US3626154A - Transparent furnace - Google Patents

Transparent furnace Download PDF

Info

Publication number
US3626154A
US3626154A US8936A US3626154DA US3626154A US 3626154 A US3626154 A US 3626154A US 8936 A US8936 A US 8936A US 3626154D A US3626154D A US 3626154DA US 3626154 A US3626154 A US 3626154A
Authority
US
United States
Prior art keywords
furnace
gold
oven
transparent
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US8936A
Inventor
Thomas B Reed
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Application granted granted Critical
Publication of US3626154A publication Critical patent/US3626154A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • H05B3/64Heating elements specially adapted for furnaces using ribbon, rod, or wire heater

Definitions

  • ABSTRACT A furnace which heats by infrared radiation in- 219/553 cludes a wall portion of material transparent to visible radia- F27d 11/02 [51] Int. tion having a layer of selected material on the insid h r f.
  • a conventional muffle furnace usually consists of an enclosure containing the body to be heated all within another enclosure. Heat generated in the space between the two enclosures is conducted to or radiates to the body to be heated and so the body is separated'from the source of heat by the first enclosure.
  • Conventional muffle furnaces, as well as other types of furnaces, use asbestos or similar materials for insulation around the outside of the furnace to reduce heat losses.
  • radiation heat shields are often employed instead of the packed insulation. These shields surround the hot zone of the furnace with a very thin sheet of metal. A multitude of such shields are employed and it can be shown thermodynamically that under ideal conditions, each heat shield comes to an intermediate temperature such that it reduces radiation loss by a factor of two. Thus n such shields reduce the radiation loss by W.
  • a transparent furnace anda transparent oven window are applications of the present invention.
  • the invention includes a wall portion which is transparent, coated with a material, which (a) reflects as much of the infrared as possible, (b) transmits as much of the visible radiation as is required for good visibility of the contents of the furnace, and (c) is inert at the temperature of operation.
  • FIG. 1 shows curves of black body radiation intensity vs. wavelength
  • FIG. 2 shows curves for a number of metals and a semiconductor of reflectance vs. wavelength
  • FIG. 3 is a cross section view taken through the axis of a muffle furnace incorporating features of the present invention
  • FIG. 4 is a sectional view of the furnace, taken transverse to the axis;
  • FIG. 5 is a sectional view taken through the axis of another embodiment of the muffle furnace, incorporating features of the invention.
  • FIG. 6 is a sectional view of the furnace shown in FIG. 5, taken transverse to the axis;
  • FIG. 7 shows plots of relative transmission and reflectivity, versus wavelength for a film of gold, quartz and Pyrex.
  • FIG. 8 is a family of curves of temperature versus power for a muffle furnace, in accordance with the present invention, with different thicknesses of the gold layer for comparison with a conventional muffle furnace with packed insulation.
  • the relative intensity of radiation as functions of wavelength for a black body (which simulates the radiation from materials in a furnace) at 500 C., l,000 C. and 2,000 C. are shown in FIG. 1.
  • the eye is only sensitive to radiation in the range 0.4-0.7 microns, and at these temperature l0", 0.01 and 2 percent, respectively, of the total radiation lies in the visible.
  • the reflectance of a number of materials as a function of wavelength is shown in FIG. 2.
  • the transmission of thin films is correspondingly high where the reflectance is low and vice versa.
  • a thin film of material which exhibits low reflectance of visible radiation will correspondingly exhibit high transmittance of visible radiation. The thinner the film, the higher will be the transmittance.
  • the thickness of the film does not afi'ect reflectance and so the film thickness of the selected material can be tailored to transmit visible radiation without substantially reducing its reflectance of infrared radiation.
  • metals have a high reflectance when the wavelength exceeds the plasma wavelength, A, where Here N is the number of free electrons/cm, e the charge on the electron m" the effective of the mass of the electron and e is the dielectric constant.
  • A the plasma wavelength
  • the curve for nickel is typical of most metals, having a moderately high reflectance at all wavelengths with little distinction between visible and infrared wavelengths.
  • the curve shown for gold (copper is very similar) is ideal for a furnace operating at 1,000 O, as it can be seen that the reflectance is very high where most of the energy lies, and falls off rapidly in the visible, giving rise to the gold" color. Silver even surpasses gold in its infrared reflectance, but is not as good a transmitter in the visible. However, at 2,000 C. higher reflectance in the visible is required, because there would be so much visible light availabie that it would be advantageous to reflect most of it for the comfort of the observer. This may be called the sunglasses" effect.
  • Tin-doped indium oxide is a good example and its reflectance is shown in FIG. 2.
  • the plasma wavelength is longer than that of most metals so that the infrared reflection is not as high as that of gold, but the transmission in the visible is much better.
  • this type of material should have adequate reflectance for the longer wavelengths and at the same time the high transmission in the visible is needed because there is no visible light generated by the heat of the furnace and one must bring light in from the outside.
  • the muffle-type furnaces described herein consist of a clear quartz muffle in which the body to be heated is placed. Outside of the quartz muffle is a transparent (Pyrex) enclosure coated on the inside with a thin film of gold, a few hundred angstroms thick. A source of infrared is located between the quartz muffle and the Pyrex enclosure. The Pyrex enclosure may be cooled with a suitable transparent cooling fluid and no packed insulation is required.
  • the cooling apparatus around the Pyrex enclosure is preferably transparent 1 to visible radiation, so that an observer can view the body inside the muflle with the naked eye, there being sufficient visible radiation transmitted through the thin layer of gold so that the body can be observed.
  • the gold reflects substantially all infrared radiation incident upon it and so very little of the infrared radiation escapes past the gold layer. Heating is rapid and efficient.
  • the coolant fluid (which may be gas or liquid) flows directly against the gold layer and so is most effective to hold down the temperature of both the gold and the Pyrex enclosure.
  • the ideal furnace for this would be a transparent furnace, in which black body conditions are maintained within the furnace and which can be heated to temperature rapidly and cooled rapidly. With such a furnace, the growth of crystals can be observed and an experiment can be terminated quickly and then resumed again quickly, as desired by the operator.
  • Embodiments of the present invention provide just such a furnace.
  • FIGS. 3 to 6 reveal a muffle-type furnace.
  • the muffle furnace is generally a furnace in which the material to be heated is enclosed within a chamber and outside of this chamber a heating element is provided.
  • the heating element is enclosed and insulated from the surroundings to prevent heat loss to the outside. In operation, heat from the element radiates through or is conducted through the chamber enclosing the body to be heated.
  • laboratory muffle furnaces of this sort have had a packed insulation surrounding the heating element to prevent a window in the furnace so that crystal growth within could be observed.
  • FIG. 3 there is shown a muffle furnace which can be used in the horizontal or vertical position. Many of the parts of the furnace are Figures of revolution about the axis 1.
  • the innermost part is a quartz muffle 2, which is a cylinder of clear quartz. Within the quartz muffle 2 is placed the item to be heated and which may consist of the crucible 3, containing a material 4.
  • Enclosing the quartz muffle 2 is a Pyrex tube 5 concentric with the tube 2 and of larger diameter, defining an annular space 6 in between.
  • the inside surface of the Pyrex tube 5 is coated with a thin film of gold 7, of thickness preferably greater than I00 angstroms and less than l,000 angstroms.
  • the thickness of the gold film is selected in view of the temperature that the furnace is to be operated at. The higher the operating temperature, the greater the thickness.
  • Heater elements 8 are located in the annular space between the mufile 2 and Pyrex tube 5. These heating elements may consist of a number of rods 9, of alumina each drilled lengthwise with two holes, through which lengths of Kanthal A-l wire, such as 10 and 11 are inserted. The ends of the Kanthal wires extending from one end of each rod are connected together as at 12, and the other end of each length of Kanthal wire is inserted through a hole in the next adjacent aluminum rod. In this manner, the lengths of wire are connected in series, each length being fed through two adjacent alumina rods.
  • the alumina rods are suspended in the annular chamber 6 by rings 13 and 14 located in the annular chamber.
  • the rings are equipped with protuberances, such as 15, on the inside and out, which contact the outside of the muffle 2 and the inside of the Pyrex tube 5, and so suspend the rings in the annular space 6.
  • the contact area is a minimum to reduce conductive heat flow.
  • Holes such as 16 are located in the rings 13 and 14, into which the alumina rods 9 are inserted and, thus, the rods are suspended in the annular chamber 6. From the holes 13, a smaller hole such as 17 extends through the ring to accommodate passage of the ends of the Kanthal wires and these ends are joined by, for example, twisting as at 12.
  • the end rings 13 and 14 may be made of boron nitride.
  • the coolant jacket 18 encloses the Pyrex tube 5 and is concentric with the axis 1 and of larger diameter than the Pyrex tube, defining the annular coolant space 19 therebetween.
  • O"-ring seals 20 and 21 seal the ends of the coolant space and a cooling fluid, such as water, is conducted to the space via inlet and outlet tubes 22 and 23.
  • the jacket 18 is preferably transparent, or at least a portion of it is transparent, so that the crucible and heated material 4 within the quartz muffle 2 can be observed from outside by looking through the water jacket, Pyrex tube 5, gold layer 7 and the quartz mufile 2.
  • the muffle furnace shown in FIGS. 3 and 4 is capable of operation in either the vertical or horizontal position.
  • the alumina rods 9 expand only very little over extremes of temperature and so they can fit loosely within the holes 13 in the end rings 13 and 14, which permits expansion without causing the rings to move.
  • the Kanthal wire expands more than the rods and so the ends of the Kanthal wires, which extend from the rods elongate when the furnace is used, but this causes no problem because the wires fit loosely within the holes in the rods.
  • FIGS. 5 and 6 employs a helical heater wire, rather than the alumina rods loaded with Kanthal wire, as shown in FIGS. 3 and 4.
  • the numerous parts of the mufile furnace shown in this embodiment are figures of revolution about the axis 30 and concentrix therewith.
  • This includes a quartz muffle 32 in which the crucible is loaded, a second quartz muffle 32 concentrix with muffle 31 and of larger diameter, a heater wire which may be Kanthal A-l, wound in the form of a helix around the outside of the tube 32, a Pyrex tube 34 enclosing that, and including a thin layer of gold 35 on the inside thereof, and a cooling jacket 35 enclosing the Pyrex tube.
  • This furnace has a double muffle (quartz tubes 31 and 32).
  • the purpose of the quartz tube 32 being to provide a mandrel for the heater wire 35 and so it serves substantially only to support the heater wire.
  • This furnace is preferably used only in the horizontal position, because the helical wire expands considerably as the furnace heats and so the leads 37 and 38, which extend from opposite ends of the wire must be able to expand outward. Such expansion is easily accommodated in the horizontal position, but not on the vertical.
  • the thin gold layer in either of the ovens shown in FIGS. 3 or 5 is formed on the inside of the Pyrex tube by, for example, evaporating gold from a tungsten wire which is hung inside the tube, along the axis of the tube.
  • the wire is electroplated with sufficient gold to form the fllm on the inside of the Pyrex.
  • a 200 A. film of gold is produced on the inside of the Pyrex with a tungsten wire plated with gold for 40 milliampere-minutes per foot of wire.
  • a vacuum pump is attached to the tube and the ends of the tube are sealed, as in vacuum deposition apparatus.
  • a very thin layer of chromium is flashed on the inside of the tube.
  • the thin flash of chromium provides an even surface to use to which gold will adhere more readily than to bare Pyrex.
  • the gold is evaporated from tungsten wire under controlled conditions by varying the magnitude and duration of current conducted by the wire.
  • the gold layer can also be formed on the inside of the Pyrex tube by coating the inside with a commercially available gold resinate solution, such as liquid bright gold No. 6854" supplied by the Hanovia Liquid Gold Division of Englehart Industries, located in New Jersey.
  • a commercially available gold resinate solution such as liquid bright gold No. 6854" supplied by the Hanovia Liquid Gold Division of Englehart Industries, located in New Jersey.
  • the Pyrex is scrubbed with hot alconox.
  • One end of the tube is stoppered and a small of gold resinate solution is poured in.
  • the tube is rolled to coat evenly the inside, the stopper is removed and the excess is drained off.
  • the tube is fired by passing it through a furnace at about 600 C. at a rate of l centimeter per minute, while blowing air gently through the tube. Then the tube is annealed at 600 C.
  • the thickness of the layer of gold formed in this manner can be controlled by diluting the gold resinate solution with a solvent to make the layer of gold thinner, or by laying down a layer upon a layer of gold to fonn a thicker layer.
  • a one-layer thickness of gold is formed as just described, using the commercial gold resinate solution No. 6854, mentioned above, at full strength without any dilution. This full thickness layer measures about 400 angstroms thick.
  • a two-layer coating is formed by laying down two layers of the gold using the commercial gold resinate solution at full strength. A half-layer is laid down, using the commercial gold resinate solution diluted 50 percent and a quarter-layer is laid down using the solution diluted 75 percent.
  • the thickness of the gold layer is easily controlled to produce gold layers of 800, 400, 200 and 100 angstroms for the designated 2, l, one-half and onequarter layers, respectively, formed in the manner described.
  • FIG. 8 Plots of relative transmission and reflectivity versus wavelength are shown in FIG. 8 as an aid in understanding the operation of the gold layer furnaces.
  • the reflectivity of a 400 angstrom thick layer of gold is very high in the infrared and begins to drop off rapidly in the visible region.
  • the transmission of the quartz mufile is relatively high in the infrared and is even higher in the visible. This is desirable, as the infrared from the heating elements must be transmitted to the heated material through the quartz muflle.
  • the transmission of infrared by the Pyrex is substantially lower than for quartz; however, this is no problem, because the gold layer is on the inside of the Pyrex and it reflects over 95 percent of the infrared and so very little infrared penetrates through the gold layer to the Pyrex.
  • the Pyrex like quartz, transmits visible quite readily.
  • the plots in FIG. 8 illustrate why quartz is most suitable for the muffle and Pyrex is a suitable transparent material for carrying the layer of gold. Quite clearly, other materials besides Pyrex could be used, however, Pyrex is a suitable relatively low-cost material that performs satisfactorily.
  • the muffle on the other hand, is preferably quartz and there is no other material quite as good as quartz for this purpose. A suitable muffle of opaque refractory material could be substituted for the quartz muffle having a portion thereof equipped with a quartz window. However, this would require considerable fabrication. It is convenient to use commercial stock quartz tubing for the quartz muffles 2 and 31.
  • the furnace can consist of only the gold-coated Pyrex tube enclosing the heating element and the body heated.
  • furnaces of the type shown herein designed to operate at temperatures lower than l,000 C. or a window in a commercial self-cleaning oven need less infrared reflectance and more visible transmittance and so a thinner gold layer is appropriate.
  • furnaces for higher temperature operation where visible radiation may be too intense for the naked eye need a thicker gold layer to cut down visible light transmittance.
  • the effectiveness of the gold layer as an infrared insulator is demonstrated by the plots in FIG. 7.
  • a family of plots are shown of temperature versus power for muffle furnaces such as shown in FIG. 1 with gold films denoted 2, l, one-half and one-quarter layers thick. As already described, this designation of layer thickness signifies about 800, 400, 200 and W0 angstroms, respectively.
  • the plots show furnace temperatures vs. input power for the muflle furnace using Pyrex tubes coated with gold film of the thickness indicated.
  • the additional plot is for a typical 5 centimeter inside diameter laboratory mufile furnace with conventional packed insulation 6%; centimeters thick and is shown for comparison.
  • the muffle furnaces with a gold layer compare favorably in performance with the conventional muffle furnace. There is little increase in temperature obtained with a given power input when a one-layer gold film Pyrex tube is replaced by a twolayer gold film Pyrex, and it can be seen that the input power for each furnace increases very nearly as temperature to the fourth power
  • a furnace for heating a body by infrared radiation comprising,
  • the plasma wavelength of the material being less than the wavelength of the infrared radiation
  • the thickness of the layer of material being such that it substantially reflects infrared and transmits visible radiation
  • the material is substantially inert to gases and vapors in the furnace or oven.
  • the material is a metal.
  • the material is a relatively heavily doped semiconductor.
  • the thickness of the gold layer is dependent on the operating temperature of the furnace.
  • the thickness of the gold layer is less than 1,000 angstrom units.
  • the gold layer is between and 1,000 angstrom units thick and the infrared radiation temperature is about l,000 C.

Abstract

A furnace which heats by infrared radiation includes a wall portion of material transparent to visible radiation having a layer of selected material on the inside thereof, which reflects substantially all infrared radiation and yet transmits sufficient visible radiation so that the inside of the furnace can be viewed from the outside.

Description

' United States Patent [56] References Cited UNITED STATES PATENTS [72] Inventor Thomas B. Reed Concord, Mass.
8 3 0 XX XX 13 343 I/l/SS/ 2999339 //5l1|l.l 99 222 2 22 22 m mm m WM m We m m m mm "NY U u ..n.. m mm m m m m mm n n Va rum m mmmm m es s .l nn 0. -O .l0fla FSRMKHLLM 0005677890 566666667 999999999 flflflflfl flflflfl 207522 5 ll 1 265 67023 32740 969 44294735 659400644 .9 J .A 223333333 mm 01 m 77 m e 99 8 11h ire- 57 mb mm m 8F MC Q 06 mm mmw p as AFPA 111]] Primary Examiner-Velodymyr Y. Mayewsky 54] TRANSPARENT FURNACE Attorneys-Thomas Cooch, Richard F. Benway and Robert T.
Dunn
l5 Claims, 8 Drawing Figs.
ABSTRACT: A furnace which heats by infrared radiation in- 219/553 cludes a wall portion of material transparent to visible radia- F27d 11/02 [51] Int. tion having a layer of selected material on the insid h r f.
[50] Field of 219/405, which reflects substantially all infrared radiation and yet transmits sufficient visible radiation so that the inside of the fur- 52/171; 99/447; 126/200 nace can be viewed from the outside.
I f I PATENTEDuEcmn 3526154 suwanm INVENTOR.
THOMAS B. REED fA/w 7 QM ATTORNEY PATENTEU DEC 71911 35 515 SHEET 3 BF 4 INVENTOR'.
THOMAS E. REED BY T ATTORNEY PATENIEU DEC 719m SHEET UF 4 or; mmnbqmmmzmk IOOO (W) POWER w F/G. a
X (/un) I INVENTOR. THOMAS B. REED f ATTORNEY TRANSPARENT FURNACE This invention relates to furnaces and ovens heated by infrared radiation, and more particularly to a muffle furnace.
A conventional muffle furnace usually consists of an enclosure containing the body to be heated all within another enclosure. Heat generated in the space between the two enclosures is conducted to or radiates to the body to be heated and so the body is separated'from the source of heat by the first enclosure. Conventional muffle furnaces, as well as other types of furnaces, use asbestos or similar materials for insulation around the outside of the furnace to reduce heat losses. In high-temperature muffle furnaces operating above 2,000 C., radiation heat shields are often employed instead of the packed insulation. These shields surround the hot zone of the furnace with a very thin sheet of metal. A multitude of such shields are employed and it can be shown thermodynamically that under ideal conditions, each heat shield comes to an intermediate temperature such that it reduces radiation loss by a factor of two. Thus n such shields reduce the radiation loss by W.
It is one object of the present invention to provide a furnace which requires neither conventional insulation nor a multitude of conventional heat shields.
Heretofore, with muffle furnaces and with other types of high-temperature furnaces employing heat shields, it has not been possible to watch the progress of an experiment within the furnace except through a special window provided for that purpose. However, the window is unsatisfactory in furnaces used for vapor crystal growth, because the furnace window allows infrared radiation to escape and becomes a cold spot in the furnace where the vapor can condense, obscuring the view.
The same problem arises with commercial self-cleaning ovens. These ovens heat to around 400 C. to clean, and heretofore, have not had windows, because an ordinary Pyrex window would transmit much infrared and become a cold spot on the inside of the oven on which vapors would condense and eventually obscure the view.
It is another object of the present invention to provide in a furnace or oven a wall portion which is substantially transparent, so that the progress of an experiment can be observed, but without incurring the aforementioned vapor condensation which obscures observation.
It is another object of the present invention to provide a muffle furnace of relatively light weight, which heats to temperature rapidly and also cools rapidly.
It is another object of the present invention to provide a furnace for operation in the range of l,000 C. and above, which heats to temperature rapidly, and is at least partly transparent so that the progress of an experiment within the furnace can be viewed from the outside.
It is another object of the present invention to provide a furnace which heats principally by infrared radiation and is brought to temperatures in excess of l,000 C. in reasonably short periods, with efficiency comparable to that of a conventional infrared heated muffle furnace encased by conventional packed insulation.
A transparent furnace anda transparent oven window are applications of the present invention. The invention includes a wall portion which is transparent, coated with a material, which (a) reflects as much of the infrared as possible, (b) transmits as much of the visible radiation as is required for good visibility of the contents of the furnace, and (c) is inert at the temperature of operation.
Other objects and features of the invention will be apparent in view of the specific description, taken in conjunction with the Figures, in which:
FIG. 1 shows curves of black body radiation intensity vs. wavelength;
FIG. 2 shows curves for a number of metals and a semiconductor of reflectance vs. wavelength;
FIG. 3 is a cross section view taken through the axis of a muffle furnace incorporating features of the present invention;
FIG. 4 is a sectional view of the furnace, taken transverse to the axis;
FIG. 5 is a sectional view taken through the axis of another embodiment of the muffle furnace, incorporating features of the invention;
FIG. 6 is a sectional view of the furnace shown in FIG. 5, taken transverse to the axis;
FIG. 7 shows plots of relative transmission and reflectivity, versus wavelength for a film of gold, quartz and Pyrex; and
FIG. 8 is a family of curves of temperature versus power for a muffle furnace, in accordance with the present invention, with different thicknesses of the gold layer for comparison with a conventional muffle furnace with packed insulation.
The relative intensity of radiation as functions of wavelength for a black body (which simulates the radiation from materials in a furnace) at 500 C., l,000 C. and 2,000 C. are shown in FIG. 1. The eye is only sensitive to radiation in the range 0.4-0.7 microns, and at these temperature l0", 0.01 and 2 percent, respectively, of the total radiation lies in the visible.
The reflectance of a number of materials as a function of wavelength is shown in FIG. 2. The transmission of thin films is correspondingly high where the reflectance is low and vice versa. A thin film of material which exhibits low reflectance of visible radiation will correspondingly exhibit high transmittance of visible radiation. The thinner the film, the higher will be the transmittance. The thickness of the film, however, does not afi'ect reflectance and so the film thickness of the selected material can be tailored to transmit visible radiation without substantially reducing its reflectance of infrared radiation.
.At sufficiently long wavelengths, metals have a high reflectance when the wavelength exceeds the plasma wavelength, A, where Here N is the number of free electrons/cm, e the charge on the electron m" the effective of the mass of the electron and e is the dielectric constant. However, at shorter wavelengths than A, loss mechanisms come into play, which inhibit reflection and increase transmission.
Several materials are shown in FIG. 2. The curve for nickel is typical of most metals, having a moderately high reflectance at all wavelengths with little distinction between visible and infrared wavelengths. The curve shown for gold (copper is very similar) is ideal for a furnace operating at 1,000 O, as it can be seen that the reflectance is very high where most of the energy lies, and falls off rapidly in the visible, giving rise to the gold" color. Silver even surpasses gold in its infrared reflectance, but is not as good a transmitter in the visible. However, at 2,000 C. higher reflectance in the visible is required, because there would be so much visible light availabie that it would be advantageous to reflect most of it for the comfort of the observer. This may be called the sunglasses" effect.
Semiconductor materials as well as metals are useful infrared reflectors. Tin-doped indium oxide is a good example and its reflectance is shown in FIG. 2. In this case, the plasma wavelength is longer than that of most metals so that the infrared reflection is not as high as that of gold, but the transmission in the visible is much better. In constructing a furnace to operate at 500 C., this type of material should have adequate reflectance for the longer wavelengths and at the same time the high transmission in the visible is needed because there is no visible light generated by the heat of the furnace and one must bring light in from the outside.
Specific embodiments of the present invention described hereinbelow employ gold as the material for reflecting infrared while transmitting visible radiation. A thin layer of gold a few hundred angstroms thick will reflect substantially all incident infrared and will, at the same time, transmit sufficient visible radiation so thatthe visible radiation can be observed with the naked eye. The muffle-type furnaces described herein consist of a clear quartz muffle in which the body to be heated is placed. Outside of the quartz muffle is a transparent (Pyrex) enclosure coated on the inside with a thin film of gold, a few hundred angstroms thick. A source of infrared is located between the quartz muffle and the Pyrex enclosure. The Pyrex enclosure may be cooled with a suitable transparent cooling fluid and no packed insulation is required. The cooling apparatus around the Pyrex enclosure is preferably transparent 1 to visible radiation, so that an observer can view the body inside the muflle with the naked eye, there being sufficient visible radiation transmitted through the thin layer of gold so that the body can be observed. The gold, however, reflects substantially all infrared radiation incident upon it and so very little of the infrared radiation escapes past the gold layer. Heating is rapid and efficient. The coolant fluid (which may be gas or liquid) flows directly against the gold layer and so is most effective to hold down the temperature of both the gold and the Pyrex enclosure.
It is important in a furnace heated by radiation to maintain black body conditions within the furnace, because then it can be ascertained with reasonable assurance that the temperature throughout is uniform and this temperature can be determined by optical pyrometer readings. At the same time, it is desirable to watch the progress of an experiment perfonned in the furnace when a material is heated. This is especially true in vapor crystal growth, where large crystals are grown in the vapor phase which requires a rather long period of time. It would be of considerable advantage tobe able to monitor the process of crystal growth in order to modify the growth conditions or terminate an experiment in case of failure. Hence, to be able to watch the progress of the crystal growth would be most advantageous. Accordingly, the ideal furnace for this would be a transparent furnace, in which black body conditions are maintained within the furnace and which can be heated to temperature rapidly and cooled rapidly. With such a furnace, the growth of crystals can be observed and an experiment can be terminated quickly and then resumed again quickly, as desired by the operator. Embodiments of the present invention provide just such a furnace.
Specific embodiments of the invention shown in FIGS. 3 to 6 reveal a muffle-type furnace. The muffle furnace is generally a furnace in which the material to be heated is enclosed within a chamber and outside of this chamber a heating element is provided. The heating element is enclosed and insulated from the surroundings to prevent heat loss to the outside. In operation, heat from the element radiates through or is conducted through the chamber enclosing the body to be heated. Heretofore, laboratory muffle furnaces of this sort have had a packed insulation surrounding the heating element to prevent a window in the furnace so that crystal growth within could be observed. Such attempts have not been successful, particularly with regard to vapor crystal growth, because the window allowed infrared radiation to escape and became a cold spot on which the vapor would condense, obscuring the view. This disadvantage is avoided in muffle furnaces incorporating features of the present invention.
Turning first to FIG. 3, there is shown a muffle furnace which can be used in the horizontal or vertical position. Many of the parts of the furnace are Figures of revolution about the axis 1. The innermost part is a quartz muffle 2, which is a cylinder of clear quartz. Within the quartz muffle 2 is placed the item to be heated and which may consist of the crucible 3, containing a material 4.
Enclosing the quartz muffle 2 is a Pyrex tube 5 concentric with the tube 2 and of larger diameter, defining an annular space 6 in between. The inside surface of the Pyrex tube 5 is coated with a thin film of gold 7, of thickness preferably greater than I00 angstroms and less than l,000 angstroms. The thickness of the gold film is selected in view of the temperature that the furnace is to be operated at. The higher the operating temperature, the greater the thickness.
Heater elements 8 are located in the annular space between the mufile 2 and Pyrex tube 5. These heating elements may consist of a number of rods 9, of alumina each drilled lengthwise with two holes, through which lengths of Kanthal A-l wire, such as 10 and 11 are inserted. The ends of the Kanthal wires extending from one end of each rod are connected together as at 12, and the other end of each length of Kanthal wire is inserted through a hole in the next adjacent aluminum rod. In this manner, the lengths of wire are connected in series, each length being fed through two adjacent alumina rods.
The alumina rods are suspended in the annular chamber 6 by rings 13 and 14 located in the annular chamber. The rings are equipped with protuberances, such as 15, on the inside and out, which contact the outside of the muffle 2 and the inside of the Pyrex tube 5, and so suspend the rings in the annular space 6. The contact area is a minimum to reduce conductive heat flow. Holes such as 16 are located in the rings 13 and 14, into which the alumina rods 9 are inserted and, thus, the rods are suspended in the annular chamber 6. From the holes 13, a smaller hole such as 17 extends through the ring to accommodate passage of the ends of the Kanthal wires and these ends are joined by, for example, twisting as at 12. The end rings 13 and 14 may be made of boron nitride.
The coolant jacket 18 encloses the Pyrex tube 5 and is concentric with the axis 1 and of larger diameter than the Pyrex tube, defining the annular coolant space 19 therebetween. O"- ring seals 20 and 21 seal the ends of the coolant space and a cooling fluid, such as water, is conducted to the space via inlet and outlet tubes 22 and 23. The jacket 18 is preferably transparent, or at least a portion of it is transparent, so that the crucible and heated material 4 within the quartz muffle 2 can be observed from outside by looking through the water jacket, Pyrex tube 5, gold layer 7 and the quartz mufile 2. A high-temperature insulating material 24,'such as glass wool, is stuffed into the ends of the quartz muffle 2, after it is loaded with the crucible and some is also stuffed into the ends of the annular space 6 to prevent convective heat loss from the heater element and from within the quartz muffle 2.
The muffle furnace shown in FIGS. 3 and 4 is capable of operation in either the vertical or horizontal position. The alumina rods 9 expand only very little over extremes of temperature and so they can fit loosely within the holes 13 in the end rings 13 and 14, which permits expansion without causing the rings to move. The Kanthal wire expands more than the rods and so the ends of the Kanthal wires, which extend from the rods elongate when the furnace is used, but this causes no problem because the wires fit loosely within the holes in the rods.
Another embodiment of the invention, shown in FIGS. 5 and 6, employs a helical heater wire, rather than the alumina rods loaded with Kanthal wire, as shown in FIGS. 3 and 4. In FIG. 5, the numerous parts of the mufile furnace shown in this embodiment are figures of revolution about the axis 30 and concentrix therewith. This includes a quartz muffle 32 in which the crucible is loaded, a second quartz muffle 32 concentrix with muffle 31 and of larger diameter, a heater wire which may be Kanthal A-l, wound in the form of a helix around the outside of the tube 32, a Pyrex tube 34 enclosing that, and including a thin layer of gold 35 on the inside thereof, and a cooling jacket 35 enclosing the Pyrex tube. This furnace has a double muffle (quartz tubes 31 and 32). The purpose of the quartz tube 32 being to provide a mandrel for the heater wire 35 and so it serves substantially only to support the heater wire. This furnace is preferably used only in the horizontal position, because the helical wire expands considerably as the furnace heats and so the leads 37 and 38, which extend from opposite ends of the wire must be able to expand outward. Such expansion is easily accommodated in the horizontal position, but not on the vertical.
The thin gold layer in either of the ovens shown in FIGS. 3 or 5 is formed on the inside of the Pyrex tube by, for example, evaporating gold from a tungsten wire which is hung inside the tube, along the axis of the tube. The wire is electroplated with sufficient gold to form the fllm on the inside of the Pyrex. A 200 A. film of gold is produced on the inside of the Pyrex with a tungsten wire plated with gold for 40 milliampere-minutes per foot of wire. In the process of forming the film, a vacuum pump is attached to the tube and the ends of the tube are sealed, as in vacuum deposition apparatus. First, a very thin layer of chromium is flashed on the inside of the tube. This is accomplished by, for example, heating the tube to about 300 C. and evaporating chromium from a tungsten wire within the tube, employing the vacuum deposition apparatus. The thin flash of chromium provides an even surface to use to which gold will adhere more readily than to bare Pyrex. The gold is evaporated from tungsten wire under controlled conditions by varying the magnitude and duration of current conducted by the wire.
The gold layer can also be formed on the inside of the Pyrex tube by coating the inside with a commercially available gold resinate solution, such as liquid bright gold No. 6854" supplied by the Hanovia Liquid Gold Division of Englehart Industries, located in New Jersey. First, the Pyrex is scrubbed with hot alconox. One end of the tube is stoppered and a small of gold resinate solution is poured in. Then the tube is rolled to coat evenly the inside, the stopper is removed and the excess is drained off. Immediately thereafter the tube is fired by passing it through a furnace at about 600 C. at a rate of l centimeter per minute, while blowing air gently through the tube. Then the tube is annealed at 600 C. for several hours to form a very uniform, extremely adherent, layer of gold on the inside of the Pyrex tube. The thickness of the layer of gold formed in this manner can be controlled by diluting the gold resinate solution with a solvent to make the layer of gold thinner, or by laying down a layer upon a layer of gold to fonn a thicker layer.
For purposes of nomenclature herein, a one-layer thickness of gold is formed as just described, using the commercial gold resinate solution No. 6854, mentioned above, at full strength without any dilution. This full thickness layer measures about 400 angstroms thick. Similarly, a two-layer coating is formed by laying down two layers of the gold using the commercial gold resinate solution at full strength. A half-layer is laid down, using the commercial gold resinate solution diluted 50 percent and a quarter-layer is laid down using the solution diluted 75 percent. Thus, the thickness of the gold layer is easily controlled to produce gold layers of 800, 400, 200 and 100 angstroms for the designated 2, l, one-half and onequarter layers, respectively, formed in the manner described.
Plots of relative transmission and reflectivity versus wavelength are shown in FIG. 8 as an aid in understanding the operation of the gold layer furnaces. As can be seen, the reflectivity of a 400 angstrom thick layer of gold is very high in the infrared and begins to drop off rapidly in the visible region. The transmission of the quartz mufile is relatively high in the infrared and is even higher in the visible. This is desirable, as the infrared from the heating elements must be transmitted to the heated material through the quartz muflle. The transmission of infrared by the Pyrex is substantially lower than for quartz; however, this is no problem, because the gold layer is on the inside of the Pyrex and it reflects over 95 percent of the infrared and so very little infrared penetrates through the gold layer to the Pyrex. On the other hand, the Pyrex, like quartz, transmits visible quite readily. The plots in FIG. 8 illustrate why quartz is most suitable for the muffle and Pyrex is a suitable transparent material for carrying the layer of gold. Quite clearly, other materials besides Pyrex could be used, however, Pyrex is a suitable relatively low-cost material that performs satisfactorily. The muffle, on the other hand, is preferably quartz and there is no other material quite as good as quartz for this purpose. A suitable muffle of opaque refractory material could be substituted for the quartz muffle having a portion thereof equipped with a quartz window. However, this would require considerable fabrication. It is convenient to use commercial stock quartz tubing for the quartz muffles 2 and 31.
If no vapors are produced in the furnace, of if the vapors produced are not harmful to the heating element and the Pyrex tube, no mufile is needed and the furnace can consist of only the gold-coated Pyrex tube enclosing the heating element and the body heated.
Generally, furnaces of the type shown herein designed to operate at temperatures lower than l,000 C. or a window in a commercial self-cleaning oven need less infrared reflectance and more visible transmittance and so a thinner gold layer is appropriate. Conversely, furnaces for higher temperature operation where visible radiation may be too intense for the naked eye need a thicker gold layer to cut down visible light transmittance.
The effectiveness of the gold layer as an infrared insulator is demonstrated by the plots in FIG. 7. A family of plots are shown of temperature versus power for muffle furnaces such as shown in FIG. 1 with gold films denoted 2, l, one-half and one-quarter layers thick. As already described, this designation of layer thickness signifies about 800, 400, 200 and W0 angstroms, respectively. The plots show furnace temperatures vs. input power for the muflle furnace using Pyrex tubes coated with gold film of the thickness indicated. The additional plot is for a typical 5 centimeter inside diameter laboratory mufile furnace with conventional packed insulation 6%; centimeters thick and is shown for comparison. Clearly, the muffle furnaces with a gold layer compare favorably in performance with the conventional muffle furnace. There is little increase in temperature obtained with a given power input when a one-layer gold film Pyrex tube is replaced by a twolayer gold film Pyrex, and it can be seen that the input power for each furnace increases very nearly as temperature to the fourth power.
The embodiments of the invention described herein are the best known current uses of the invention and are described by way of illustration. The scope of the invention is set forth in the appended claims, as it is desired to protect all uses of the invention apparent to those skilled in the art, in addition to those described herein.
What is claimed is:
1. A furnace for heating a body by infrared radiation comprising,
a first transparent cylinder containing the body,
a second transparent cylinder concentric with and enclosing the first cylinder and defining an annular space therebetween,
a layer of material on the inside of the second cylinder, the plasma wavelength of the material being less than the wavelength of the infrared radiation,
an electrically energized infrared radiator in the annular space, the radiating surfaces thereof being distributed throughout the annular space,
the thickness of the layer of material being such that it substantially reflects infrared and transmits visible radiation,
whereby the body is heated and is visible through the transparent cylinders between said radiating surfaces and thermal insulating means closing the ends of said first transparent cylinder.
2. In a furnace or oven as in claim I and in which, the material is substantially inert to gases and vapors in the furnace or oven.
3. In a furnace or oven as in claim 1 and in which, the material is a metal.
4. In a furnace or oven as in claim I and in which, the material is a relatively heavily doped semiconductor.
5. In a furnace or oven as in claim I and in which, the metal is gold.
6. In a furnace as in claim 5 and in which, the thickness of the gold layer is dependent on the operating temperature of the furnace.
7. In a furnace as in claim 5 and in which, the thickness of the gold layer is less than 1,000 angstrom units.
8. In a furnace as in claim 5 and in which, the gold layer is between and 1,000 angstrom units thick and the infrared radiation temperature is about l,000 C.
vided for cooling the second cylinder.
14. A furnace as in claim 13 and in which, the material is gold, the first mentioned transparent cylinder is quartz and the second is Pyrex.
15. A furnace as in claim 14 and further including, a transparent jacket enclosing the second cylinder and a transparent fluid coolant in the jacket.
I l 10 I I

Claims (15)

1. A furnace for heating a body by infrared radiation comprising, a first transparent cylinder containing the body, a second transparent cylinder concentric with and enclosing the first cylinder and defining an annular space therebetween, a layer of material on the inside of the second cylinder, the plasma wavelength of the material being less than the wavelength of the infrared radiation, an electrically energized infrared radiator in the annular space, the radiating surfaces thereof being distributed throughout the annular space, the thickness of the layer of material being such that it substantially reflects infrared and transmits visible radiation, whereby the body is heated and is visible through the transparent cylinders between said radiating surfaces and thermal insulating means closing the ends of said first transparent cylinder.
2. In a furnace or oven as in claim 1 and in which, the material is substantially inert to gases and vapors in the furnace or oven.
3. In a furnace or oven as in claim 1 and in which, the material is a metal.
4. In a furnace or oven as in claim 1 and in which, the material is a relatively heavily doped semiconductor.
5. In a furnace or oven as in claim 1 and in which, the metal is gold.
6. In a furnace as in claim 5 and in which, the thickness of the gold layer is dependent on the operating temperature of the furnace.
7. In a furnace as in claim 5 and in which, the thickness of the gold layer is less than 1,000 angstrom units.
8. In a furnace as in claim 5 and in which, the gold layer is between 100 and 1,000 angstrom units thick and the infrared radiation temperature is about 1,000* C.
9. In a furnace or oven as in claim 1 and in which, the metal is silver.
10. In a furnace or oven as in claim 1, and in which, the semiconductor is indium oxide.
11. In a furnace or oven as in claim 1 and in which, the semiconductor is indium oxide doped with tin.
12. A furnace as in claim 1 and in which, the source of infrared radiation is an electrically heated radiator.
13. A furnace as in claim 1 and in which, means are provided for cooling the second cylinder.
14. A furnace as in claim 13 and in which, the material is gold, the first mentioned transparent cylinder is quartz and the second is Pyrex.
15. A furnace as in claim 14 and further including, a transparent jacket enclosing the second cylinder and a transparent fluid coolant in the jacket.
US8936A 1970-02-05 1970-02-05 Transparent furnace Expired - Lifetime US3626154A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US893670A 1970-02-05 1970-02-05

Publications (1)

Publication Number Publication Date
US3626154A true US3626154A (en) 1971-12-07

Family

ID=21734583

Family Applications (1)

Application Number Title Priority Date Filing Date
US8936A Expired - Lifetime US3626154A (en) 1970-02-05 1970-02-05 Transparent furnace

Country Status (1)

Country Link
US (1) US3626154A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766359A (en) * 1972-06-14 1973-10-16 British United Shoe Machinery Manufacture of springs
US4041278A (en) * 1975-05-19 1977-08-09 General Electric Company Heating apparatus for temperature gradient zone melting
US4159415A (en) * 1977-01-21 1979-06-26 Klein Tools, Inc. Electric slot furnace
US4192646A (en) * 1978-03-20 1980-03-11 Pyreflex Corporation Heat conservation in workpieces
US4195820A (en) * 1978-04-10 1980-04-01 Pyreflex Corporation Precise thermal processing apparatus
US4208572A (en) * 1977-05-20 1980-06-17 Despatch Industries, Inc. Oven
US4208573A (en) * 1976-12-11 1980-06-17 Vita Zahnfabrik H. Rauter Kg Kiln utilizing infrared radiation in the range of 0.7 to 1.5 μm to heat dental ceramic material
US4256919A (en) * 1978-04-20 1981-03-17 Pyreflex Corp. Temperature confining devices and method
US4411619A (en) * 1981-04-02 1983-10-25 Motorola, Inc. Flange and coupling cooling means and method
US4460821A (en) * 1982-05-25 1984-07-17 Radiant Technology Corporation Infrared furnace with muffle
US4480989A (en) * 1981-04-02 1984-11-06 Motorola, Inc. Method of cooling a flange and coupling
US4598194A (en) * 1983-03-24 1986-07-01 Thorn Emi Plc Quartz infra-red lamps
US5115118A (en) * 1989-12-22 1992-05-19 Tokyo Electron Limited Heat-treatment furnace
US5517005A (en) * 1988-05-19 1996-05-14 Quadlux, Inc. Visible light and infra-red cooking apparatus
US5636320A (en) * 1995-05-26 1997-06-03 International Business Machines Corporation Sealed chamber with heating lamps provided within transparent tubes
US5951896A (en) * 1996-12-04 1999-09-14 Micro C Technologies, Inc. Rapid thermal processing heater technology and method of use
US5958271A (en) * 1997-09-23 1999-09-28 Quadlux, Inc. Lightwave oven and method of cooking therewith with cookware reflectivity compensation
US5990454A (en) * 1997-09-23 1999-11-23 Quadlux, Inc. Lightwave oven and method of cooking therewith having multiple cook modes and sequential lamp operation
US6013900A (en) * 1997-09-23 2000-01-11 Quadlux, Inc. High efficiency lightwave oven
US6139627A (en) * 1998-09-21 2000-10-31 The University Of Akron Transparent multi-zone crystal growth furnace and method for controlling the same
US6310323B1 (en) 2000-03-24 2001-10-30 Micro C Technologies, Inc. Water cooled support for lamps and rapid thermal processing chamber
EP1464904A1 (en) * 2003-03-19 2004-10-06 Rudolf Barget Melting device with a crucible
US6845636B2 (en) * 2000-09-01 2005-01-25 Sumitomo Electric Industries, Ltd. Apparatus for dehydrating and consolidating an optical fiber preform and method of the same
US20050025681A1 (en) * 1998-10-20 2005-02-03 Radiant Technology Corporation UV-enhanced, in-line, infrared phosphorous diffusion furnace
US7323663B2 (en) 2004-02-10 2008-01-29 Applica Consumer Products, Inc. Multi-purpose oven using infrared heating for reduced cooking time
US7335858B2 (en) * 2003-12-18 2008-02-26 Applica Consumer Products, Inc. Toaster using infrared heating for reduced toasting time
US20080141867A1 (en) * 2004-02-10 2008-06-19 Applica Consumer Products, Inc. Intelligent user interface for multi-purpose oven using infrared heating for reduced cooking time
US7619186B2 (en) 2004-02-10 2009-11-17 Applica Consumer Products, Inc. Intelligent user interface for multi-purpose oven using infrared heating for reduced cooking time
EP2362150A1 (en) * 2010-02-26 2011-08-31 Electrolux Home Products Corporation N.V. An oven door for a domestic cooking oven
CN102607270A (en) * 2012-02-27 2012-07-25 上海实博实业有限公司 Vacuum variable-temperature tube furnace
CN102829631A (en) * 2012-09-26 2012-12-19 哈尔滨工业大学 Sealing visual pipe furnace
CN103017524A (en) * 2012-12-10 2013-04-03 哈尔滨商业大学 Environment-friendly automatic-temperature-control quartz tube furnace device for pyrolysis of high polymer
CN103322800A (en) * 2012-03-22 2013-09-25 东北师范大学 Fully transparent tube type resistance furnace
CN103675013A (en) * 2013-12-04 2014-03-26 中国科学院过程工程研究所 Visualizable micro fluidized bed reaction analyzer
CN103673607A (en) * 2013-12-04 2014-03-26 中国科学院过程工程研究所 Visualized heating furnace
WO2014118722A3 (en) * 2013-02-01 2014-11-13 Aisin Takaoka Co., Ltd. Infrared furnace and method for infrared heating
CN104316556A (en) * 2014-10-29 2015-01-28 中国科学院过程工程研究所 Visual fluidized bed reaction analysis system
US20150093894A1 (en) * 2013-10-01 2015-04-02 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus, semiconductor manufacturing method, and process tube
US20150136985A1 (en) * 2013-11-18 2015-05-21 Melexis Technologies Nv Infrared sensor with limitation aperture
CN104749206A (en) * 2014-04-14 2015-07-01 哈尔滨工业大学 Gas-solid reaction analysis device based on in-situ decoupling and analysis method
CN107144130A (en) * 2017-05-11 2017-09-08 北京工业大学 A kind of negative electrode visualization microwave sintering apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864932A (en) * 1954-08-19 1958-12-16 Walter O Forrer Infrared cooking oven
US2954826A (en) * 1957-12-02 1960-10-04 William E Sievers Heated well production string
US3192575A (en) * 1962-07-25 1965-07-06 Perkin Elmer Corp Heat insulating window
US3249741A (en) * 1963-05-20 1966-05-03 Reflectotherm Inc Apparatus for baking by differential wave lengths
US3304406A (en) * 1963-08-14 1967-02-14 Square Mfg Company Infrared oven for heating food in packages
US3307017A (en) * 1963-07-11 1967-02-28 Heraeus Schott Quarzschmelze Electric infrared emitter
US3363090A (en) * 1965-07-27 1968-01-09 Engelhard Ind Inc Electric heating element
US3445662A (en) * 1964-12-28 1969-05-20 Engelhard Min & Chem Composite coated heat reflectors and infrared lamp heaters equipped therewith
US3541293A (en) * 1968-10-29 1970-11-17 Ronald Macdonald Muffle furnace

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864932A (en) * 1954-08-19 1958-12-16 Walter O Forrer Infrared cooking oven
US2954826A (en) * 1957-12-02 1960-10-04 William E Sievers Heated well production string
US3192575A (en) * 1962-07-25 1965-07-06 Perkin Elmer Corp Heat insulating window
US3249741A (en) * 1963-05-20 1966-05-03 Reflectotherm Inc Apparatus for baking by differential wave lengths
US3307017A (en) * 1963-07-11 1967-02-28 Heraeus Schott Quarzschmelze Electric infrared emitter
US3304406A (en) * 1963-08-14 1967-02-14 Square Mfg Company Infrared oven for heating food in packages
US3445662A (en) * 1964-12-28 1969-05-20 Engelhard Min & Chem Composite coated heat reflectors and infrared lamp heaters equipped therewith
US3363090A (en) * 1965-07-27 1968-01-09 Engelhard Ind Inc Electric heating element
US3541293A (en) * 1968-10-29 1970-11-17 Ronald Macdonald Muffle furnace

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766359A (en) * 1972-06-14 1973-10-16 British United Shoe Machinery Manufacture of springs
US4041278A (en) * 1975-05-19 1977-08-09 General Electric Company Heating apparatus for temperature gradient zone melting
US4208573A (en) * 1976-12-11 1980-06-17 Vita Zahnfabrik H. Rauter Kg Kiln utilizing infrared radiation in the range of 0.7 to 1.5 μm to heat dental ceramic material
US4159415A (en) * 1977-01-21 1979-06-26 Klein Tools, Inc. Electric slot furnace
US4208572A (en) * 1977-05-20 1980-06-17 Despatch Industries, Inc. Oven
US4192646A (en) * 1978-03-20 1980-03-11 Pyreflex Corporation Heat conservation in workpieces
US4195820A (en) * 1978-04-10 1980-04-01 Pyreflex Corporation Precise thermal processing apparatus
US4256919A (en) * 1978-04-20 1981-03-17 Pyreflex Corp. Temperature confining devices and method
US4411619A (en) * 1981-04-02 1983-10-25 Motorola, Inc. Flange and coupling cooling means and method
US4480989A (en) * 1981-04-02 1984-11-06 Motorola, Inc. Method of cooling a flange and coupling
US4460821A (en) * 1982-05-25 1984-07-17 Radiant Technology Corporation Infrared furnace with muffle
US4598194A (en) * 1983-03-24 1986-07-01 Thorn Emi Plc Quartz infra-red lamps
USRE36724E (en) * 1988-05-19 2000-06-06 Quadlux, Inc. Visible light and infra-red cooking apparatus
US5517005A (en) * 1988-05-19 1996-05-14 Quadlux, Inc. Visible light and infra-red cooking apparatus
US5115118A (en) * 1989-12-22 1992-05-19 Tokyo Electron Limited Heat-treatment furnace
US5636320A (en) * 1995-05-26 1997-06-03 International Business Machines Corporation Sealed chamber with heating lamps provided within transparent tubes
US5951896A (en) * 1996-12-04 1999-09-14 Micro C Technologies, Inc. Rapid thermal processing heater technology and method of use
US5958271A (en) * 1997-09-23 1999-09-28 Quadlux, Inc. Lightwave oven and method of cooking therewith with cookware reflectivity compensation
US5990454A (en) * 1997-09-23 1999-11-23 Quadlux, Inc. Lightwave oven and method of cooking therewith having multiple cook modes and sequential lamp operation
US6013900A (en) * 1997-09-23 2000-01-11 Quadlux, Inc. High efficiency lightwave oven
US6139627A (en) * 1998-09-21 2000-10-31 The University Of Akron Transparent multi-zone crystal growth furnace and method for controlling the same
US20050025681A1 (en) * 1998-10-20 2005-02-03 Radiant Technology Corporation UV-enhanced, in-line, infrared phosphorous diffusion furnace
US6310323B1 (en) 2000-03-24 2001-10-30 Micro C Technologies, Inc. Water cooled support for lamps and rapid thermal processing chamber
US6845636B2 (en) * 2000-09-01 2005-01-25 Sumitomo Electric Industries, Ltd. Apparatus for dehydrating and consolidating an optical fiber preform and method of the same
EP1464904A1 (en) * 2003-03-19 2004-10-06 Rudolf Barget Melting device with a crucible
US7853128B2 (en) 2003-12-18 2010-12-14 Applica Consumer Products, Inc. Method for toasting a food product with infrared radiant heat
US7335858B2 (en) * 2003-12-18 2008-02-26 Applica Consumer Products, Inc. Toaster using infrared heating for reduced toasting time
US7323663B2 (en) 2004-02-10 2008-01-29 Applica Consumer Products, Inc. Multi-purpose oven using infrared heating for reduced cooking time
US7683292B2 (en) 2004-02-10 2010-03-23 Applica Consumer Products, Inc. Method for cooking a food with infrared radiant heat
US20080141867A1 (en) * 2004-02-10 2008-06-19 Applica Consumer Products, Inc. Intelligent user interface for multi-purpose oven using infrared heating for reduced cooking time
US7619186B2 (en) 2004-02-10 2009-11-17 Applica Consumer Products, Inc. Intelligent user interface for multi-purpose oven using infrared heating for reduced cooking time
EP2362150A1 (en) * 2010-02-26 2011-08-31 Electrolux Home Products Corporation N.V. An oven door for a domestic cooking oven
WO2011104034A1 (en) * 2010-02-26 2011-09-01 Electrolux Home Products Corporation N.V. An oven door for a domestic cooking oven
US9074777B2 (en) 2010-02-26 2015-07-07 Electrolux Home Products Corporation N.V. Oven door for a domestic cooking oven
CN102607270A (en) * 2012-02-27 2012-07-25 上海实博实业有限公司 Vacuum variable-temperature tube furnace
CN103322800A (en) * 2012-03-22 2013-09-25 东北师范大学 Fully transparent tube type resistance furnace
CN102829631A (en) * 2012-09-26 2012-12-19 哈尔滨工业大学 Sealing visual pipe furnace
CN102829631B (en) * 2012-09-26 2014-06-25 哈尔滨工业大学 Sealing visual pipe furnace
CN103017524A (en) * 2012-12-10 2013-04-03 哈尔滨商业大学 Environment-friendly automatic-temperature-control quartz tube furnace device for pyrolysis of high polymer
CN103017524B (en) * 2012-12-10 2014-08-06 哈尔滨商业大学 Environment-friendly automatic-temperature-control quartz tube furnace device for pyrolysis of high polymer
US10184725B2 (en) 2013-02-01 2019-01-22 Aisin Takaoka Co., Ltd. Infrared furnace and method for infrared heating
WO2014118722A3 (en) * 2013-02-01 2014-11-13 Aisin Takaoka Co., Ltd. Infrared furnace and method for infrared heating
CN104969020B (en) * 2013-02-01 2018-09-28 爱信高丘株式会社 Infrared heating heating furnace and method for infrared heating
CN104969020A (en) * 2013-02-01 2015-10-07 爱信高丘株式会社 Infrared furnace and method for infrared heating
US20150093894A1 (en) * 2013-10-01 2015-04-02 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus, semiconductor manufacturing method, and process tube
US20150136985A1 (en) * 2013-11-18 2015-05-21 Melexis Technologies Nv Infrared sensor with limitation aperture
CN103673607B (en) * 2013-12-04 2015-12-09 中国科学院过程工程研究所 A kind of visual heating furnace
CN103675013A (en) * 2013-12-04 2014-03-26 中国科学院过程工程研究所 Visualizable micro fluidized bed reaction analyzer
CN103675013B (en) * 2013-12-04 2016-03-09 中国科学院过程工程研究所 A kind of visual micro fluidized-bed reaction analyser
CN103673607A (en) * 2013-12-04 2014-03-26 中国科学院过程工程研究所 Visualized heating furnace
CN104749206A (en) * 2014-04-14 2015-07-01 哈尔滨工业大学 Gas-solid reaction analysis device based on in-situ decoupling and analysis method
WO2015158170A1 (en) * 2014-04-14 2015-10-22 哈尔滨工业大学 In-situ decoupling based gas/solid reaction analyzing device and analyzing method
CN104316556A (en) * 2014-10-29 2015-01-28 中国科学院过程工程研究所 Visual fluidized bed reaction analysis system
CN107144130A (en) * 2017-05-11 2017-09-08 北京工业大学 A kind of negative electrode visualization microwave sintering apparatus
CN107144130B (en) * 2017-05-11 2019-04-19 北京工业大学 A kind of cathode visualization microwave sintering apparatus

Similar Documents

Publication Publication Date Title
US3626154A (en) Transparent furnace
US3538231A (en) Oxidation resistant high temperature structures
US4195820A (en) Precise thermal processing apparatus
EP0840359A2 (en) Thermal processor for semiconductor wafers
CA1179001A (en) Infrared radiative body and a method for making the same
JPH03205778A (en) Tubular heating element
US4241292A (en) Resistive heater
US6815645B2 (en) Heat reflecting material and heating device using the material
DE839396C (en) Heat radiators, especially for therapeutic purposes
JPS62437B2 (en)
US4214117A (en) Furnace heated by radiation
SU422781A1 (en) ELECTRIC FURNACE
CS226233B1 (en) Cultivation oven for cultivating monocrystals of scintillating substances
JPS63292591A (en) Infrared heater
JPH0685395B2 (en) Heating device for semiconductor manufacturing equipment
JPS61116246A (en) Infrared rays radiating body used in liquid
JP2001035639A (en) Heating element
US4408658A (en) Apparatus and method for heating a material in a transparent ampoule
SU492493A1 (en) Glass heating device
JPS6282686A (en) Infrared rays radiator used in liquid
RU2064735C1 (en) High-temperature resistive heater
JP3932364B2 (en) Heat radiation source
JPH0814764A (en) Electric furnace
Hanak et al. High Temperature X‐Ray Diffraction Techniques for Active Metals
JPS6121329B2 (en)