US3629127A - Low foaming rinse additive - Google Patents

Low foaming rinse additive Download PDF

Info

Publication number
US3629127A
US3629127A US749937A US3629127DA US3629127A US 3629127 A US3629127 A US 3629127A US 749937 A US749937 A US 749937A US 3629127D A US3629127D A US 3629127DA US 3629127 A US3629127 A US 3629127A
Authority
US
United States
Prior art keywords
rinse
weight
mixture
low foaming
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US749937A
Inventor
Frank W Palmer
Otto T Aepli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diversey Wyandotte Corp
BASF Corp
Original Assignee
BASF Wyandotte Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Wyandotte Corp filed Critical BASF Wyandotte Corp
Application granted granted Critical
Publication of US3629127A publication Critical patent/US3629127A/en
Assigned to DIVERSEY WYANDOTTE CORPORATION, A CORP. OF DE. reassignment DIVERSEY WYANDOTTE CORPORATION, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DIVERSEY CORPORATION THE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/123Sulfonic acids or sulfuric acid esters; Salts thereof derived from carboxylic acids, e.g. sulfosuccinates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/34Derivatives of acids of phosphorus
    • C11D1/345Phosphates or phosphites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds

Definitions

  • Rinse additives have been used extensively in the past to reduce drying time and spotting while contributing to clean dishware. However, these rinse additives have been found to have an adverse effect on the operation of dishwashing machines over an extended period of time. This is usually due to foam formation caused by their own inherent chemical properties or by their use in conjunction with food soil found in the dishwashing machine. It has also been found that typical rinse additives of the low foaming variety do not remain soluble or completely miscible at temperatures exceeding 180 -F. Therefore, it was desirable to find a low foaming rinse additive which has the ability to reduce drying time and spotting while contributing to clean dishware, and yet be soluble or miscible at temperatures exceeding 180 F.
  • the present invention resides in a low foaming rinse additive.
  • the low foaming rinse additive comprises a blend of nonionic and anionic surfactants.
  • the low foaming rinse aid composition of this invention consists essentially of from about 20 to 80 parts by weight of a nonionic surfactant which is a linear oxyalkylated alcohol; from about 5 to 10 parts by weight of an anionic surfactant which is a sulfosuccinic acid ester or a phosphate ester, or mixtures of sul-fosuccinic acid esters and phosphate esters; and from about 10 to 75 parts by weight water.
  • linear oxyalkylated alcohols that may be used in the practice of this invention are those prepared by the condensation of an essentially linear primary aliphatic alcohol, or preferably a mixture of such alcohols, with a critical amount of a mixture of ethylene oxide and propylene oxide.
  • These oxyalkylated alcohols are a cogeneric mixture of compounds that can be represented by the following formula:
  • R-O (A)H wherein R is an essentially linear alkyl group, and A is a mixture of oxyethylene and oxypropylene groups.
  • cogeneric mixture designates a series of closely related homologues that are obtained by condensing a plurality of oxide units with an alcohol or a mixture thereof.
  • Preferred linear oxyalkylated alcohols that may be used are those wherein vR contains from 12 to 15 carbon atoms and A is a mixture of oxyethylene and oxypropylene groups wherein the molar ratio of oxypropylene to oxyethylene is from about 0.85:1 to 2.75:1, and the mixture of oxide units represents from about 55 to of the total weight of the compounds.
  • sulfosuccinic acid esters that may be used in the practice of this invention are those having the formula:
  • R and R are an alkyl group and 'M is an alkali metal or ammonia.
  • Preferred sulfosuccinic acid esters are the sodium salts of a di-alkyl sulfosuccinic acid, wherein the alkyl groups are hexyl, octyl or isobutyl groups.
  • the anionic phosphate esters that may be used include the phosphate esters of oxyalkylated linear and oxyalkylated aromatic alcohols. These phosphate esters may be represented by the formulas:
  • phosphate esters of oxyalkylated linear alcohols are those containing a mixture of monoesters and diesters wherein R in each ester contains from 10 to 12 carbon atoms and A is a mixture of oxyethylene and oxypropylene groups wherein the molar ratio of oxyethylene to oxypropylene is from about 4:1 to 8:1 and represents from about 45 to 80% of the total weight of the ester.
  • the weight'of monoester in the preferred ester mix is from about 50% to about 70%, and the Weight of diester is from about 50% to about 30%.
  • Preferred phosphate esters of oxyalkylated aromatic alcohols are those containing a mixture of monoesters and diesters wherein the alkylphenol is nonyl phenol and A is a plurality of oxyethylene groups repre senting from about 45 to 65% of the total weight of the ester.
  • the weight of monoester in the preferred ester mix is from about 50% to about 70%, and the weight of diester is from about 50% to about 30%.
  • rinse additive of the present invention varying from about 200 p.p.m. down to 10 p.p.m. work satisfactorily in a use solution.
  • the wide range over which this rinse additive may be used is due to the properties of the specific nonionic and anionic surface active agents that are employed in forming the additive.
  • the nonionic surfactant contributes to low surface tension at high temperatures and low foaming at low temperatures whereas the anionic surfactant acts as a coupling agent with water as Well as a stabilizer at high temperature.
  • a preferred method of preparing a using solution is to prepare initially a concentrate of a rinse additive by adding the nonionic surfactant to water at a temperature between about 75 and F. The mixture is stirred thoroughly and the anionic surfactant is added to the solution. The concentration of the ingredients in the concentrate will be in the aforementioned ranges. The resulting concentrate is then added to a use solution so as to provide a concentration of 10 p.p.m. to 200 p.p.m. concentrate in the solution at the desired operating temperature. It is to be understood that a mixture of the nonionic surfactants and/or a mixture of the anionic surfactants can be utilized in preparing the concentrate.
  • Rinse Additive A was a low foaming commercially available rinse additive containing 52 parts by weight of a polyoxyethylene-polyoxypropylene block copolymer, 5 parts by weight citric acid and 43 parts by weight water.
  • Rinse Additive B Rinse Additive C was a low foaming commercially available rinse additive containing 50 parts by weight of an organo phosphorus chelate, 5 parts by weight isopropyl alcohol, and parts, by weight of water.
  • Rinse Additive D was a low foaming rinse additive of the present invention containing 30 parts by weight of the condensation product of a mixture of linear primary aliphatic alcohols having from 12 to 15 carbon atoms with a mixture of propylene oxide and ethylene oxide, wherein the propylene oxide to ethylene oxide was in the molar ratio of about 2 to 1 and the oxide mixture represented about 75% of the total weight of the condensation product, 6 parts by weight of dihexyl sodium sulfosuccinic acid ester, and 64 parts by weight of water.
  • EXAMPLE I The following example illustrates the surface tension lowering properties of a rinse additive of the present invention when compared with commercially available rinse additives.
  • the rinse additives compared were those described above.
  • the rinse additives were added to seven grain water in amounts sufficient to give from 10 to 200 parts per million concentration. The results were as follows:
  • the above data illustrates that when use solutions of the same concentrations of rinse additives were compared, the use solution containing the additive of the present invention had better surface tension lowering properties than use solutions containing commercially available additives.
  • the data further illustrates that the rinse additive of the present invention in a concentration of 10 p.p.m. in a use solution had equal or superior surface tension lowering properties when compared with commercially available additives which were used in concentrations of 50 p.p.m. in a use solution.
  • EXAMPLE II The following example illustrates the low foaming properties of a rinse additive prepared according to the present invention when compared with commercially available rinse additives.
  • the rinse additives compared were those described above.
  • Use solutions were prepared by adding the rinse additives to seven grain water in amounts sufficient to give and 200 parts per million concentration.
  • the low foaming properties of the use solutions were determined by adding 300 ml. of a use solution to a one liter graduate, bubbling air into the graduate at the rate of 425 cc./min. for a period of 1 to 2 minutes, and then reading the increase in foam height in milliliters (ml.). The temperature of the use solution was then increased by 20 F. and the above procedure was repeated.
  • the low foaming properties were determined for the temperature range of 100 to 180 F. After the low foaming properties of the use solution were determined, a predetermined amount of food soil was added to each solution, and the low foaming tests, as described above, were repeated.
  • the food soil tests consisted of 0.1% by weight of egg in one series of runs and 1.0% by weight of milk in another series of runs. The tables below illustrate the results of these runs.
  • the Washing of dishware is generally accomplished in three stagesscraping, washing, and rinsing.
  • the scraping, or first stage in the dishwashing operation is usually maintained at a temperature of from about to F.
  • the second stage in the dishwashing operation is usually maintained at a temperature of from about 140 to 160 F.
  • the rinse, or last stage in the dishwashing operation is usually maintained at a temperature of from about 160 to 170 F.
  • the food soil load is highest in the scraping stage, lower in the wash, and ne ligible in the rinse stage.
  • the use solution at the scraping stage will contain low rinse additive, due to dilution with water, low temperature, and high food soil. It is under such conditions that commercially available rinse additives in use solutions foam.
  • the percent by Weight of monoester was about 55% and the percent by weight of diester was about 45%.
  • the percent by weight of monoester was about 55% and the percent by weight of dieslter was about 45%.
  • EXAMPLE III The following example illustrates the low foaming properties of rinse additives prepared according to the present invention.
  • the rinse additives tested were those illustrated in Table 5.
  • Use solutions where prepared by adding the rinse additives to seven grain water in amounts sufficient to give 100 and 200 parts per million concentration.
  • the low foaming properties of use solutions were determined by adding 300 ml. of a use solution into a one liter graduate, bubbling air into the graduate at the rate of 425 cc./ min. for a period of 1 to 2 minutes, then reading the increase in the foam height in milliliters. The temperature of the use solution was then increased by F. and the 10 above procedure was repeated. The low foaming properties were determined for the temperature range of 110 to 180 F. After the low foaming properties of the use solution were determined, a predetermined amount of food soil was added to each solution, and the low foaming 1 tests, as described above, were repeated. The food soil tests consisted of 0.1% by weight of egg in one series of runs and 1.0% by weight of milk in another series of runs. The tables below illustrate the results of these runs.
  • Rinse additives ppm. 100 200 100 200 100 200 50 From the above data it can be seen that the rinse The following example illustrates the degree of water spotting after rinsing with a use solution prepared from rinse additives prepared according to the present invention.
  • the rinse additives tested were those described in 5 Table 5.
  • the tests were carried out by loading a Hotpoint dishwasher with four glasses. The dishwasher was then turned on and brought up to a wash temperature of 135 :5 F. During the wash cycle, 25 ml. of milk was added in order to soil the glasses and give them a hydrophobic or water spotted condition. As soon as the machine went into its rinse cycle, 7.5 ml. (50 ppm. in use solution) of the candidate rinse additive was added. The dishwasher was then allowed to complete its rinse and drying cycles. The
  • the four glasses were also evaluated a third time wherein the use solution had a concentrate of 150 p.p.m. of rinse additive, and then a fourth and final time, at 200 p.p.m. concentration of rinse additive.
  • the rinse additives prepared in accordance with the present invention are effective for the prevention of spotting or film forming after rinsing.
  • a rinse additive composition consisting essentially of:
  • a linear oxyalkylated alcohol which is the condensation product of a mixture of linear primary aliphatic alcohols having from 12 to 15 carbon atoms with a mixture of propylene oxide and ethylene oxide wherein the molar ratio of propylene oxide to ethylene oxide is from about 0.85 :1 to 2.75 :1 and the mixture of oxide units represents from about 55 to 80% of the total weight of the condensation product;
  • an anionic surfactant which is either (1) a sulfosuccinic acid ester which corresponds to the formula:
  • nlooo-on n oooons 0311 wherein R and R are octyl, hexyl, or isobutyl groups and M is alkali metal or ammonia or (2) a phosphate ester selected from the group consisting 8 of (a) a mixture of phosphate monoand diesters having the formulas:
  • R is an alkyl group having from 10 to 12 carbon atoms
  • A is a mixture of oxyethylene and oxypropylene wherein the ratio of oxyethylene groups to oxypropylene groups is from about 4:1 to 8:1 and represents from about to about 80% of the total weight of the esters, and the monoester represents from about to 70% by weight of the mix, and the diester represents from about 50 to 30% by weight of the mix
  • R is a nonyl phenol and A is a plurality of oxyethylene groups representing from about 45% to by weight of the mix, and the monoester represents from about 50 to by weight of the mix and the diester represents from about 50 to 30% by weight of the mix, and ,(c) about 10 to parts by weight of water.
  • the anionic surfactant is the sulfosuccinic acid ester.
  • composition of claim 1 wherein the anionic surfactant is the phosphate ester mixture of phosphate monoand diesters having the formulas:
  • R is an alkyl group having from 10 to 12 carbon atoms
  • A is a mixture of oxyethylene and oxypropylene wherein the ratio of oxyethylene groups to oxypropylene groups is from about 4:1 to 8:1 and represents from about 45 to about of the total weight of the esters, and the monoester represents from about 50 to 70% by weight of the mix, and the diester represents from about 50 to 30% by weight of the mix.
  • composition of claim 1 wherein the anionic surfactant is-the phosphate ester mixture of phosphate monoand diesters having the formulas:
  • R is a nonyl phenol and A is a plurality of oxyethylene groups representing from about 45% to about 65% by weight of the mix, and the monoester represents from about 50 to 70% by weight of the mix and the diester represents from about 50 to 30% by weight of the mix.
  • a use solution consisting essentially of the composition of claim 1 wherein the concentration of the rinse additive is from about 10 to 200 p.p.m. in the use solution.
  • R and R are 3,122,508 3,314,891 3,329,615 References Cited 3,382,174 UNITED STATES PATENTS 5 1/1936 Jaegar 252-161 10/1961 Nunn et a1. 260951 10/1961 Nunn 26098O 5/1962 Chiddix et a1. 25289 3/1963 Temple et a1 252-439 10 252459 538 l0 Grifo et a] 252135 Schmolka et a1 252-89 Cooper et a1 252135 Lissant et a1. 252135 LEON D. ROSDOL, Primary Examiner W. R. SCHULZ, Assistant Examiner US. Cl. X.R.

Abstract

LOW FCAMING RINSE ADDITIVES ARE PREPARED FROM A BLEND OF NONIONIC AND ANIONIC SURFACTANTS WHICH ARE WATER-SOLUBLE OR MISCIBLE AT TEMPERATURES ABOVE 180*F. THE NONIONIC SURFACTANTS WHICH ARE USED IN THE PRACTICE OF THIS INVENTION ARE MODIFIED OXYALKALATED LINEAR ALCOHOLS AND THE ANIONIC SURFACTANTS WHICH ARE USED IN THE PRACTICE OF THIS INVENTION ARE SULFOSUCCINIC ACID ESTERS OR PHOSPHATE ESTERS.

Description

United States Patent Ofice 3,629,127 Patented Dec. 21, 1971 3,629,127 LOW FOAMING RINSE ADDITKVE Frank W. Palmer, Detroit, and Otto T. Aepli, Southgate, Mich., assignors to BASF Wyandotte Corporation, Wyandotte, Mich. No Drawing. Filed Aug. 5, 1968, Ser. No. 749,937
Int. Cl. Clld 1/12 US. Cl. 252--55 6 Claims ABSTRACT OF THE DISCLOSURE This invention relates to low foaming rinse aids. It is more particularly concerned with compositions exhibiting extremely good surface tension-lowering properties at temperatures up to and exceeding 180 F. It is also concerned with a rinse composition in a use solution which is miscible at temperatures up to and exceeding 180 F. In another aspect, the invention is concerned with rinse aid compositions for machine dishwashing.
Rinse additives have been used extensively in the past to reduce drying time and spotting while contributing to clean dishware. However, these rinse additives have been found to have an adverse effect on the operation of dishwashing machines over an extended period of time. This is usually due to foam formation caused by their own inherent chemical properties or by their use in conjunction with food soil found in the dishwashing machine. It has also been found that typical rinse additives of the low foaming variety do not remain soluble or completely miscible at temperatures exceeding 180 -F. Therefore, it was desirable to find a low foaming rinse additive which has the ability to reduce drying time and spotting while contributing to clean dishware, and yet be soluble or miscible at temperatures exceeding 180 F.
It is an object of this invention to provide a composi- .tion which is soluble over a Wide range of temperatures. It is a further object to provide a rinse additive having the properties of promoting rapid draining and drying of dishware. It is another object to provide a rinse additive that contributes to the elimination of spotting and streaking of dishware. It is an additional object to provide a rinse additive having low foaming properties over a wide range of temperatures. Other objects and advantages of this invention will become apparent to those skilled in the art upon consideration of the accompanying disclosure.
The present invention resides in a low foaming rinse additive. Broadly speaking, the low foaming rinse additive comprises a blend of nonionic and anionic surfactants. More specifically, the low foaming rinse aid composition of this invention consists essentially of from about 20 to 80 parts by weight of a nonionic surfactant which is a linear oxyalkylated alcohol; from about 5 to 10 parts by weight of an anionic surfactant which is a sulfosuccinic acid ester or a phosphate ester, or mixtures of sul-fosuccinic acid esters and phosphate esters; and from about 10 to 75 parts by weight water.
The linear oxyalkylated alcohols that may be used in the practice of this invention are those prepared by the condensation of an essentially linear primary aliphatic alcohol, or preferably a mixture of such alcohols, with a critical amount of a mixture of ethylene oxide and propylene oxide. These oxyalkylated alcohols are a cogeneric mixture of compounds that can be represented by the following formula:
R-O (A)H wherein R is an essentially linear alkyl group, and A is a mixture of oxyethylene and oxypropylene groups. The term cogeneric mixture, as used above, designates a series of closely related homologues that are obtained by condensing a plurality of oxide units with an alcohol or a mixture thereof. Preferred linear oxyalkylated alcohols that may be used are those wherein vR contains from 12 to 15 carbon atoms and A is a mixture of oxyethylene and oxypropylene groups wherein the molar ratio of oxypropylene to oxyethylene is from about 0.85:1 to 2.75:1, and the mixture of oxide units represents from about 55 to of the total weight of the compounds.
The sulfosuccinic acid esters that may be used in the practice of this invention are those having the formula:
wherein R and R are an alkyl group and 'M is an alkali metal or ammonia. Preferred sulfosuccinic acid esters are the sodium salts of a di-alkyl sulfosuccinic acid, wherein the alkyl groups are hexyl, octyl or isobutyl groups.
The anionic phosphate esters that may be used include the phosphate esters of oxyalkylated linear and oxyalkylated aromatic alcohols. These phosphate esters may be represented by the formulas:
OH RO (A) P OH (monoester) and [RO (A)] P-OH H (diester) wherein R is a linear alkyl group or an alkyl phenol and A is either specific oxyalkylene groups or a mixture of oxyalkylene groups. Preferred phosphate esters of oxyalkylated linear alcohols are those containing a mixture of monoesters and diesters wherein R in each ester contains from 10 to 12 carbon atoms and A is a mixture of oxyethylene and oxypropylene groups wherein the molar ratio of oxyethylene to oxypropylene is from about 4:1 to 8:1 and represents from about 45 to 80% of the total weight of the ester. The weight'of monoester in the preferred ester mix is from about 50% to about 70%, and the Weight of diester is from about 50% to about 30%. Preferred phosphate esters of oxyalkylated aromatic alcohols are those containing a mixture of monoesters and diesters wherein the alkylphenol is nonyl phenol and A is a plurality of oxyethylene groups repre senting from about 45 to 65% of the total weight of the ester. The weight of monoester in the preferred ester mix is from about 50% to about 70%, and the weight of diester is from about 50% to about 30%.
It has been found that amounts of rinse additive of the present invention varying from about 200 p.p.m. down to 10 p.p.m. work satisfactorily in a use solution. The wide range over which this rinse additive may be used is due to the properties of the specific nonionic and anionic surface active agents that are employed in forming the additive. The nonionic surfactant contributes to low surface tension at high temperatures and low foaming at low temperatures whereas the anionic surfactant acts as a coupling agent with water as Well as a stabilizer at high temperature.
A preferred method of preparing a using solution is to prepare initially a concentrate of a rinse additive by adding the nonionic surfactant to water at a temperature between about 75 and F. The mixture is stirred thoroughly and the anionic surfactant is added to the solution. The concentration of the ingredients in the concentrate will be in the aforementioned ranges. The resulting concentrate is then added to a use solution so as to provide a concentration of 10 p.p.m. to 200 p.p.m. concentrate in the solution at the desired operating temperature. It is to be understood that a mixture of the nonionic surfactants and/or a mixture of the anionic surfactants can be utilized in preparing the concentrate.
A more comprehensive understanding of the invention can be obtained by considering the following examples. However, it should be understood that the examples are not intended to be unduly limitative of the invention.
EXAMPLES I-II These examples describe runs in which the low foaming and surface tension properties of a rinse additive prepared according to the present invention were compared with commercially available low foaming rinse additives. The four rinse additives described below were used in these comparisons.
Rinse Additive A Rinse Additive A was a low foaming commercially available rinse additive containing 52 parts by weight of a polyoxyethylene-polyoxypropylene block copolymer, 5 parts by weight citric acid and 43 parts by weight water.
Rinse Additive B Rinse Additive C was a low foaming commercially available rinse additive containing 50 parts by weight of an organo phosphorus chelate, 5 parts by weight isopropyl alcohol, and parts, by weight of water.
Rinse Additive D Rinse Additive D was a low foaming rinse additive of the present invention containing 30 parts by weight of the condensation product of a mixture of linear primary aliphatic alcohols having from 12 to 15 carbon atoms with a mixture of propylene oxide and ethylene oxide, wherein the propylene oxide to ethylene oxide was in the molar ratio of about 2 to 1 and the oxide mixture represented about 75% of the total weight of the condensation product, 6 parts by weight of dihexyl sodium sulfosuccinic acid ester, and 64 parts by weight of water.
EXAMPLE I The following example illustrates the surface tension lowering properties of a rinse additive of the present invention when compared with commercially available rinse additives. The rinse additives compared were those described above.
The rinse additives were added to seven grain water in amounts sufficient to give from 10 to 200 parts per million concentration. The results were as follows:
TABLE 1 Rinse additive- B C D Concentration of additive in use solution Surface tension in dynes/em.
Parts or million:
10 3 45. l 44. t) 46. (1 54. S 43.2 45. T 4%. 7 312.3 41. 0 415.8 41. 6 31. b
1 Surface tensilen-ASTM D1331-5i3.
The above data illustrates that when use solutions of the same concentrations of rinse additives were compared, the use solution containing the additive of the present invention had better surface tension lowering properties than use solutions containing commercially available additives. The data further illustrates that the rinse additive of the present invention in a concentration of 10 p.p.m. in a use solution had equal or superior surface tension lowering properties when compared with commercially available additives which were used in concentrations of 50 p.p.m. in a use solution.
EXAMPLE II The following example illustrates the low foaming properties of a rinse additive prepared according to the present invention when compared with commercially available rinse additives. The rinse additives compared were those described above.
Use solutions were prepared by adding the rinse additives to seven grain water in amounts sufficient to give and 200 parts per million concentration. The low foaming properties of the use solutions were determined by adding 300 ml. of a use solution to a one liter graduate, bubbling air into the graduate at the rate of 425 cc./min. for a period of 1 to 2 minutes, and then reading the increase in foam height in milliliters (ml.). The temperature of the use solution was then increased by 20 F. and the above procedure was repeated. The low foaming properties were determined for the temperature range of 100 to 180 F. After the low foaming properties of the use solution were determined, a predetermined amount of food soil was added to each solution, and the low foaming tests, as described above, were repeated. The food soil tests consisted of 0.1% by weight of egg in one series of runs and 1.0% by weight of milk in another series of runs. The tables below illustrate the results of these runs.
TABLE 2.FOAMING PROPERTIESNO SOIL Increased foam height in ml.
TABLE 3.FOAMING PROPERTIES-0.1% EGG Increased ioarn height in ml.
A B C D Rinse additives, p.p.m 100 200 100 200 100 200 100 200 TABLE 4.FOAMING PROPERTIES1.0% MILK Increased foam height in ml.
A B C D Rinse additives,p.p.m 100 200 100 200 100 200 100 200 Temperature, F.:
In commercial operations, the Washing of dishware is generally accomplished in three stagesscraping, washing, and rinsing. The scraping, or first stage in the dishwashing operation, is usually maintained at a temperature of from about to F. The wash, or
second stage in the dishwashing operation, is usually maintained at a temperature of from about 140 to 160 F., and the rinse, or last stage in the dishwashing operation, is usually maintained at a temperature of from about 160 to 170 F. The food soil load is highest in the scraping stage, lower in the wash, and ne ligible in the rinse stage.
In order to conserve heat and water, it is customary to feed back solution from the rinse stage to the wash or scraping stage. Therefore, the use solution at the scraping stagewill contain low rinse additive, due to dilution with water, low temperature, and high food soil. It is under such conditions that commercially available rinse additives in use solutions foam.
From the above tables, it can be seen that the foaming properties of the rinse additives of the present invention, both under soil load and under no load conditions at commercial operating temperatures, exhibit very little foaming tendencies whereas the commercially available products show tendencies to foam.
EXAMPLES III-IV These examples illustrate the degree of water spotting after rinsing and the low foaming properties of rinse additives prepared according to the present invention. The following table describes the compositions of the three rinse aids used in these tests.
TABLE Rinse additive E F G Parts by Weight:
Nonionic I 2 3O 56 H (monoester) O OH and where in R was nonyl phenol and A was a plurality of oxyethylene groups representing from about 55% to about 65% of the total weight of the compounds. The percent by Weight of monoester was about 55% and the percent by weight of diester was about 45%.
f ALlL11iOnlG III-A mixture of phosphate esters represented by the arm as:
RO (A) F (monoester) wherein R was a mixture of alkyl groups having from 10 to 12 carbon atoms and A Was a mixture of oxyethylene and oxypropylene groups wherein the molar ratio of oxyethylene to oxypropylene was about 6 to 1 and the oxyethylene-oxypropylene groups represented from about 60 to 80% of the total weight of the compounds. The percent by weight of monoester was about 55% and the percent by weight of dieslter was about 45%.
EXAMPLE III The following example illustrates the low foaming properties of rinse additives prepared according to the present invention. The rinse additives tested were those illustrated in Table 5.
Use solutions where prepared by adding the rinse additives to seven grain water in amounts sufficient to give 100 and 200 parts per million concentration. The low foaming properties of use solutions were determined by adding 300 ml. of a use solution into a one liter graduate, bubbling air into the graduate at the rate of 425 cc./ min. for a period of 1 to 2 minutes, then reading the increase in the foam height in milliliters. The temperature of the use solution was then increased by F. and the 10 above procedure was repeated. The low foaming properties were determined for the temperature range of 110 to 180 F. After the low foaming properties of the use solution were determined, a predetermined amount of food soil was added to each solution, and the low foaming 1 tests, as described above, were repeated. The food soil tests consisted of 0.1% by weight of egg in one series of runs and 1.0% by weight of milk in another series of runs. The tables below illustrate the results of these runs.
0 TABLE 6.FOAMING PROPERTIESNO SOIL Increased foam height in ml.
E F G Rinse additives, ppm. 100 200 100 200 100 200 Temperature, F.:
110 25 5 5 5 25 50 5 0 0 0 l0 (l0 0 O 0 0 0 00 0 0 0 5 0 00 TABLE 7.FOAMING PROPERTIES-0.1% EGG Increased foam height in ml.
E F G Rinse additives, ppm. 100 200 100 200 100 200 5 Temperature, F.:
40 TABLE 8.FOAMING PROPERTIE s 1.0% MILK Increased foam height in ml.
E F G Rinse additives, ppm. 100 200 100 200 100 200 50 From the above data it can be seen that the rinse The following example illustrates the degree of water spotting after rinsing with a use solution prepared from rinse additives prepared according to the present invention. The rinse additives tested were those described in 5 Table 5.
The tests were carried out by loading a Hotpoint dishwasher with four glasses. The dishwasher was then turned on and brought up to a wash temperature of 135 :5 F. During the wash cycle, 25 ml. of milk was added in order to soil the glasses and give them a hydrophobic or water spotted condition. As soon as the machine went into its rinse cycle, 7.5 ml. (50 ppm. in use solution) of the candidate rinse additive was added. The dishwasher was then allowed to complete its rinse and drying cycles. The
glasses were then allowed to cool to room temperature and were then observed in a black box for spotting or filming according to the following method of rating:
No spots or film A spotted or filmed /2 spotted or filmed spotted or filmed Completely spotted or filmed After the four glasses had been evaluated, they were returned to the dishwasher soiled, and 15 ml. of the candidate rinse additive was added to the rinse or use solution. This gave a concentration of 100 p.p.m. of additive in the use solution. The rinse temperature was brought up to 135:5 F. and the rinse, drying, and cooling was repeated in the same manner as above. The glasses were then observed in the black box and rated in the same manner as before.
The four glasses were also evaluated a third time wherein the use solution had a concentrate of 150 p.p.m. of rinse additive, and then a fourth and final time, at 200 p.p.m. concentration of rinse additive.
The above series of rinses were repeated for each of the rinse additives described in Table 5. The results of the tests are illustrated in Table 9 below.
TABLE 9 Rating of glasses Rinse additive:
As can be seen from the above data, at rinse additive concentrations of 50 to 200 p.p.m. in a rinse solution, the rinse additives prepared in accordance with the present invention are effective for the prevention of spotting or film forming after rinsing.
What is claimed is:
1. A rinse additive composition consisting essentially of:
(a) about 20 to 80 parts by weight of a linear oxyalkylated alcohol which is the condensation product of a mixture of linear primary aliphatic alcohols having from 12 to 15 carbon atoms with a mixture of propylene oxide and ethylene oxide wherein the molar ratio of propylene oxide to ethylene oxide is from about 0.85 :1 to 2.75 :1 and the mixture of oxide units represents from about 55 to 80% of the total weight of the condensation product;
(b) about to parts by weight of an anionic surfactant which is either (1) a sulfosuccinic acid ester which corresponds to the formula:
nlooo-on n oooons 0311 wherein R and R are octyl, hexyl, or isobutyl groups and M is alkali metal or ammonia or (2) a phosphate ester selected from the group consisting 8 of (a) a mixture of phosphate monoand diesters having the formulas:
OH RO(A)T|1T O OH and
[R-O(A)]2{|OH wherein R is an alkyl group having from 10 to 12 carbon atoms, and A is a mixture of oxyethylene and oxypropylene wherein the ratio of oxyethylene groups to oxypropylene groups is from about 4:1 to 8:1 and represents from about to about 80% of the total weight of the esters, and the monoester represents from about to 70% by weight of the mix, and the diester represents from about 50 to 30% by weight of the mix, and (b) a mixture of phosphate monoand diesters having the formulas:
wherein R is a nonyl phenol and A is a plurality of oxyethylene groups representing from about 45% to by weight of the mix, and the monoester represents from about 50 to by weight of the mix and the diester represents from about 50 to 30% by weight of the mix, and ,(c) about 10 to parts by weight of water. 2. The composition of claim 1 wherein the anionic surfactant is the sulfosuccinic acid ester.
3. The composition of claim 1 wherein the anionic surfactant is the phosphate ester mixture of phosphate monoand diesters having the formulas:
wherein R is an alkyl group having from 10 to 12 carbon atoms, and A is a mixture of oxyethylene and oxypropylene wherein the ratio of oxyethylene groups to oxypropylene groups is from about 4:1 to 8:1 and represents from about 45 to about of the total weight of the esters, and the monoester represents from about 50 to 70% by weight of the mix, and the diester represents from about 50 to 30% by weight of the mix.
4. The composition of claim 1 wherein the anionic surfactant is-the phosphate ester mixture of phosphate monoand diesters having the formulas:
wherein R is a nonyl phenol and A is a plurality of oxyethylene groups representing from about 45% to about 65% by weight of the mix, and the monoester represents from about 50 to 70% by weight of the mix and the diester represents from about 50 to 30% by weight of the mix.
5. A use solution consisting essentially of the composition of claim 1 wherein the concentration of the rinse additive is from about 10 to 200 p.p.m. in the use solution.
hexyl and M is sodium.
6. The composition of claim 2 wherein R and R are 3,122,508 3,314,891 3,329,615 References Cited 3,382,174 UNITED STATES PATENTS 5 1/1936 Jaegar 252-161 10/1961 Nunn et a1. 260951 10/1961 Nunn 26098O 5/1962 Chiddix et a1. 25289 3/1963 Temple et a1 252-439 10 252459 538 l0 Grifo et a] 252135 Schmolka et a1 252-89 Cooper et a1 252135 Lissant et a1. 252135 LEON D. ROSDOL, Primary Examiner W. R. SCHULZ, Assistant Examiner US. Cl. X.R.
US749937A 1968-08-05 1968-08-05 Low foaming rinse additive Expired - Lifetime US3629127A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74993768A 1968-08-05 1968-08-05

Publications (1)

Publication Number Publication Date
US3629127A true US3629127A (en) 1971-12-21

Family

ID=25015846

Family Applications (1)

Application Number Title Priority Date Filing Date
US749937A Expired - Lifetime US3629127A (en) 1968-08-05 1968-08-05 Low foaming rinse additive

Country Status (1)

Country Link
US (1) US3629127A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2124442A1 (en) * 1971-02-04 1972-09-22 Ici Ltd
US3862965A (en) * 1969-10-01 1975-01-28 Henkel & Cie Gmbh Shaped washing agents based on synthetic tensides
US3941713A (en) * 1972-10-04 1976-03-02 Lever Brothers Company Rinse composition
US4242217A (en) * 1978-02-15 1980-12-30 Hoechst Aktiengesellschaft Composition suitable for use in cleaning panes of glass
FR2498645A1 (en) * 1981-01-29 1982-07-30 Kimberly Clark Co WIPING PRODUCT USABLE ESPECIALLY IN WHITE ROOMS FOR THE MANUFACTURE OF MICROELECTRONIC DEVICES
EP0071412A1 (en) * 1981-07-24 1983-02-09 Unilever N.V. Novel sulphosuccinates and detergent compositions containing them
US4434087A (en) 1981-07-24 1984-02-28 Lever Brothers Company Detergent compositions containing sulphosuccinate mixtures
US4493782A (en) * 1983-07-07 1985-01-15 Amchem Products, Inc. Cleansing compositions comprising ethoxylated alcohol monoesters of phosphoric acid
US4545917A (en) * 1984-02-09 1985-10-08 Creative Products Resource Associates Ltd. Automatic dishwasher product in solid form
US4596672A (en) * 1982-11-16 1986-06-24 Lever Brothers Company Detergent compositions
US4601836A (en) * 1981-10-13 1986-07-22 Jones L W Phosphate ester/alcohol micellar solutions in well acidizing
US4614606A (en) * 1983-10-31 1986-09-30 Lever Brothers Company Liquid scouring compositions
US4836951A (en) * 1986-02-19 1989-06-06 Union Carbide Corporation Random polyether foam control agents
US5059342A (en) * 1989-03-23 1991-10-22 Imperical Chemical Industries Plc Novel chemical compounds and their use as low foam surfactants and antifoaming agents
GR1002362B (en) * 1995-07-12 1996-06-11 Detergent compositions containing ethylene and propylene oxides copolymers and polyethers of fatty alcohols.
US5603776A (en) * 1994-09-12 1997-02-18 Ecolab Inc. Method for cleaning plasticware
US5753608A (en) * 1996-12-28 1998-05-19 Basf Corporation Rinse aid compositions containing phosphate esters
EP0851021A2 (en) * 1996-12-28 1998-07-01 Basf Corporation Improved rinse aid compositions
US5880089A (en) * 1994-09-12 1999-03-09 Ecolab Inc. Rinse aid for plasticware
WO1999015609A1 (en) * 1997-09-23 1999-04-01 Arch Specialty Chemicals, Inc. Aqueous rinsing composition
US20050020463A1 (en) * 2002-01-28 2005-01-27 Mitsubishi Chemical Corporation Cleaning solution for cleaning substrate for semiconductor devices and cleaning method using the same
US9051507B2 (en) 2012-03-23 2015-06-09 Intevep, S.A. Completion fluid
EP3290502A1 (en) * 2016-09-02 2018-03-07 Dalli-Werke GmbH & Co. KG Aqueous rinse-aid composition

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862965A (en) * 1969-10-01 1975-01-28 Henkel & Cie Gmbh Shaped washing agents based on synthetic tensides
FR2124442A1 (en) * 1971-02-04 1972-09-22 Ici Ltd
US3941713A (en) * 1972-10-04 1976-03-02 Lever Brothers Company Rinse composition
US4242217A (en) * 1978-02-15 1980-12-30 Hoechst Aktiengesellschaft Composition suitable for use in cleaning panes of glass
FR2498645A1 (en) * 1981-01-29 1982-07-30 Kimberly Clark Co WIPING PRODUCT USABLE ESPECIALLY IN WHITE ROOMS FOR THE MANUFACTURE OF MICROELECTRONIC DEVICES
EP0071412A1 (en) * 1981-07-24 1983-02-09 Unilever N.V. Novel sulphosuccinates and detergent compositions containing them
US4434087A (en) 1981-07-24 1984-02-28 Lever Brothers Company Detergent compositions containing sulphosuccinate mixtures
US4601836A (en) * 1981-10-13 1986-07-22 Jones L W Phosphate ester/alcohol micellar solutions in well acidizing
US4596672A (en) * 1982-11-16 1986-06-24 Lever Brothers Company Detergent compositions
US4493782A (en) * 1983-07-07 1985-01-15 Amchem Products, Inc. Cleansing compositions comprising ethoxylated alcohol monoesters of phosphoric acid
US4614606A (en) * 1983-10-31 1986-09-30 Lever Brothers Company Liquid scouring compositions
US4545917A (en) * 1984-02-09 1985-10-08 Creative Products Resource Associates Ltd. Automatic dishwasher product in solid form
US4836951A (en) * 1986-02-19 1989-06-06 Union Carbide Corporation Random polyether foam control agents
US5059342A (en) * 1989-03-23 1991-10-22 Imperical Chemical Industries Plc Novel chemical compounds and their use as low foam surfactants and antifoaming agents
US5880089A (en) * 1994-09-12 1999-03-09 Ecolab Inc. Rinse aid for plasticware
US5603776A (en) * 1994-09-12 1997-02-18 Ecolab Inc. Method for cleaning plasticware
US5880088A (en) * 1994-09-12 1999-03-09 Ecolab Inc. Rinse aid for plasticware
GR1002362B (en) * 1995-07-12 1996-06-11 Detergent compositions containing ethylene and propylene oxides copolymers and polyethers of fatty alcohols.
US5753608A (en) * 1996-12-28 1998-05-19 Basf Corporation Rinse aid compositions containing phosphate esters
EP0851021A2 (en) * 1996-12-28 1998-07-01 Basf Corporation Improved rinse aid compositions
EP0851021A3 (en) * 1996-12-28 1999-12-22 Basf Corporation Improved rinse aid compositions
WO1999015609A1 (en) * 1997-09-23 1999-04-01 Arch Specialty Chemicals, Inc. Aqueous rinsing composition
US5977041A (en) * 1997-09-23 1999-11-02 Olin Microelectronic Chemicals Aqueous rinsing composition
US20050020463A1 (en) * 2002-01-28 2005-01-27 Mitsubishi Chemical Corporation Cleaning solution for cleaning substrate for semiconductor devices and cleaning method using the same
US9051507B2 (en) 2012-03-23 2015-06-09 Intevep, S.A. Completion fluid
EP3290502A1 (en) * 2016-09-02 2018-03-07 Dalli-Werke GmbH & Co. KG Aqueous rinse-aid composition

Similar Documents

Publication Publication Date Title
US3629127A (en) Low foaming rinse additive
US3314891A (en) Low foaming detergent
CA1141251A (en) Detergents and cleansers containing oxyalkylated alcohols as biodegradable, low-foam surfactants
US4898621A (en) Use of hydroxyalkyl polyethylene glycol ethers as surfactants in rinse aids for dishwashing machines
US4272394A (en) Machine dishwashing detergents containing low-foaming nonionic surfactants
US5880089A (en) Rinse aid for plasticware
CA2135148C (en) Aqueous alkaline composition
US4965009A (en) Aqueous acidic cleaner formulations
US3741912A (en) Low foaming detergent
US4832868A (en) Liquid surfactant mixtures
US4001132A (en) Automatic dishwashing detergent composition
US3504041A (en) Nonionic condensation products having enhanced activity
US4411810A (en) Low-foaming nonionic surfactant for machine dishwashing detergent
US4438014A (en) Nonionic surfactants for automatic dishwasher detergents
US3829386A (en) Surfactant-foam depressant emulsion compositions
US3294693A (en) Phosphorylated surfactants as hydrotropes
US3994818A (en) Substantially non-aqueous low foaming liquid non-ionic detergent composition
US3749675A (en) Phosphate-free detergents
EP0054894A1 (en) Surfactant-containing mixture for cleaning hard surfaces
GB2145726A (en) Surface active agents
JP4870555B2 (en) Wetting composition and method of use
US3969282A (en) Acidic surfactant composition, stock surfactant solution prepared therefrom, and method of washing soiled substrates employing the same
DE1792308A1 (en) Low-foaming detergents, dishwashing detergents and cleaning agents
CA1119914A (en) Phosphate-free machine dishwashing detergents useful at low temperatures
US3595968A (en) Phosphate ester additives for low foam nonionics

Legal Events

Date Code Title Description
AS Assignment

Owner name: DIVERSEY WYANDOTTE CORPORATION, A CORP. OF DE., MI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIVERSEY CORPORATION THE;REEL/FRAME:003954/0125

Effective date: 19820107

Owner name: DIVERSEY WYANDOTTE CORPORATION, 1532 BIDDLE AVE.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DIVERSEY CORPORATION THE;REEL/FRAME:003954/0125

Effective date: 19820107