US3630718A - NONPYROPHORIC METAL POWDER OF A METAL FROM THE GROUP IVb, Vb AND VIb OR THE ACTINIUM SERIES OF THE PERIODIC TABLE - Google Patents

NONPYROPHORIC METAL POWDER OF A METAL FROM THE GROUP IVb, Vb AND VIb OR THE ACTINIUM SERIES OF THE PERIODIC TABLE Download PDF

Info

Publication number
US3630718A
US3630718A US841165*A US3630718DA US3630718A US 3630718 A US3630718 A US 3630718A US 3630718D A US3630718D A US 3630718DA US 3630718 A US3630718 A US 3630718A
Authority
US
United States
Prior art keywords
metal
nonpyrophoric
periodic table
vib
actinium series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US841165*A
Inventor
Ernst Neuenschwander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH895065A external-priority patent/CH458753A/en
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Application granted granted Critical
Publication of US3630718A publication Critical patent/US3630718A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Definitions

  • the term plasma is used with reference to a partially or wholly ionized gas. lf the plasma as a whole has a directional velocity, it is called a plasma flow or plasma jet. Such a plasma jet can be produced, for example, by blowing a gas through an electric arc. In this manner temperatures of 20,000 C. and even higher can be attained. The velocity may range from a few meters per second to a multiple of the speed of sound.
  • the gas stream may consist of an inert gas or of a reactive gas.
  • a plasma jet is obtained which serves only as a source of heat; when, on the other hand, nitrogen or oxygen is used, the resulting gas is not only very hot but can, under suitable conditions, also be used for chemical reactions.
  • nitrogen or oxygen is used, the resulting gas is not only very hot but can, under suitable conditions, also be used for chemical reactions.
  • a graphite anode is used, reactions with carbon may be carried out in the plasma jet.
  • the present invention provides a process for the manufacture of finely dispersed, nonpyrophoric metals of the groups lVb, Vb, Vlb or of the actinium series of the Periodic Table wherein a halide of one of the said metals is treated with a hydrogen plasma, using for every molecular proportion of metal halide only to molecular proportions of hydrogen.
  • titanium, ziroonium, hafnium, vanadium, niobium, tantalum, molybdenum, tungsten, uranium and thorium As metals of the groups mentioned above, designated as defined in the Handbook of Chemistry and Physics of Ch.D. Hodgeman, 1960, page 444, there are suitable titanium, ziroonium, hafnium, vanadium, niobium, tantalum, molybdenum, tungsten, uranium and thorium.
  • metal halide those which are easiest to volatilize without decomposing.
  • the chlorides especially of TiCl, ZrClj, NfCl.,, VCl,,, NbCl TaCl MoCl WCI WCI ThC l, and UCl,
  • molybdenum and tungsten chlorides there may be used with equally good results the oxychlorides MoCl. and WOCl, respectively.
  • the reaction in the plasma flame gives rise to metal in the pyrophoric form but, as has been observed, this is not the case when the reaction is performed with a relatively minor hydrogen excess, that is to say at a sufficiently high concentration of metal chloride in the plasma flame, because in this way metals of a less finely dispersed form are obtained.
  • the refractory metals of groups lVb, Vb, Vlb and of the actinium series are used at the ratio specified for the present process of 5 to 10 mols of hydrogen for every mo] of metal chloride, the average particle size of the resulting metal ranges from 0.03 to 0.1 p.
  • average particle size is meant to indicate the so-called half-value particle size which is defined such that 50 percent of the particles of the whole collective are below this size.
  • metals of the indicated range of particle sizes are nonpyrophoric.
  • Staub 22 [1962] in page 495
  • pyrophority is here used to describe the spontaneous ignition occurring in the absence of an extraneous igniter of a small quantity of a powder in the solid state on contact with air at room temperature.
  • the nonpyrophoric character is also attributable to the shape of the particles.
  • the present process furnishes predominantly particles having approximately the shape of cubes, octaheders or spheres.
  • the resulting particles are not strongly fissured or porous, as is the case when the reaction is carried out at a low temperature.
  • the metal powder has a minimal surface and this has been verified by the surface areas measured and computed from grain-size-distribution graphs.
  • the pyrophoric character of a substance also depends on fault arrangements of the lattice which constitute an increased energy state.
  • the high reaction temperature used in the process of this invention is extremely favorable in this respect also because such lattice faults can heal much more quickly 3 than at a low temperature.
  • Another object of this invention is to provide improved metal powders by the present process. They are characterized by an average particle size from 0.03 to 0.1a, by a form factor F of 1.0 to L5 and an oxygen content not exceeding 3mg./square meter of surface.
  • the definition of the average particle size has been given above.
  • the form factor is defined as the ratio between the true surface of the particles (in actual practice measured according to a certain method) and the surface calculated from an assumed spherical shape of the particles; see W. Batel Korngroessenmesstechnik," Editors Springer, 1960. page 14.
  • the form factor was in the present case determined as follows: Some 1,000 particles were measured and counted on electron microphotographs to enable the particle size distribution graph to be plotted as a first step.
  • the diameter of a circle whose projection had the identical area was chosen.
  • the surface of the particle collective can then be calculated from the distribution graph.
  • the form factor as defined above is then obtained from this value and from the value resulting from the BET-measurement.
  • metals having an average particle size below la is of special importance to powder-metallurgical processes, either as matrix metal in dispersion consolidation, or for the manufacture of alloys whose constituents have widely different melting points, or for sintering operations at lower temperatures. Fine refractory metals are also of importance in reactor technology and to catalysis.
  • the nonpyrophoric character of the metals obtained is very advantageous to their handling and further processing.
  • the present process is also distinguished by high yields which, as a rule, are better than percent.
  • the resulting, very finely pulverulent and very voluminous metal is subjected to an aftertreatment to reduce its volume and to free it from contaminants (absorbed hydrochloric acid and low-valency halides).
  • this aftertreatment the powder is first rotated for several hours, whereby its bulk volume is reduced to one fifth and then under a vacuum from 10" to l0" mm. Hg. pressure calcined at a temperature at which the particles do not yet grow, preferably at a temperature from 600 to 800 C; if desired, the aftertreatment may be performed first in the presence of hydrogen and then under a vacuum. Unexpectedly, such an aftertreatment still leaves the powder nonpyrophoric. Oxidation in air proceeds only slowly and this is another feature facilitating the handling of the fine material.
  • the present process is generally performed by heating the metal halide to a temperature at which the vapor pressure of the halide is from one-half to 1 atmosphere, and if desired a carrier gas (argon or hydrogen) is conveyed over the surface of the halide. The resulting gas mixture is then injected into the plasmajet.
  • a carrier gas argon or hydrogen
  • the plasmajet has a electric arc in a so-called plasma generator which is admean velocity of about 180 mJsecond and an average vantageously of the known design and comprises a wa rz re of about 3,20 C.
  • a so-called plasma generator which is admean velocity of about 180 mJsecond and an average vantageously of the known design and comprises a wa rz re of about 3,20 C.
  • the diverging nozzle 100g of gaseous Nbcla (with argon as To facilitate the mixing of the above-mentioned, relat vely carrier gas) per minute are fed into the hydrogen FL
  • the lafge ameuht 9 halides the hydfogeh Plasmalet, thelet reaction mixture forms a brilliantjet of about cm. length.
  • A 200 amperes, 1'20 volts, 74 standard liters of II: per minute.
  • B 115 nmpcrcs, J8 volts, 24 standard liters of H2 per minute.
  • the metal halide is advantageously injected into the plasma jet through a supply tube made from quartz.
  • the metal is formed in the plasmajet under atmospheric pressure, but if desired a vacuum may be used.
  • the points at which the metal halide is injected into the plasmajet must be determined in each case by suitable preliminary experiments.

Abstract

A nonpyrophoric metal powder of Group IVb, Group Vb, Group VIb or the actinium series of the Periodic Table, having a particle size of 0.03 to 0.1 micron and a low surface area to volume ratio.

Description

United States Patent METAL FROM THE cnoup IVB, vn AND vm on THE ACTINIUM SERIES OF THE rmuomc TABLE 1 Claim, 1 Drawing Fig.
Diverging We fer Cooled Nozzle Hydrogen Supply Wafer-Cooled Cathode Cooled Anode Plasma Jet Pain? of Applicafion 8 of Moral Halide [52] US. Cl 75/0.5 [51] Int. Cl B22! 9/00 [50] Field of Search 75/05 [56] Reierences Cited UNITED STATES PATENTS 3,049,421 8/1962 Allen et a1. 75/0.5 3,151,971 10/1964 Clough 75/0.5 3,165,396 1/1965 Goon 75/0.5
Primary Examiner-L. Dewayne Rutledge Assistant Examiner-W. W. Stallard Attorneys-Harry Goldsmith, Joseph G. Kolodny and Bryant W. Brennan ABSTRACT: A nonpyrophoric metal powder of Group lVb, Group Vb, Group Vlb or the actinium series of the Periodic Table, having a particle size of 0.03 to 0.1 micron and a low surface area to volume ratio.
6 Reacror PATENT En M828 Ian 3: mm 2mm;
bE I 2 E w w en, 368
cotmuzqq x *0 t ou #2 mEmm v Lotmmm w NNQZ 2000 kg m Fu Ernsf Neuenschwancler m o mu OO L N IN VENI'OR.
Attorney NONPYROPI-IORIC METAL POWDER OF A METAL FROM THE GROUP IVB, VB AND VIB OR THE ACTINIUM SERIES OF THE PERIODIC TABLE This application is a division of application Ser. 555,904, filed 7 June 1966, now US. Pat. No. 3,480,426.
This application is a division of application Ser. 555,904, filed 7 June 1966, now US. Pat. No. 3,480,426.
In gas-discharge physics the term plasma is used with reference to a partially or wholly ionized gas. lf the plasma as a whole has a directional velocity, it is called a plasma flow or plasma jet. Such a plasma jet can be produced, for example, by blowing a gas through an electric arc. In this manner temperatures of 20,000 C. and even higher can be attained. The velocity may range from a few meters per second to a multiple of the speed of sound.
lt is known that chemical reactions may be carried out in a plasma jet. In this way thermal decompositions, reductions with carbon or hydrogen, and halogenations have been performed; furthermore, a variety of nitrogen compounds has been prepared (see inter alia The Plasma Jet, Scientific American 197 [1957] No. 2,pp.80 et seq. and Industrial and Engineering Chemistry," volume 55, [1963] pages 16 to seq.)
It is further known that the gas stream may consist of an inert gas or of a reactive gas. For example when argon is used, a plasma jet is obtained which serves only as a source of heat; when, on the other hand, nitrogen or oxygen is used, the resulting gas is not only very hot but can, under suitable conditions, also be used for chemical reactions. When a graphite anode is used, reactions with carbon may be carried out in the plasma jet.
The present invention provides a process for the manufacture of finely dispersed, nonpyrophoric metals of the groups lVb, Vb, Vlb or of the actinium series of the Periodic Table wherein a halide of one of the said metals is treated with a hydrogen plasma, using for every molecular proportion of metal halide only to molecular proportions of hydrogen.
As metals of the groups mentioned above, designated as defined in the Handbook of Chemistry and Physics of Ch.D. Hodgeman, 1960, page 444, there are suitable titanium, ziroonium, hafnium, vanadium, niobium, tantalum, molybdenum, tungsten, uranium and thorium.
It is advantageous to use as metal halide those which are easiest to volatilize without decomposing. As a rule, this is true of the most highly halogenated metal halides. Preferred use is made of the chlorides, especially of TiCl,, ZrClj, NfCl.,, VCl,,, NbCl TaCl MoCl WCI WCI ThC l, and UCl,,. Instead of the molybdenum and tungsten chlorides there may be used with equally good results the oxychlorides MoCl. and WOCl, respectively.
In the case of a metal chloride wherein Me represents a tetravalent, pentavalent or hexavalent metal of the group mentioned above, the following reaction equations apply: MeCl,,+ 2 H f Me +4 l-ICl or 2 MeCl +5 H 2 Me+ 10 HCl or MoCl 3 H, :t Me 6 HCl.
in the case of an oxychloride the following reaction equation applies:
MeOCl, 3 H fl: Me 4 HC] H O Depending on its degree of dissociation, hydrogen enters the reaction partially in its atomic state.
Normally, the reaction in the plasma flame gives rise to metal in the pyrophoric form but, as has been observed, this is not the case when the reaction is performed with a relatively minor hydrogen excess, that is to say at a sufficiently high concentration of metal chloride in the plasma flame, because in this way metals of a less finely dispersed form are obtained. When the refractory metals of groups lVb, Vb, Vlb and of the actinium series are used at the ratio specified for the present process of 5 to 10 mols of hydrogen for every mo] of metal chloride, the average particle size of the resulting metal ranges from 0.03 to 0.1 p. In this context the term average particle size" is meant to indicate the so-called half-value particle size which is defined such that 50 percent of the particles of the whole collective are below this size. In view of general experience it must be said that it is indeed surprising that metals of the indicated range of particle sizes are nonpyrophoric. Using the definition in Staub" 22 [1962] in page 495, the term pyrophority is here used to describe the spontaneous ignition occurring in the absence of an extraneous igniter of a small quantity of a powder in the solid state on contact with air at room temperature. The nonpyrophoric character is also attributable to the shape of the particles. As has been revealed by electron microscopic examination, the present process furnishes predominantly particles having approximately the shape of cubes, octaheders or spheres. Thus, at the high reaction temperature, which is above the melting point of the metal formed, the resulting particles are not strongly fissured or porous, as is the case when the reaction is carried out at a low temperature. Accordingly, taking into consideration its particle size, the metal powder has a minimal surface and this has been verified by the surface areas measured and computed from grain-size-distribution graphs. In addition, it is known that the pyrophoric character of a substance also depends on fault arrangements of the lattice which constitute an increased energy state. The high reaction temperature used in the process of this invention is extremely favorable in this respect also because such lattice faults can heal much more quickly 3 than at a low temperature.
Another object of this invention is to provide improved metal powders by the present process. They are characterized by an average particle size from 0.03 to 0.1a, by a form factor F of 1.0 to L5 and an oxygen content not exceeding 3mg./square meter of surface. The definition of the average particle size has been given above. The form factor is defined as the ratio between the true surface of the particles (in actual practice measured according to a certain method) and the surface calculated from an assumed spherical shape of the particles; see W. Batel Korngroessenmesstechnik," Editors Springer, 1960. page 14. The form factor was in the present case determined as follows: Some 1,000 particles were measured and counted on electron microphotographs to enable the particle size distribution graph to be plotted as a first step. AS the characteristic length of a particle the diameter of a circle whose projection had the identical area was chosen. Using as a basis, spheres having these diameters, the surface of the particle collective can then be calculated from the distribution graph. The form factor as defined above is then obtained from this value and from the value resulting from the BET-measurement.
The use of metals having an average particle size below la is of special importance to powder-metallurgical processes, either as matrix metal in dispersion consolidation, or for the manufacture of alloys whose constituents have widely different melting points, or for sintering operations at lower temperatures. Fine refractory metals are also of importance in reactor technology and to catalysis.
The nonpyrophoric character of the metals obtained is very advantageous to their handling and further processing.
The present process is also distinguished by high yields which, as a rule, are better than percent.
In a further stage of the present process the resulting, very finely pulverulent and very voluminous metal is subjected to an aftertreatment to reduce its volume and to free it from contaminants (absorbed hydrochloric acid and low-valency halides). In this aftertreatment the powder is first rotated for several hours, whereby its bulk volume is reduced to one fifth and then under a vacuum from 10" to l0" mm. Hg. pressure calcined at a temperature at which the particles do not yet grow, preferably at a temperature from 600 to 800 C; if desired, the aftertreatment may be performed first in the presence of hydrogen and then under a vacuum. Unexpectedly, such an aftertreatment still leaves the powder nonpyrophoric. Oxidation in air proceeds only slowly and this is another feature facilitating the handling of the fine material.
The present process is generally performed by heating the metal halide to a temperature at which the vapor pressure of the halide is from one-half to 1 atmosphere, and if desired a carrier gas (argon or hydrogen) is conveyed over the surface of the halide. The resulting gas mixture is then injected into the plasmajet.
Depending on the conditions chosen, the reaction time in conditions:
Current intensity 200 ampercs are voltage 120 volts 74 standard liters the plasma jet is from 10 to 10 seconds and the tempera- 5 ture ranges from 2,000 m 5,000 c. C
e Plasma produced the 31d of a h' 'h At the exit opening of the diverging nozzle the plasmajet has a electric arc in a so-called plasma generator which is admean velocity of about 180 mJsecond and an average vantageously of the known design and comprises a wa rz re of about 3,20 C. At 1 cm. past the exit opening of cooled hollow copper anode and a cooled tungsten cathode. l the diverging nozzle 100g of gaseous Nbcla (with argon as To facilitate the mixing of the above-mentioned, relat vely carrier gas) per minute are fed into the hydrogen FL The lafge ameuht 9 halides the hydfogeh Plasmalet, thelet reaction mixture forms a brilliantjet of about cm. length. wldehed a dlvetglhg hezzle followlhg P (downstream of) Per minute 32g. of niobium, corresponding to a yield of 93 the burner. Then only is the hydrogen jet combined with the percent are obtained chloride .ie By wtdehihg the Plasmajet, good mixing with the 15 Five hundred grams each of the voluminous niobium metal halide and, as a result, a complete reaction is achieved powder accumulming in the reactor are d ifl d by being within a Short residence timeletting the mixing of the rotated at 9,000 revolutions per hour for l0 hours on rollers. reactants take Place y from tendency to form The material is then calcined for 6 hours in a weak current of of the apparatus, agglomeratiohs of the metal formed H (10 liters per hour) and then for another 4 hours under the apparatus and above all on the burner can be counvacuum at 300 C and thereupon 1 teraeteti Such agglomeratiohs would p y g the burner, The resulting, nonpyrophoric niobium contains 1.4 percent Specially when g Concentrations are used, 50 that the of oxygen. On exposure to air it undergoes oxidation and its process could not be performed continuously. it is another adi h increases l l b no spontaneousi i i occurs, vantage of this performance of the reaction that the large 8 specific Surface m re by h B T m d wa quantities reacted inside the flame do not impair the stability f n to be m- /gr m- The particle ize i ribution was ofthe electric arc. determined by counting about 1,000 particles on electron The invention is further describ d i th foll i micrographs with the use of a semiautomatic instrument; the reference being made to the drawing, the sole FIGURE of following distribution was foundi which is a diagrammatic section ofa plasma-jet generator seen 5 Percent below (W09 from the side. 25 percent below 0.0] 8 p.
in the drawing 1 is the supply of hydrogen which, as a rule, 50 Percent below P- flows in at right angles to the axis of the plasma jet at a rate 75 Percent below I which can be varied within wide limits; the water-cooled 95 Percent below 010 cathode 2 is adjustable relative to the cooled anode 3, while 4 that is to the halt-Value Particle Size was I represents th plasma jgt d d Th di i wate; The form factor F, calculated as described above, was 1.1. cooled nozzle 5 opens into the reactor 6, while the waste gas Tantalum, molybdenum, tuhgstehi Zirconium and hafnium duct 7 leads through settling vessels to remove as much dust as were Produced in a Similar y- The results of these expert" possible. The point at which the metal halide is supplied is ments are shown in the following represented at 8.
Reac- Particle size (share in t) tion Cnlcin. Spec Fol-111 condi- Throughput; per Yield temp. Oxygen surface 5% 25% 75% 05% [actor Metal tions minute percent 0.) percent (mfl/g.) I
120 g. T0015. 00 300 0.8 2.8 0. 020 0. 04 0.00 0.10 0. 10 1.4 00 700 0.0 0. 0 0.018 0. 03 0. 04 0. 00 0.00 1. 2 04 700 0. 7 0.1 0.012 0.02 0. 03 0. 04 0.07 1.3 05 800 1.8 13.0 0. 000 0. 01s 0. 03 0. 045 0.00 1.4 35 g. 111011.. 70 300 1. .s 0. 5 0. 000 0. 01s 0. 03 0. 045 0. 00 1.4
Reaction Conditions:
A=200 amperes, 1'20 volts, 74 standard liters of II: per minute. B=115 nmpcrcs, J8 volts, 24 standard liters of H2 per minute.
The metal halide is advantageously injected into the plasma jet through a supply tube made from quartz. As a rule, the metal is formed in the plasmajet under atmospheric pressure, but if desired a vacuum may be used. The points at which the metal halide is injected into the plasmajet must be determined in each case by suitable preliminary experiments.
EXAMPLE Manufacture of finely dispersed niobium The plasma generator was operated under the following
US841165*A 1965-06-25 1969-03-20 NONPYROPHORIC METAL POWDER OF A METAL FROM THE GROUP IVb, Vb AND VIb OR THE ACTINIUM SERIES OF THE PERIODIC TABLE Expired - Lifetime US3630718A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH895065A CH458753A (en) 1965-06-25 1965-06-25 Process for the production of fine, non-pyrophoric metals of groups IVa, Va and VIa and the actinium series of the periodic table
US84116569A 1969-03-20 1969-03-20

Publications (1)

Publication Number Publication Date
US3630718A true US3630718A (en) 1971-12-28

Family

ID=25704019

Family Applications (1)

Application Number Title Priority Date Filing Date
US841165*A Expired - Lifetime US3630718A (en) 1965-06-25 1969-03-20 NONPYROPHORIC METAL POWDER OF A METAL FROM THE GROUP IVb, Vb AND VIb OR THE ACTINIUM SERIES OF THE PERIODIC TABLE

Country Status (1)

Country Link
US (1) US3630718A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050147A (en) * 1975-04-16 1977-09-27 Winter Kunststoff Heinr J Method for the production of ductile and stable particle-superconductors
US4356029A (en) * 1981-12-23 1982-10-26 Westinghouse Electric Corp. Titanium product collection in a plasma reactor
US4397682A (en) * 1980-11-18 1983-08-09 Solex Research Corporation Process for preparing metals from their fluorine-containing compounds
US5749937A (en) * 1995-03-14 1998-05-12 Lockheed Idaho Technologies Company Fast quench reactor and method
US6051044A (en) * 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US6090179A (en) * 1998-07-30 2000-07-18 Remptech Ltd. Process for manufacturing of metallic power
US6165623A (en) * 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6375704B1 (en) 1999-05-12 2002-04-23 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
US6402066B1 (en) 1999-03-19 2002-06-11 Cabot Corporation Method of making niobium and other metal powders
US20020151604A1 (en) * 1999-12-21 2002-10-17 Detering Brent A. Hydrogen and elemental carbon production from natural gas and other hydrocarbons
US20040042154A1 (en) * 2000-10-26 2004-03-04 Kazumi Naito Powder for capacitor, sintered body and capacitor using the sintered body
US20040208805A1 (en) * 1995-03-14 2004-10-21 Fincke James R. Thermal synthesis apparatus
US6821500B2 (en) 1995-03-14 2004-11-23 Bechtel Bwxt Idaho, Llc Thermal synthesis apparatus and process
US20060103318A1 (en) * 2004-11-17 2006-05-18 Bechtel Bwxt Idaho, Llc Chemical reactor and method for chemically converting a first material into a second material
US20100270142A1 (en) * 2009-04-23 2010-10-28 Battelle Energy Alliance, Llc Combustion flame plasma hybrid reactor systems, chemical reactant sources and related methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049421A (en) * 1958-08-27 1962-08-14 Nat Res Corp Production of metals
US3151971A (en) * 1961-03-03 1964-10-06 Nat Res Corp Vacuum vapor condensation process for producing fine metal powders
US3165396A (en) * 1961-01-09 1965-01-12 Nat Res Corp Deflection of metal vapor away from the vertical in a thermal evaporation process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049421A (en) * 1958-08-27 1962-08-14 Nat Res Corp Production of metals
US3165396A (en) * 1961-01-09 1965-01-12 Nat Res Corp Deflection of metal vapor away from the vertical in a thermal evaporation process
US3151971A (en) * 1961-03-03 1964-10-06 Nat Res Corp Vacuum vapor condensation process for producing fine metal powders

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050147A (en) * 1975-04-16 1977-09-27 Winter Kunststoff Heinr J Method for the production of ductile and stable particle-superconductors
US4397682A (en) * 1980-11-18 1983-08-09 Solex Research Corporation Process for preparing metals from their fluorine-containing compounds
US4356029A (en) * 1981-12-23 1982-10-26 Westinghouse Electric Corp. Titanium product collection in a plasma reactor
US5749937A (en) * 1995-03-14 1998-05-12 Lockheed Idaho Technologies Company Fast quench reactor and method
US6821500B2 (en) 1995-03-14 2004-11-23 Bechtel Bwxt Idaho, Llc Thermal synthesis apparatus and process
US20040208805A1 (en) * 1995-03-14 2004-10-21 Fincke James R. Thermal synthesis apparatus
US7576296B2 (en) 1995-03-14 2009-08-18 Battelle Energy Alliance, Llc Thermal synthesis apparatus
USRE37853E1 (en) 1995-03-14 2002-09-24 Betchel Bwxt Idaho, Llc Fast quench reactor and method
US6420043B1 (en) 1996-11-07 2002-07-16 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6165623A (en) * 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6896715B2 (en) 1998-05-04 2005-05-24 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US6338816B1 (en) 1998-05-04 2002-01-15 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US6616728B2 (en) 1998-05-04 2003-09-09 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US20040089100A1 (en) * 1998-05-04 2004-05-13 Fife James A. Nitrided niobium powders and niobium electrolytic capacitors
US6051044A (en) * 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US6090179A (en) * 1998-07-30 2000-07-18 Remptech Ltd. Process for manufacturing of metallic power
US6402066B1 (en) 1999-03-19 2002-06-11 Cabot Corporation Method of making niobium and other metal powders
US7156893B2 (en) 1999-03-19 2007-01-02 Cabot Corporation Method of making niobium and other metal powders
US20050039577A1 (en) * 1999-03-19 2005-02-24 Habecker Kurt A. Method of making niobium and other metal powders
US6706240B2 (en) 1999-03-19 2004-03-16 Cabot Corporation Method of making niobium and other metal powders
US6375704B1 (en) 1999-05-12 2002-04-23 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
US20040237714A1 (en) * 1999-05-12 2004-12-02 Habecker Kurt A. High capacitance niobium powders and electrolytic capacitor anodes
US6702869B2 (en) 1999-05-12 2004-03-09 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
US7749297B2 (en) 1999-05-12 2010-07-06 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
US20020151604A1 (en) * 1999-12-21 2002-10-17 Detering Brent A. Hydrogen and elemental carbon production from natural gas and other hydrocarbons
US7097675B2 (en) 1999-12-21 2006-08-29 Battelle Energy Alliance, Llc Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons
US20040042154A1 (en) * 2000-10-26 2004-03-04 Kazumi Naito Powder for capacitor, sintered body and capacitor using the sintered body
US6843825B2 (en) * 2000-10-26 2005-01-18 Showa Denko K.K. Powder for capacitor, sintered body and capacitor using the sintered body
US7354561B2 (en) 2004-11-17 2008-04-08 Battelle Energy Alliance, Llc Chemical reactor and method for chemically converting a first material into a second material
US20060103318A1 (en) * 2004-11-17 2006-05-18 Bechtel Bwxt Idaho, Llc Chemical reactor and method for chemically converting a first material into a second material
US20110236272A1 (en) * 2004-11-17 2011-09-29 Kong Peter C Chemical reactor for converting a first material into a second material
US8287814B2 (en) 2004-11-17 2012-10-16 Battelle Energy Alliance, Llc Chemical reactor for converting a first material into a second material
US20100270142A1 (en) * 2009-04-23 2010-10-28 Battelle Energy Alliance, Llc Combustion flame plasma hybrid reactor systems, chemical reactant sources and related methods
US8591821B2 (en) 2009-04-23 2013-11-26 Battelle Energy Alliance, Llc Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

Similar Documents

Publication Publication Date Title
US3630718A (en) NONPYROPHORIC METAL POWDER OF A METAL FROM THE GROUP IVb, Vb AND VIb OR THE ACTINIUM SERIES OF THE PERIODIC TABLE
US3340020A (en) Finely dispersed carbides and process for their production
US11072533B2 (en) Manufacture of tungsten monocarbide (WC) spherical powder
CA3097498C (en) Reactive metal powders in-flight heat treatment processes
JP3356323B2 (en) Fine metal powder
Venkatramani Industrial plasma torches and applications
US6551377B1 (en) Spherical rhenium powder
US7125537B2 (en) Method for manufacturing nanopowders of oxide through DC plasma thermal reaction
US3848068A (en) Method for producing metal compounds
IL105592A (en) Preparation of finely divided metal powders and ceramic powders by chemical vapor reaction
US3475158A (en) Production of particulate,non-pyrophoric metals and product
US3480426A (en) Production of particulate,non-pyrophoric metals
US5972065A (en) Purification of tantalum by plasma arc melting
US3429661A (en) Process for the preparation of finely divided,non-pyrophoric nitrides of zirconium,hafnium,niobium,and tantalum
US3545922A (en) Process for the preparation of finely divided,non-pyrophoric nitrides of zirconium,hafnium,niobium and tantalum
US3592627A (en) Production of particulate,non-pyrophoric metals
JP3197927B2 (en) Method for producing black titanium oxide powder
US2848315A (en) Process for producing titanium, zirconium, and alloys of titanium and zirconium by reduction of oxides of titanium or zirconium
GB950630A (en) Improvements in the production of metallic bodies
JPH10298616A (en) Fine phosphorus-containing iron, production thereof and device for executing the method
Chang Plasma synthesis of metal nanopowders
US3343952A (en) Method of forming a refractory metal body containing dispersed refractory metal carbides
US3565604A (en) Production of spherical-particle powders of metals
Subbotin et al. Plasma synthesis of Al2O3 from related nitrate
Smiley et al. Preparation of refractory metal powders with unusual properties