir Ignatjev Ionizer
US3936698A (en) * 1970-03-20 1976-02-03 Meyer George F Ion generating apparatus
US3942072A (en) * 1974-10-18 1976-03-02 Burlington Industries, Inc. Method and system for maintaining an electrically neutral atmosphere
US4095962A (en) * 1975-03-31 1978-06-20 Richards Clyde N Electrostatic scrubber
US4151577A (en) * 1976-01-09 1979-04-24 Amcor Ltd. Ionization device employing a grounded insulative housing member spaced from an ionization electrode
US4477263A (en) * 1982-06-28 1984-10-16 Shaver John D Apparatus and method for neutralizing static electric charges in sensitive manufacturing areas
US4542434A (en) * 1984-02-17 1985-09-17 Ion Systems, Inc. Method and apparatus for sequenced bipolar air ionization
US4630167A (en) * 1985-03-11 1986-12-16 Cybergen Systems, Inc. Static charge neutralizing system and method
US4729057A (en) * 1986-07-10 1988-03-01 Westward Electronics, Inc. Static charge control device with electrostatic focusing arrangement
US4901194A (en) * 1988-07-20 1990-02-13 Ion Systems, Inc. Method and apparatus for regulating air ionization
US4900527A (en) * 1986-12-24 1990-02-13 Kolbus Gmbh & Co. Kg Appliance for sterilizing containers
WO1990005441A1 (en) * 1988-11-01 1990-05-17 Semtronics Corporation Ionization system
US5065272A (en) * 1991-01-09 1991-11-12 Elexis Corporation Air ionizer
US5707429A (en) * 1996-09-25 1998-01-13 Lewis Lint Trap, Inc. Ionizing structure for ambient air treatment
US6118645A (en) * 1990-08-15 2000-09-12 Ion Systems, Inc. Self-balancing bipolar air ionizer
US6471752B1 (en) 2000-10-16 2002-10-29 Lewis Lint Trap, Inc. Ionizing structure for ambient air treatment
US20030142455A1 (en) * 2001-11-23 2003-07-31 Haug Gmbh & Co. Kg Air ionization device
DE10211429C1 (en) * 2002-03-15 2003-12-04 Krause Heike Ionization device to compensate for electrostatic charging in paper and textiles has direct current source inverter and multiplier to feed electrode system
US6744617B2 (en) 2001-01-18 2004-06-01 Keyence Corporation Ionizing apparatus and discharge electrode bar for the same
US6791815B1 (en) 2000-10-27 2004-09-14 Ion Systems Dynamic air ionizer and method
US6850403B1 (en) 2001-11-30 2005-02-01 Ion Systems, Inc. Air ionizer and method
US20070158578A1 (en) * 2005-10-13 2007-07-12 Mks Instruments, Inc. Air Assist for AC Ionizers
WO2007118182A2 (en) * 2006-04-06 2007-10-18 Mks Instruments, Inc. Control system for static neutralizer
US20090185324A1 (en) * 2008-01-23 2009-07-23 Robertson Reginald R Ion chip operating module
US20100090096A1 (en) * 2006-12-19 2010-04-15 Midori Anzen Co., Ltd. Neutralizer
ITMO20090287A1 (en) * 2009-12-09 2011-06-10 Giuseppe Mario Mauro THERAPEUTIC DEVICE
US9353966B2 (en) 2013-03-15 2016-05-31 Iaire L.L.C. System for increasing operating efficiency of an HVAC system including air ionization
US11283245B2 (en) 2016-08-08 2022-03-22 Global Plasma Solutions, Inc. Modular ion generator device
US11344922B2 (en) 2018-02-12 2022-05-31 Global Plasma Solutions, Inc. Self cleaning ion generator device
USD955539S1 (en) * 2019-07-19 2022-06-21 Smc Corporation Ionizer
US11581709B2 (en) 2019-06-07 2023-02-14 Global Plasma Solutions, Inc. Self-cleaning ion generator device
US11695259B2 (en) 2016-08-08 2023-07-04 Global Plasma Solutions, Inc. Modular ion generator device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1169428A (en) * 1915-01-14 1916-01-25 George D Rogers Means for removing static electricity from materials.
US1735494A (en) * 1925-02-12 1929-11-12 Chapman Electric Neutralizer C Neutralizer bar
US2019333A (en) * 1931-07-23 1935-10-29 Gen Electric Production of ions in air or other gas
US2060842A (en) * 1932-01-21 1936-11-17 Herman Seid Method and means for controlling ionic content of air
US2095651A (en) * 1934-03-09 1937-10-12 Ronzi Carl Process and means for treating human skin
US2127229A (en) * 1935-04-12 1938-08-16 Gen Patents Ltd Process for producing large ions
US2302185A (en) * 1940-07-27 1942-11-17 Union Oil Co Electrified spray apparatus
US2302289A (en) * 1938-12-06 1942-11-17 Union Oil Co Electrified spray method and apparatus
US2526178A (en) * 1947-10-06 1950-10-17 Hydro Nitro S A Arrangement for improving the biological properties of air in rooms
US2765975A (en) * 1952-11-29 1956-10-09 Rca Corp Ionic wind generating duct
US2866923A (en) * 1954-01-28 1958-12-30 Jr William C Herbert Static eliminators
US3137806A (en) * 1960-11-22 1964-06-16 Simco Co Inc Dustproof static eliminator
US3308344A (en) * 1965-03-04 1967-03-07 Ener Jet Corp High voltage antistatic apparatus
US3369152A (en) * 1964-07-21 1968-02-13 Spengler Walter Device for collecting electrostatic charges from poor conductors by means of a corona discharge
US3417302A (en) * 1962-02-09 1968-12-17 Holger George Lueder Apparatus for the production of unipolar ions in the air of a room
US3470416A (en) * 1965-09-22 1969-09-30 Ind Electrical Co Ltd Static eliminators
US3521125A (en) * 1967-01-16 1970-07-21 Robert H Nelson Electrostatic crop dusting apparatus

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1169428A (en) * 1915-01-14 1916-01-25 George D Rogers Means for removing static electricity from materials.
US1735494A (en) * 1925-02-12 1929-11-12 Chapman Electric Neutralizer C Neutralizer bar
US2019333A (en) * 1931-07-23 1935-10-29 Gen Electric Production of ions in air or other gas
US2060842A (en) * 1932-01-21 1936-11-17 Herman Seid Method and means for controlling ionic content of air
US2095651A (en) * 1934-03-09 1937-10-12 Ronzi Carl Process and means for treating human skin
US2127229A (en) * 1935-04-12 1938-08-16 Gen Patents Ltd Process for producing large ions
US2302289A (en) * 1938-12-06 1942-11-17 Union Oil Co Electrified spray method and apparatus
US2302185A (en) * 1940-07-27 1942-11-17 Union Oil Co Electrified spray apparatus
US2526178A (en) * 1947-10-06 1950-10-17 Hydro Nitro S A Arrangement for improving the biological properties of air in rooms
US2765975A (en) * 1952-11-29 1956-10-09 Rca Corp Ionic wind generating duct
US2866923A (en) * 1954-01-28 1958-12-30 Jr William C Herbert Static eliminators
US3137806A (en) * 1960-11-22 1964-06-16 Simco Co Inc Dustproof static eliminator
US3417302A (en) * 1962-02-09 1968-12-17 Holger George Lueder Apparatus for the production of unipolar ions in the air of a room
US3369152A (en) * 1964-07-21 1968-02-13 Spengler Walter Device for collecting electrostatic charges from poor conductors by means of a corona discharge
US3308344A (en) * 1965-03-04 1967-03-07 Ener Jet Corp High voltage antistatic apparatus
US3470416A (en) * 1965-09-22 1969-09-30 Ind Electrical Co Ltd Static eliminators
US3521125A (en) * 1967-01-16 1970-07-21 Robert H Nelson Electrostatic crop dusting apparatus

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936698A (en) * 1970-03-20 1976-02-03 Meyer George F Ion generating apparatus
US3757491A (en) * 1970-11-05 1973-09-11 Gourdine Systems Ins Apparatus for suppressing airborne particles
US3711743A (en) * 1971-04-14 1973-01-16 Research Corp Method and apparatus for generating ions and controlling electrostatic potentials
US3818269A (en) * 1971-05-29 1974-06-18 W Stark System for ion production
US3729898A (en) * 1971-06-01 1973-05-01 Chemical Construction Corp Removal of entrained matter from gas streams
US3802159A (en) * 1973-01-29 1974-04-09 Gen Motors Corp Electrical connector arrangement for air conditioner electrostatic filter
US3873835A (en) * 1973-11-02 1975-03-25 Vladimir Ignatjev Ionizer
US3942072A (en) * 1974-10-18 1976-03-02 Burlington Industries, Inc. Method and system for maintaining an electrically neutral atmosphere
US4095962A (en) * 1975-03-31 1978-06-20 Richards Clyde N Electrostatic scrubber
US4151577A (en) * 1976-01-09 1979-04-24 Amcor Ltd. Ionization device employing a grounded insulative housing member spaced from an ionization electrode
US4477263A (en) * 1982-06-28 1984-10-16 Shaver John D Apparatus and method for neutralizing static electric charges in sensitive manufacturing areas
US4542434A (en) * 1984-02-17 1985-09-17 Ion Systems, Inc. Method and apparatus for sequenced bipolar air ionization
US4630167A (en) * 1985-03-11 1986-12-16 Cybergen Systems, Inc. Static charge neutralizing system and method
US4729057A (en) * 1986-07-10 1988-03-01 Westward Electronics, Inc. Static charge control device with electrostatic focusing arrangement
US4900527A (en) * 1986-12-24 1990-02-13 Kolbus Gmbh & Co. Kg Appliance for sterilizing containers
US4901194A (en) * 1988-07-20 1990-02-13 Ion Systems, Inc. Method and apparatus for regulating air ionization
US4951172A (en) * 1988-07-20 1990-08-21 Ion Systems, Inc. Method and apparatus for regulating air ionization
WO1990005441A1 (en) * 1988-11-01 1990-05-17 Semtronics Corporation Ionization system
US4974115A (en) * 1988-11-01 1990-11-27 Semtronics Corporation Ionization system
US6118645A (en) * 1990-08-15 2000-09-12 Ion Systems, Inc. Self-balancing bipolar air ionizer
US5065272A (en) * 1991-01-09 1991-11-12 Elexis Corporation Air ionizer
US5707429A (en) * 1996-09-25 1998-01-13 Lewis Lint Trap, Inc. Ionizing structure for ambient air treatment
US6471752B1 (en) 2000-10-16 2002-10-29 Lewis Lint Trap, Inc. Ionizing structure for ambient air treatment
US6791815B1 (en) 2000-10-27 2004-09-14 Ion Systems Dynamic air ionizer and method
US6798637B1 (en) 2000-10-27 2004-09-28 Ion Systems Dynamic air ionizer and method
US6744617B2 (en) 2001-01-18 2004-06-01 Keyence Corporation Ionizing apparatus and discharge electrode bar for the same
US20030142455A1 (en) * 2001-11-23 2003-07-31 Haug Gmbh & Co. Kg Air ionization device
DE10157524B4 (en) * 2001-11-23 2006-10-26 Haug Gmbh & Co. Kg. Luftionisationsgerät
US7170734B2 (en) 2001-11-23 2007-01-30 Haug Gmbh & Co. Kg Air ionization device
US6850403B1 (en) 2001-11-30 2005-02-01 Ion Systems, Inc. Air ionizer and method
DE10211429C1 (en) * 2002-03-15 2003-12-04 Krause Heike Ionization device to compensate for electrostatic charging in paper and textiles has direct current source inverter and multiplier to feed electrode system
NL1022890C2 (en) * 2002-03-15 2004-10-26 Heike Krause Ionization device.
US20070158578A1 (en) * 2005-10-13 2007-07-12 Mks Instruments, Inc. Air Assist for AC Ionizers
US7697258B2 (en) 2005-10-13 2010-04-13 Mks Instruments, Inc. Air assist for AC ionizers
WO2007106176A2 (en) * 2006-03-03 2007-09-20 Mks Instruments, Inc. Air assist for ac ionizers
WO2007106176A3 (en) * 2006-03-03 2009-04-16 Mks Instr Inc Air assist for ac ionizers
US20070279829A1 (en) * 2006-04-06 2007-12-06 Mks Instruments, Inc. Control system for static neutralizer
WO2007118182A3 (en) * 2006-04-06 2008-10-16 Mks Instr Inc Control system for static neutralizer
WO2007118182A2 (en) * 2006-04-06 2007-10-18 Mks Instruments, Inc. Control system for static neutralizer
US7973292B2 (en) * 2006-12-19 2011-07-05 Midori Anzen Co., Ltd. Neutralizer
US20100090096A1 (en) * 2006-12-19 2010-04-15 Midori Anzen Co., Ltd. Neutralizer
US7623333B2 (en) * 2008-01-23 2009-11-24 Reginald R Robertson Ion chip operating module
US20090185324A1 (en) * 2008-01-23 2009-07-23 Robertson Reginald R Ion chip operating module
ITMO20090287A1 (en) * 2009-12-09 2011-06-10 Giuseppe Mario Mauro THERAPEUTIC DEVICE
WO2011070500A1 (en) * 2009-12-09 2011-06-16 Giuseppe Mario Mauro Therapeutic device
US9353966B2 (en) 2013-03-15 2016-05-31 Iaire L.L.C. System for increasing operating efficiency of an HVAC system including air ionization
US11283245B2 (en) 2016-08-08 2022-03-22 Global Plasma Solutions, Inc. Modular ion generator device
US11695259B2 (en) 2016-08-08 2023-07-04 Global Plasma Solutions, Inc. Modular ion generator device
US11344922B2 (en) 2018-02-12 2022-05-31 Global Plasma Solutions, Inc. Self cleaning ion generator device
US11581709B2 (en) 2019-06-07 2023-02-14 Global Plasma Solutions, Inc. Self-cleaning ion generator device
USD955539S1 (en) * 2019-07-19 2022-06-21 Smc Corporation Ionizer

Similar Documents

Publication Publication Date Title
US3624448A (en) Ion generation apparatus
US3308344A (en) High voltage antistatic apparatus
US6118645A (en) Self-balancing bipolar air ionizer
US5141529A (en) Dust precipitation from air by negative ionization
US5296019A (en) Dust precipitation from air by negative ionization
US4542434A (en) Method and apparatus for sequenced bipolar air ionization
US4955991A (en) Arrangement for generating an electric corona discharge in air
CA2766380C (en) Apparatus and methods for producing charged fluid droplets
US4509694A (en) Cross-current airfoil electrostatic nozzle
US4598870A (en) Device for the powder-dusting of moving objects, particularly flat substrates
US4757421A (en) System for neutralizing electrostatically-charged objects using room air ionization
US3521125A (en) Electrostatic crop dusting apparatus
DE3143978C2 (en)
US4498116A (en) Control of static neutralization employing positive and negative ion distributor
US20130214054A1 (en) Generator apparatus for producing vortex rings entrained with charged particles
CN101104157A (en) Flotage trapping device and flotage repelling device
JP4409884B2 (en) Ultrasonic atomizing dustless ionizer and ultrasonic atomizing static elimination or dust removal system
JP2008295937A (en) Air purifier
CN112739389B (en) Air disinfection method and air disinfection device comprising a unipolar corona discharge zone and an electric field
US6082628A (en) Powder charger and sprayer
DE3611947A1 (en) Electrostatically assisted, mechanical folded filter element
KR20020023057A (en) Appratus for controlling static eletricity using ultra-fine particles
WO2020080347A1 (en) Electrostatic spraying apparatus
CA2157611C (en) Self-balancing bipolar air ionizer
DE8614763U1 (en) Device for cleaning gases, in particular air

Legal Events

Date Code Title Description
AS Assignment

Owner name: CUMMING CORPORATION, A CA. CORP.,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONSAN PACIFIC INCORPORATED;REEL/FRAME:004727/0398

Effective date: 19860804

Owner name: CUMMING CORPORATION, 9620 TOPANGA CANYON PLACE, CH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CONSAN PACIFIC INCORPORATED;REEL/FRAME:004727/0398

Effective date: 19860804