US3631631A - Pneumatic abrasive cutting apparatus - Google Patents

Pneumatic abrasive cutting apparatus Download PDF

Info

Publication number
US3631631A
US3631631A US4533A US3631631DA US3631631A US 3631631 A US3631631 A US 3631631A US 4533 A US4533 A US 4533A US 3631631D A US3631631D A US 3631631DA US 3631631 A US3631631 A US 3631631A
Authority
US
United States
Prior art keywords
vessel
gas
tube
abrasive
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US4533A
Inventor
Jean I Greenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dental Gold Co
Original Assignee
Dental Gold Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dental Gold Co filed Critical Dental Gold Co
Application granted granted Critical
Publication of US3631631A publication Critical patent/US3631631A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0046Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier
    • B24C7/0053Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0046Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier

Definitions

  • Swingle Attomey-Spensley and Horn ABSTRACT An apparatus which utilizes a stream of gas to propel fine particles which is particularly useful in the manufacturing of dental restorations for functions such as cutting, cleaning and polishing, is disclosed.
  • An abrasive powder is forced from a container by a stream of gas which first passes through the powder. The gas, after passing through the powder, flows through a tube disposed in the powder and then to a nozzle. An orifice disposed through the wall of the tube provides an even and continuous injection of powder into the stream of gas.
  • the invention relates to the field of pneumatic abrasive devices, particularly those utilized in the dental field.
  • a pneumatic apparatus which utilizes a continuous stream of gas to propel fine particles is described.
  • the fine particles which are typically an abrasive powder are forced from a container or vessel by the stream of gas.
  • a tube which is coupled to a nozzle is disposed in the powder such that its upper end is above the level of powder in the vessel.
  • An orifice is disposed through the wall of the tube near the bottom of the vessel.
  • a stream of gas is injected into the lower end of the vessel through a check valve; this gas flows through the powder in the vessel and then into the upper end of the tube.
  • As the gas flows through the tube it causes powder in the vessel to be drawn into the stream of gas and to be subsequently delivered to the nozzle.
  • the vessel is mounted on a platform and subjected to vibrations which agitate the powder in the vessel and assist in preventing the device from becoming clogged.
  • the drawing illustrates in schematic form a pneumatic abrasive dental apparatus wherein the apparatus utilizes two vessels which are both illustrated in a cross-sectional view.
  • an abrasive powder or the like is stored containers or vessels and 14 and is pneumatically pumped to nozzles 53 and 52, respectively.
  • the vessels 10 and 14 may be ordinary metal vessels which are adaptable for sealingly containing a powderlike substance.
  • Lid 11 threadingly engages vessel 10.
  • An O-ring 12 which is disposed about an upper edge of vessel 10, between the vessel and lid, assures that the vessel is sealed and adaptable for being slightly pressurized.
  • vessel 14 has a lid 15 which threadingly engages vessel 14 and sealingly engages vessel 14 by means of O-ring 16. While in the drawing, both vessels 10 and 14 are illustrated as generally cylindrical members, they may in fact have any shape provided that they have an upper and lower end in which the tubes 18 and 20 may be disposed.
  • Vessel 10 contains a cylindrical tube 18 which is disposed from the upper end of the vessel to the lower end of the vessel.
  • a small orifice 21 is disposed through the wall of tube 18, near the bottom of vessel I0, thus allowing material 24 to flow from the interior of the vessel to the interior of tube 18. While in the present embodiment only a single orifice 21 is illustrated, a plurality of orifices may be utilized.
  • a tube 20 is disposed from the upper end of vessel 14 to the lower end of that vessel, and an orifice 23 is disposed through the wall of tube 20 near the lower end of vessel 14.
  • the vessels I0 and I4 and the tubes 18 and 20 may be ordinary metal parts manufactured utilizing commonly known techniques.
  • the tubes 18 and 20 in the presently preferred embodiment of the invention have an inside diameter of approximately one-eighth inch.
  • the lower end of tube I8 is coupled to flexible tube 48 via line 46; the lower end of tube 20 is coupled to flexible tube 49 through line 47.
  • the tubes 48 and 49 are coupled to nozzles 52 and 53, respectively.
  • the nozzles 52 and 53 may be any commonly known nozzle adaptable for handling a stream of gas containing a fine powder.
  • a handpiece 50 is coupled to nozzle 52 in order that that nozzle may be readily manually utilized.
  • a handpiece 51 is coupled to nozzle 53.
  • the lines 46 and 47, flexible lines 48 and 49, andthe nozzles 52 and 53 may be ordinary parts, which are commercially availa ble.
  • a pinch valve 60 is disposed across both lines 48 and 49 and prevents the passage of gas through these lines, unless the valve is actuated, by pinching the flexible lines.
  • Valve 60 may be an electrically or pneumatically operated valve or valves similar to valves 42 and 40 and may be used in place of valve 60.
  • Line 37 is coupled to a source of gas under pressure.
  • the source of gas may be any one of numerous commercially available gas sources such as those produced by a pump or hose which are provided from a storage tank.
  • the gas which is provided to line 37 under pressure may be carbon dioxide, nitrogen or similar inert gases. Air may also be utilized in the present application.
  • the gas applied to line 37 should be dry and substantially free of moisture. In the presently preferred embodiment, gas at a pressure of -90 p.s.i. has been found to be satisfactory for the operation of the apparatus.
  • Regulator 38 which is coupled to line 37 may be any ordinary regulator adaptable for regulating and adjusting the flow of gas. The gas flowing through regulator 38 is adjustable by means of knob 39.
  • valves 40 and 42 may be ordinary valves which selectively allow or prevent the passage of gas. In the preferred embodiment of the present invention, valves 40 and 42 are electrically operated valves.
  • Switch 61 an ordinary electrical switch, is coupled to valve 42 by lead 43 and to valve 40 by lead 41.
  • Switch 61 provides a means for selectively opening either valve 40 or 42 and hence allowing gas to flow into either vessel 10 or I4, as indicated by the left (L) and right (R) position on switch 61.
  • valve 42 The output from valve 42 is coupled to the lower end of a vessel 14 via line 55 and check valve 36.
  • the output from valve 40 is coupled to the lower end of vessel 10 via line 56 and check valve 34.
  • Check valves 34 and 36 may be ordinary check valves which allow a stream of gas to pass in only one direction. Valves 34 and 36 allow gas from valves 40 and 42, respectively, to flow into vessels 10 and 14, respectively, but prevent gas or other materials from flowing out of the vessels into lines 55 and 56. Valves 34, 36, 40 and 42, lines 55 and 56, T-coupler 54, and regulator 38 may be ordinary parts which are commercially available.
  • Foot control 45 which is coupled to valve 60 via line 62 and provides a means for opening pinch valve 60, may be an ordinary foot control commonly known in the prior art.
  • valve 60 is a pneumatically operated valve and is actuated with gas from line 37; foot control 45 provides a means for controlling the flow of gas to valve 60.
  • Vessels l0 and 14 are rigidly coupled to platform 26 and platform 26 is coupled to base 29 via springs 30. Thus, platform 26 is able to vibrate relative to the base 29.
  • a vibrating means 32 is coupled to platform 26 and is adaptable for vibrating platform 26, thus causing the contents within vessels 10 and 14 to be agitated.
  • Vibrating means 32 may be a commercially available electrically operated vibrator or may be a pneumatically operated vibration means which is operated from the source of gas under pressure supplied to line 37.
  • regulator means 38 While in the presently preferred embodiment of the present invention only a single regulator means 38 is illustrated coupled to line 37, it is within the scope of the present invention to utilize two regulator means. For example, one regulator means could be coupled into line 55 and the other into line 56. This would allow the gas flowing into each of the vessels l0 and 14 to have a separate flow control.
  • two vessels 10 and 14 are utilized. Each of these vessels in this embodiment are utilized to contain a different material. It is of course within the scope of the present invention to utilize a single vessel or a greater number of vessels on a single platform. Also, any number of vessels may be coupled to a single nozzle by utilizing T-connectors and additional valves.
  • an abrasive material is placed in either or both of the vessels l and 14 by removing lids 11 and 15, respectively.
  • Any type of fine abrasive powder may be utilized; for example, aluminum oxide, glass shot, sand, sapphire dust, or similar material may be placed within these vessels.
  • the vessels should be filled such that the level of material placed within the vessel is below the upper end of the tubes 18 and 20 as is illustrated in the drawings. After an abrasive material is placed within the vessel, the lids are tightened onto the vessels to seal the vessels.
  • the nozzles 52 and 53 may be held manually in the proximity of a workpiece and the stream of gas containing the abrasive material when contacting the workpiece cuts, polishes, or removes materials, depending on the type of abrasive used and the hardness of the workpiece.
  • Different types of abrasives may be placed within vessels and 14 so that the apparatus may be utilized to perform different functions; for example, an abrasive adaptable for cutting may be placed within vessel 10 and an abrasive adaptable for polishing may be placed within vessel 14.
  • switch 61 which will alternately allow gas applied to line 37 to flow either into vessel 10 or vessel 14, and cause either material 24 or material 25 to be delivered to the nozzles.
  • the rate at which the gas flows through the apparatus and hence, the rate at which the abrasive material within the vessels is delivered to a nozzle, may be readily controlled by knob 39 of regulator 38.
  • the apparatus is particularly useful in dental laboratories for such applications as the manufacturing of dental restorations where there is a requirement to remove, cut, or polish hard materials such as ceramic, steel, copper, brass, gold platinum, glass and similar materials.
  • Some typical applications to which the apparatus may be utilized in the dental industry are carving porcelain, rolling fossa, removing porcelain, removing surface oxide and polishing.
  • a pneumatic abrasive cutting apparatus comprising:
  • a check valve interconnecting said lower end of said vessel and said source of gas such that gas may flow into said vessel
  • a tube mounted in said vessel from said upper end of said vessel to said lower end of said vessel, said tube having at least one orifice disposed through its wall; and a nozzle, coupled to the end of said tube disposed at said lower end of said vessel;
  • a pneumatic abrasive cutting apparatus comprising:
  • first and second closed vessel each having a lower end and an upper end for containing an abrasive, both mounted on said platform;
  • regulator means for regulating the flow of gas from said source of gas, connected to said source;
  • a first check valve connected to the lower end of said first vessel, for allowing gas to flow into said vessel;
  • a second check valve connected to the lower end of said second vessel, for allowing gas to flow into said vessel;
  • a first tube mounted in said first vessel from said upper end of said vessel to said lower end of said vessel, said tube having at least one orifice disposed through its wall;
  • a second tube mounted in said second vessel from said upper end of said vessel to said lower end of said vessel, said tube having at least one orifice disposed through its wall;
  • control means for selectively opening and closing said first and second valve
  • a first nozzle coupled to the end of said first tube disposed at said lower end of said first vessel;
  • a second nozzle coupled to the end of said second tube disposed at said lower end of said second vessel;
  • a vibrator coupled to said platform for vibrating the contents of said first and second vessels
  • the pneumatic abrasive cutting apparatus defined in claim 6 including a foot control for allowing gas to flow from said vessels to said nozzles.
  • a pneumatic cutting apparatus utilizing a source of gas under pressure to force an abrasive from a closed container, the improvement comprising:
  • a check valve interconnecting said source of gas with the bottom of said container, adaptable for allowing gas to flow into said container;
  • a tube disposed from the upper end of said container to the lower end of said container, said tube having at least one orifice disposed through its wall, near the bottom of said container;

Abstract

An apparatus which utilizes a stream of gas to propel fine particles which is particularly useful in the manufacturing of dental restorations for functions such as cutting, cleaning and polishing, is disclosed. An abrasive powder is forced from a container by a stream of gas which first passes through the powder. The gas, after passing through the powder, flows through a tube disposed in the powder and then to a nozzle. An orifice disposed through the wall of the tube provides an even and continuous injection of powder into the stream of gas.

Description

Inventor Appl. No.
Filed Patented Assignee PNEUMATIC ABRASIVE CUTTING APPARATUS Jean 1. Greenstein Enelno, Calif.
Jan. 21, 1970 Jan. 4, 1972 Dental Gold Company Los Angeles, Calif.
9 Claims, 1 Drawing Fig.
US. Cl
Int.
Field of Search References Cited UNITED STATES PATENTS 554,300 2/1896 Parker 1,730,195 /1929 Davis 2,696,049 12/1954 Brack 51/8 X 2,729,917 1/1956 Gregory 51/8 2,797,530 7/1957 Garver 51/8 2,919,517 1/1960 Hestad et al. 51/8 3,053,016 9/1962 Johnston etal... 51/8 3,084,484 4/ 1963 Hall et al. 51/8 3,270,463 9/1966 Ashworth et al 51/8 Primary Examiner-Lester M. Swingle Attomey-Spensley and Horn ABSTRACT: An apparatus which utilizes a stream of gas to propel fine particles which is particularly useful in the manufacturing of dental restorations for functions such as cutting, cleaning and polishing, is disclosed. An abrasive powder is forced from a container by a stream of gas which first passes through the powder. The gas, after passing through the powder, flows through a tube disposed in the powder and then to a nozzle. An orifice disposed through the wall of the tube provides an even and continuous injection of powder into the stream of gas.
I i 29 6O 4 J 56 J 42 1 4o 47 v v 45 REG 45 5| 54 6A5 F007 CONTROL PATENTEDJAII 4:972
WWW
kil.
I 'IIIIIIIIII/IIIIIIIIIIA I f/IIIIIIIIIIIIIIIIIIII 41/,
'IIII'III IIIIIIIIIIIIIIIII,"
ll!IlllllIIIIIIIIIIIIIIIIII INVENTOR.
PNEUMATIC ABRASIVE CUTTING APPARATUS BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to the field of pneumatic abrasive devices, particularly those utilized in the dental field.
2. Prior Art Numerous devices have been disclosed in the prior art which utilize a stream of gas to propel an abrasive powder. These types of devices have been used in dentistry for polishing, cleaning and cutting dental restorations. One such device is disclosed in U. S. L. Pat. No. 3,084,484.
One of the principal problems with the prior art devices is that they do not provide a continuous, constant flow of powder. Typically, these devices become clogged and do not provide an even flow of powder in the stream of gas.
SUMMARY OF THE INVENTION A pneumatic apparatus which utilizes a continuous stream of gas to propel fine particles is described. The fine particles which are typically an abrasive powder are forced from a container or vessel by the stream of gas. A tube which is coupled to a nozzle is disposed in the powder such that its upper end is above the level of powder in the vessel. An orifice is disposed through the wall of the tube near the bottom of the vessel. A stream of gas is injected into the lower end of the vessel through a check valve; this gas flows through the powder in the vessel and then into the upper end of the tube. As the gas flows through the tube, it causes powder in the vessel to be drawn into the stream of gas and to be subsequently delivered to the nozzle. The vessel is mounted on a platform and subjected to vibrations which agitate the powder in the vessel and assist in preventing the device from becoming clogged.
BRIEF DESCRIPTION OF THE DRAWING The drawing illustrates in schematic form a pneumatic abrasive dental apparatus wherein the apparatus utilizes two vessels which are both illustrated in a cross-sectional view.
DETAILED DESCRIPTION OF THE INVENTION Referring to the drawing, an abrasive powder or the like is stored containers or vessels and 14 and is pneumatically pumped to nozzles 53 and 52, respectively. The vessels 10 and 14 may be ordinary metal vessels which are adaptable for sealingly containing a powderlike substance. Lid 11 threadingly engages vessel 10. An O-ring 12 which is disposed about an upper edge of vessel 10, between the vessel and lid, assures that the vessel is sealed and adaptable for being slightly pressurized. Likewise, vessel 14 has a lid 15 which threadingly engages vessel 14 and sealingly engages vessel 14 by means of O-ring 16. While in the drawing, both vessels 10 and 14 are illustrated as generally cylindrical members, they may in fact have any shape provided that they have an upper and lower end in which the tubes 18 and 20 may be disposed.
Vessel 10 contains a cylindrical tube 18 which is disposed from the upper end of the vessel to the lower end of the vessel. A small orifice 21 is disposed through the wall of tube 18, near the bottom of vessel I0, thus allowing material 24 to flow from the interior of the vessel to the interior of tube 18. While in the present embodiment only a single orifice 21 is illustrated, a plurality of orifices may be utilized. Likewise, a tube 20 is disposed from the upper end of vessel 14 to the lower end of that vessel, and an orifice 23 is disposed through the wall of tube 20 near the lower end of vessel 14. The vessels I0 and I4 and the tubes 18 and 20 may be ordinary metal parts manufactured utilizing commonly known techniques. The tubes 18 and 20 in the presently preferred embodiment of the invention have an inside diameter of approximately one-eighth inch.
The lower end of tube I8 is coupled to flexible tube 48 via line 46; the lower end of tube 20 is coupled to flexible tube 49 through line 47. The tubes 48 and 49 are coupled to nozzles 52 and 53, respectively. The nozzles 52 and 53 may be any commonly known nozzle adaptable for handling a stream of gas containing a fine powder. A handpiece 50 is coupled to nozzle 52 in order that that nozzle may be readily manually utilized. Likewise, a handpiece 51 is coupled to nozzle 53. The lines 46 and 47, flexible lines 48 and 49, andthe nozzles 52 and 53 may be ordinary parts, which are commercially availa ble.
A pinch valve 60 is disposed across both lines 48 and 49 and prevents the passage of gas through these lines, unless the valve is actuated, by pinching the flexible lines. Valve 60 may be an electrically or pneumatically operated valve or valves similar to valves 42 and 40 and may be used in place of valve 60.
Line 37 is coupled to a source of gas under pressure. The source of gas may be any one of numerous commercially available gas sources such as those produced by a pump or hose which are provided from a storage tank. The gas which is provided to line 37 under pressure may be carbon dioxide, nitrogen or similar inert gases. Air may also be utilized in the present application. The gas applied to line 37 should be dry and substantially free of moisture. In the presently preferred embodiment, gas at a pressure of -90 p.s.i. has been found to be satisfactory for the operation of the apparatus. Regulator 38 which is coupled to line 37, may be any ordinary regulator adaptable for regulating and adjusting the flow of gas. The gas flowing through regulator 38 is adjustable by means of knob 39. The output from regulator 38 is coupled to T-coupler 54 and the output from coupler 54 is coupled to valves 40 and 42. Valves 40 and 42 may be ordinary valves which selectively allow or prevent the passage of gas. In the preferred embodiment of the present invention, valves 40 and 42 are electrically operated valves.
Switch 61, an ordinary electrical switch, is coupled to valve 42 by lead 43 and to valve 40 by lead 41. Switch 61 provides a means for selectively opening either valve 40 or 42 and hence allowing gas to flow into either vessel 10 or I4, as indicated by the left (L) and right (R) position on switch 61.
The output from valve 42 is coupled to the lower end of a vessel 14 via line 55 and check valve 36. The output from valve 40 is coupled to the lower end of vessel 10 via line 56 and check valve 34. Check valves 34 and 36 may be ordinary check valves which allow a stream of gas to pass in only one direction. Valves 34 and 36 allow gas from valves 40 and 42, respectively, to flow into vessels 10 and 14, respectively, but prevent gas or other materials from flowing out of the vessels into lines 55 and 56. Valves 34, 36, 40 and 42, lines 55 and 56, T-coupler 54, and regulator 38 may be ordinary parts which are commercially available.
Foot control 45 which is coupled to valve 60 via line 62 and provides a means for opening pinch valve 60, may be an ordinary foot control commonly known in the prior art. In the presently preferred embodiment, valve 60 is a pneumatically operated valve and is actuated with gas from line 37; foot control 45 provides a means for controlling the flow of gas to valve 60.
Vessels l0 and 14 are rigidly coupled to platform 26 and platform 26 is coupled to base 29 via springs 30. Thus, platform 26 is able to vibrate relative to the base 29. A vibrating means 32 is coupled to platform 26 and is adaptable for vibrating platform 26, thus causing the contents within vessels 10 and 14 to be agitated. Vibrating means 32 may be a commercially available electrically operated vibrator or may be a pneumatically operated vibration means which is operated from the source of gas under pressure supplied to line 37.
While in the presently preferred embodiment of the present invention only a single regulator means 38 is illustrated coupled to line 37, it is within the scope of the present invention to utilize two regulator means. For example, one regulator means could be coupled into line 55 and the other into line 56. This would allow the gas flowing into each of the vessels l0 and 14 to have a separate flow control.
In the presently preferred embodiment, two vessels 10 and 14 are utilized. Each of these vessels in this embodiment are utilized to contain a different material. It is of course within the scope of the present invention to utilize a single vessel or a greater number of vessels on a single platform. Also, any number of vessels may be coupled to a single nozzle by utilizing T-connectors and additional valves.
In order to utilize the disclosed apparatus, an abrasive material is placed in either or both of the vessels l and 14 by removing lids 11 and 15, respectively. Any type of fine abrasive powder may be utilized; for example, aluminum oxide, glass shot, sand, sapphire dust, or similar material may be placed within these vessels. The vessels should be filled such that the level of material placed within the vessel is below the upper end of the tubes 18 and 20 as is illustrated in the drawings. After an abrasive material is placed within the vessel, the lids are tightened onto the vessels to seal the vessels.
Assume that a source of gas has been applied to line 37 and that valve 40 is opened and also that foot control 45 is depressed, opening pinch valve 60, gas will flow through line 56 and check valve 34 into material 24 illustrated within vessel 10. The gas flows through the material 24, causing the material to be somewhat loosened and agitated, and then flows into tube 18 as is illustrated by flow lines 57. This occurs since the ambient pressure at nozzle 53 is less than the pressure of the gas applied to vessel 10. As the gas flows downward in tube 18, it causes material 24 to be drawn into orifice 21 and injected into the stream of gas. It has been found that by utilizing a tube such as tube 18, and an orifice 21, and by passing the gas through the material 24 before it enters the upper end of the tube 18, a continuous and even flow of material 24 is injected into the stream of gas. Additionally, the vibrator 32 which is operated during this time, causing the materials 24 and 25 in vessels l0 and 14, respectively, to vibrate, assists the flow of the materials 24 and 25 into the stream of gas.
To utilize the apparatus, the nozzles 52 and 53 may be held manually in the proximity of a workpiece and the stream of gas containing the abrasive material when contacting the workpiece cuts, polishes, or removes materials, depending on the type of abrasive used and the hardness of the workpiece. Different types of abrasives may be placed within vessels and 14 so that the apparatus may be utilized to perform different functions; for example, an abrasive adaptable for cutting may be placed within vessel 10 and an abrasive adaptable for polishing may be placed within vessel 14. The selection of the material placed within the vessels 10 or 14 is of course made by switch 61 which will alternately allow gas applied to line 37 to flow either into vessel 10 or vessel 14, and cause either material 24 or material 25 to be delivered to the nozzles. The rate at which the gas flows through the apparatus and hence, the rate at which the abrasive material within the vessels is delivered to a nozzle, may be readily controlled by knob 39 of regulator 38.
The apparatus is particularly useful in dental laboratories for such applications as the manufacturing of dental restorations where there is a requirement to remove, cut, or polish hard materials such as ceramic, steel, copper, brass, gold platinum, glass and similar materials. Some typical applications to which the apparatus may be utilized in the dental industry are carving porcelain, rolling fossa, removing porcelain, removing surface oxide and polishing.
lclaim:
l. A pneumatic abrasive cutting apparatus comprising:
a closed vessel having a lower end and an upper end,
adaptable for containing an abrasive;
a source of gas under pressure;
a check valve interconnecting said lower end of said vessel and said source of gas such that gas may flow into said vessel;
a tube mounted in said vessel from said upper end of said vessel to said lower end of said vessel, said tube having at least one orifice disposed through its wall; and a nozzle, coupled to the end of said tube disposed at said lower end of said vessel;
whereby abrasive from said vessel is drawn into said orifice by the fiow of gas through said tube and is delivered to said nozzle under pressure.
2. The pneumatic abrasive cutting apparatus defined in claim 1 wherein said orifice is disposed through the wall of said tube near the lower end of said vessel.
3. The pneumatic abrasive cutting apparatus defined in claim 2 wherein a regulator, to regulate the flow of gas, is interconnected between said source of gas and said check valve.
4. The pneumatic abrasive cutting apparatus defined in claim 3 wherein said vessel is connected to vibration means, for vibrating an abrasive in said vessel.
5. The pneumatic abrasive cutting apparatus defined in claim 4 wherein said vessel contains a manually removable top which sealingly engages said vessel to allow said vessel to be readily loaded with abrasive.
6. A pneumatic abrasive cutting apparatus comprising:
a base;
a platform movably coupled to said base;
a first and second closed vessel, each having a lower end and an upper end for containing an abrasive, both mounted on said platform;
a source of gas under pressure;
regulator means, for regulating the flow of gas from said source of gas, connected to said source;
a first check valve connected to the lower end of said first vessel, for allowing gas to flow into said vessel;
a second check valve connected to the lower end of said second vessel, for allowing gas to flow into said vessel;
a first tube mounted in said first vessel from said upper end of said vessel to said lower end of said vessel, said tube having at least one orifice disposed through its wall;
a second tube mounted in said second vessel from said upper end of said vessel to said lower end of said vessel, said tube having at least one orifice disposed through its wall;
a first valve interconnecting said regulator with said first check valve;
a second valve interconnecting said regulator with said second check valve;
control means for selectively opening and closing said first and second valve;
a first nozzle, coupled to the end of said first tube disposed at said lower end of said first vessel;
a second nozzle, coupled to the end of said second tube disposed at said lower end of said second vessel; and,
a vibrator, coupled to said platform for vibrating the contents of said first and second vessels;
whereby material from said first and second vessels may be selectively delivered to said first and second nozzles.
7. The pneumatic abrasive cutting apparatus defined in claim 6 including a foot control for allowing gas to flow from said vessels to said nozzles.
8. The pneumatic abrasive cutting apparatus defined in claim 6 wherein said orifice in said first and second tubes is disposed near the bottom of said first and second vessels.
9. In a pneumatic cutting apparatus utilizing a source of gas under pressure to force an abrasive from a closed container, the improvement comprising:
a check valve interconnecting said source of gas with the bottom of said container, adaptable for allowing gas to flow into said container; and
a tube disposed from the upper end of said container to the lower end of said container, said tube having at least one orifice disposed through its wall, near the bottom of said container;
whereby a line coupled to said lower end of said tube receives a flow of gas containing said abrasive.

Claims (9)

1. A pneumatic abrasive cutting apparatus comprising: a closed vessel having a lower end and an upper end, adaptable for containing an abrasive; a source of gas under pressure; a check valve interconnecting said lower end of said vessel and said source of gas such that gas may flow into said vessel; a tube mounted in said vessel from said upper end of said vessel to said lower end of said vessel, said tube having at least one orifice disposed through its wall; and a nozzle, coupled to the end of said tube disposed at said lower end of said vessel; whereby abrasive from said vessel is drawn into said orifice by the flow of gas through said tube and is delivered to said nozzle under pressure.
2. The pneumatic abrasive cutting apparatus defined in claim 1 wherein said orifice is disposed through the wall of said tube near the lower end of said vessel.
3. The pneumatic abrasive cutting apparatus defined in claim 2 wherein a regulator, to regulate the flow of gas, is interconnected between said source of gas and said check valve.
4. The pneumatic abrasive cutting apparatus defined in claim 3 wherein said vessel is connected to vibration means, for vibrating an abrasive in said vessel.
5. The pneumatic abrasive cutting apparatus defined in claim 4 wherein said vessel contains a manually removable top which sealingly engages said vessel to allow said vessel to be readily loaded with abrasive.
6. A pneumatic abrasive cutting apparatus comprising: a base; a platform movably coupled to said base; a first and second closed vessel, each having a lower end and an upper end for containing an abrasive, both mounted on said platform; a source of gas under pressure; regulator means, for regulating the flow of gas from said source of gas, connected to said source; a first check valve connected to the lower end of said first vessel, for allowing gas to flow into said vessel; a second check valve connected to the lower end of said second vessel, for allowing gas to flow into said vessel; a first tube mounted in said first vessel from said upper end of said vessel to said lower end of said vessel, said tube having at least one orifice disposed through its wall; a second tube mounted in said second vessel from said upper end of said vessel to said lower end of said vessel, said tube having at least one orifice disposed through its wall; a first valve interconnecting said regulator with said first check valve; a second valve interconnecting said regulator with said second check valve; control means for selectively opening and closing said first and second valve; a first nozzle, coupled to the end of said first tube disposed at said lower end of said first vessel; a second nozzle, coupled to the end of said second tube disposed at said lower end of said second vessel; and, a vibrator, coupled to said platform for vibrating the contents of saId first and second vessels; whereby material from said first and second vessels may be selectively delivered to said first and second nozzles.
7. The pneumatic abrasive cutting apparatus defined in claim 6 including a foot control for allowing gas to flow from said vessels to said nozzles.
8. The pneumatic abrasive cutting apparatus defined in claim 6 wherein said orifice in said first and second tubes is disposed near the bottom of said first and second vessels.
9. In a pneumatic cutting apparatus utilizing a source of gas under pressure to force an abrasive from a closed container, the improvement comprising: a check valve interconnecting said source of gas with the bottom of said container, adaptable for allowing gas to flow into said container; and a tube disposed from the upper end of said container to the lower end of said container, said tube having at least one orifice disposed through its wall, near the bottom of said container; whereby a line coupled to said lower end of said tube receives a flow of gas containing said abrasive.
US4533A 1970-01-21 1970-01-21 Pneumatic abrasive cutting apparatus Expired - Lifetime US3631631A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US453370A 1970-01-21 1970-01-21

Publications (1)

Publication Number Publication Date
US3631631A true US3631631A (en) 1972-01-04

Family

ID=21711250

Family Applications (1)

Application Number Title Priority Date Filing Date
US4533A Expired - Lifetime US3631631A (en) 1970-01-21 1970-01-21 Pneumatic abrasive cutting apparatus

Country Status (1)

Country Link
US (1) US3631631A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815286A (en) * 1971-11-01 1974-06-11 Futurecraft Corp Ind Pneumatic abrasive cutting apparatus
US3858360A (en) * 1971-11-01 1975-01-07 Futurecraft Corp Pneumatic abrasive cutting apparatus
US4482322A (en) * 1982-04-01 1984-11-13 Siemens Aktiengesellschaft Device for surface treatment of teeth
US4610113A (en) * 1983-12-08 1986-09-09 Fagerroos Mauno O Dry cleaning box
US4951428A (en) * 1988-09-27 1990-08-28 Conjet Ab Device for working at a hard material
US4976073A (en) * 1987-10-30 1990-12-11 Renfert Gmbh & Co. Method and apparatus for moving a granulate material in a dental practice situation
US5239787A (en) * 1988-10-04 1993-08-31 Stripping Technologies Inc. Foot control for an abrasive blast system
US5295333A (en) * 1991-07-11 1994-03-22 Kaltenbach & Voigt Gmbh & Co. Machining device for machining precision workpieces in a chamber
EP0612585A1 (en) * 1993-02-26 1994-08-31 Eikichi Yamaharu Abrasive blasting apparatus and die finishing apparatus using the same
EP0639957A1 (en) * 1991-12-06 1995-03-01 American Dental Laser, Inc. Dental air abrasive system
EP0706858A1 (en) * 1994-04-22 1996-04-17 Rich Hill, Inc. Blasting machine
WO1997006924A1 (en) * 1995-08-21 1997-02-27 Reuben Hertz Device for delivery of particulate matter
US5718581A (en) * 1995-05-09 1998-02-17 Danville Manufacturing, Inc. Air abrasive particle apparatus
WO1998053954A1 (en) * 1997-05-30 1998-12-03 Danville Engineering, Inc. Gas abrasive particle apparatus and valving therefor
US6004191A (en) * 1995-08-21 1999-12-21 Simplex Medical Systems, Inc. Particulate matter delivery device
US6030212A (en) * 1996-09-27 2000-02-29 Dentsply Research & Development Corp. Stacking reservoir and scaler system
WO2001049455A1 (en) * 2000-01-04 2001-07-12 Smlx Technologies, Inc. Universal improved particulate matter delivery device
US6293856B1 (en) 2001-03-20 2001-09-25 Reuben Hertz Disposable, multi-conduit particulate matter propelling apparatus
US6354924B1 (en) * 1999-07-26 2002-03-12 John E. Trafton Particulate matter delivery device commercial unit
US6627248B1 (en) 2000-11-10 2003-09-30 Jeneric/Pentron Incorporated Metallization of ceramic restorations
US20040020945A1 (en) * 2002-07-31 2004-02-05 Ix Research Ltd. Mixing apparatus
US20040137825A1 (en) * 1995-08-21 2004-07-15 Reuben Hertz Method using handheld apparatus for delivery of particulate matter
US7101265B1 (en) * 1995-08-21 2006-09-05 Red Mountain, Inc. Universal improved particulate matter delivery device
US20080233540A1 (en) * 2007-03-19 2008-09-25 Olivier Olmo Powder blast tool, powder reservoir, insert for powder reservoir and method of dental treatment
US20090317759A1 (en) * 2006-06-13 2009-12-24 Boaz Barry Groman Micro-Abrasive Blasting Device for Dental Applications and Methods
US20100086893A1 (en) * 2006-06-13 2010-04-08 Boaz Barry Groman Powder Blasting Device, Method and System for Dental Applications
US7731570B2 (en) 2005-03-10 2010-06-08 Boaz Barry Groman Micro-abrasive blasting devices with perturbation control
US9050156B2 (en) 2005-03-10 2015-06-09 Boaz Barry Groman Sealing particulate matter in a micro-abrasive blasting device
WO2019087225A1 (en) * 2017-11-06 2019-05-09 Ibix S.R.L. Portable apparatus for cleaning surfaces

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US554300A (en) * 1896-02-11 parker
US1730195A (en) * 1928-06-29 1929-10-01 Sterling F Thompson Sand-blast device
US2696049A (en) * 1949-02-24 1954-12-07 Robert B Black Method of and apparatus for cutting tooth structure by means of an abrasive-laden stream of gas
US2729917A (en) * 1953-06-30 1956-01-10 William C Gregory Cleaning apparatus
US2797530A (en) * 1954-08-17 1957-07-02 Pangborn Corp Sluriator
US2919517A (en) * 1958-09-15 1960-01-05 Bendix Aviat Corp Peening apparatus
US3053016A (en) * 1960-11-17 1962-09-11 Sylvania Electric Prod Pneumatic abrasive cutting tool
US3084484A (en) * 1960-11-17 1963-04-09 Sylvania Electric Prod Pneumatic abrasive cutting apparatus
US3270463A (en) * 1962-10-16 1966-09-06 Abrasive Dev Blasting machines

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US554300A (en) * 1896-02-11 parker
US1730195A (en) * 1928-06-29 1929-10-01 Sterling F Thompson Sand-blast device
US2696049A (en) * 1949-02-24 1954-12-07 Robert B Black Method of and apparatus for cutting tooth structure by means of an abrasive-laden stream of gas
US2729917A (en) * 1953-06-30 1956-01-10 William C Gregory Cleaning apparatus
US2797530A (en) * 1954-08-17 1957-07-02 Pangborn Corp Sluriator
US2919517A (en) * 1958-09-15 1960-01-05 Bendix Aviat Corp Peening apparatus
US3053016A (en) * 1960-11-17 1962-09-11 Sylvania Electric Prod Pneumatic abrasive cutting tool
US3084484A (en) * 1960-11-17 1963-04-09 Sylvania Electric Prod Pneumatic abrasive cutting apparatus
US3270463A (en) * 1962-10-16 1966-09-06 Abrasive Dev Blasting machines

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858360A (en) * 1971-11-01 1975-01-07 Futurecraft Corp Pneumatic abrasive cutting apparatus
US3815286A (en) * 1971-11-01 1974-06-11 Futurecraft Corp Ind Pneumatic abrasive cutting apparatus
US4482322A (en) * 1982-04-01 1984-11-13 Siemens Aktiengesellschaft Device for surface treatment of teeth
US4610113A (en) * 1983-12-08 1986-09-09 Fagerroos Mauno O Dry cleaning box
US4976073A (en) * 1987-10-30 1990-12-11 Renfert Gmbh & Co. Method and apparatus for moving a granulate material in a dental practice situation
US4951428A (en) * 1988-09-27 1990-08-28 Conjet Ab Device for working at a hard material
US5239787A (en) * 1988-10-04 1993-08-31 Stripping Technologies Inc. Foot control for an abrasive blast system
US5295333A (en) * 1991-07-11 1994-03-22 Kaltenbach & Voigt Gmbh & Co. Machining device for machining precision workpieces in a chamber
EP0639957A4 (en) * 1991-12-06 1995-08-09 American Dental Laser Inc Dental air abrasive system.
EP0639957A1 (en) * 1991-12-06 1995-03-01 American Dental Laser, Inc. Dental air abrasive system
EP0612585A1 (en) * 1993-02-26 1994-08-31 Eikichi Yamaharu Abrasive blasting apparatus and die finishing apparatus using the same
US5562531A (en) * 1993-02-26 1996-10-08 Yamaharu; Eikichi Abrasive brasting apparatus and die finishing apparatus using the same
EP0706858A1 (en) * 1994-04-22 1996-04-17 Rich Hill, Inc. Blasting machine
EP0706858A4 (en) * 1994-04-22 1997-01-29 Rich Hill Inc Blasting machine
US5984677A (en) * 1995-05-09 1999-11-16 Danville Engineering Air abrasive particle apparatus
US5718581A (en) * 1995-05-09 1998-02-17 Danville Manufacturing, Inc. Air abrasive particle apparatus
WO1997006924A1 (en) * 1995-08-21 1997-02-27 Reuben Hertz Device for delivery of particulate matter
US5839946A (en) * 1995-08-21 1998-11-24 Hertz; Reuben Handheld apparatus for propelling particulate matter against a surface of a patient's tooth, and method
US6004191A (en) * 1995-08-21 1999-12-21 Simplex Medical Systems, Inc. Particulate matter delivery device
US7101265B1 (en) * 1995-08-21 2006-09-05 Red Mountain, Inc. Universal improved particulate matter delivery device
US7226342B2 (en) 1995-08-21 2007-06-05 Reuben Hertz Handheld apparatus for delivery of particulate matter with directional flow control
US20040137825A1 (en) * 1995-08-21 2004-07-15 Reuben Hertz Method using handheld apparatus for delivery of particulate matter
US6951505B2 (en) 1995-08-21 2005-10-04 Reuben Hertz Method using handheld apparatus for delivery of particulate matter
US6030212A (en) * 1996-09-27 2000-02-29 Dentsply Research & Development Corp. Stacking reservoir and scaler system
US6293793B1 (en) 1996-09-27 2001-09-25 Dentsply Research & Development Corp. Stackable reservoir and scaler system
WO1998053954A1 (en) * 1997-05-30 1998-12-03 Danville Engineering, Inc. Gas abrasive particle apparatus and valving therefor
US6354924B1 (en) * 1999-07-26 2002-03-12 John E. Trafton Particulate matter delivery device commercial unit
WO2001049455A1 (en) * 2000-01-04 2001-07-12 Smlx Technologies, Inc. Universal improved particulate matter delivery device
US6627248B1 (en) 2000-11-10 2003-09-30 Jeneric/Pentron Incorporated Metallization of ceramic restorations
US6293856B1 (en) 2001-03-20 2001-09-25 Reuben Hertz Disposable, multi-conduit particulate matter propelling apparatus
US20040020945A1 (en) * 2002-07-31 2004-02-05 Ix Research Ltd. Mixing apparatus
US7731570B2 (en) 2005-03-10 2010-06-08 Boaz Barry Groman Micro-abrasive blasting devices with perturbation control
US9050156B2 (en) 2005-03-10 2015-06-09 Boaz Barry Groman Sealing particulate matter in a micro-abrasive blasting device
US8360826B2 (en) 2005-03-10 2013-01-29 Boaz Barry Groman Controlling powder delivery rate in air abrasive instruments
US20110207385A1 (en) * 2005-03-10 2011-08-25 Boaz Barry Groman Controlling Powder Delivery Rate in Air Abrasive Instruments
US8241094B2 (en) 2006-06-13 2012-08-14 Boaz Barry Groman Micro-abrasive blasting device for dental applications and methods
US20100086893A1 (en) * 2006-06-13 2010-04-08 Boaz Barry Groman Powder Blasting Device, Method and System for Dental Applications
US20090317759A1 (en) * 2006-06-13 2009-12-24 Boaz Barry Groman Micro-Abrasive Blasting Device for Dental Applications and Methods
US8529313B2 (en) 2006-06-13 2013-09-10 Boaz Barry Groman Powder blasting device, method and system for dental applications
US8632378B2 (en) 2006-06-13 2014-01-21 Boaz Barry Groman Micro-abrasive blasting device for dental applications and methods
US7980923B2 (en) * 2007-03-19 2011-07-19 Ferton Holding S.A. Powder blast tool, powder reservoir, insert for powder reservoir and method of dental treatment
JP2008229340A (en) * 2007-03-19 2008-10-02 Ferton Holding Sa Powder jet device, powder container, insert for powder container, and dental treatment method
JP2013150871A (en) * 2007-03-19 2013-08-08 Ferton Holding Sa Powder container, and insert for the powder container
US20080233540A1 (en) * 2007-03-19 2008-09-25 Olivier Olmo Powder blast tool, powder reservoir, insert for powder reservoir and method of dental treatment
WO2019087225A1 (en) * 2017-11-06 2019-05-09 Ibix S.R.L. Portable apparatus for cleaning surfaces
US11654530B2 (en) 2017-11-06 2023-05-23 Ibix S.R.L. Portable apparatus for cleaning surfaces

Similar Documents

Publication Publication Date Title
US3631631A (en) Pneumatic abrasive cutting apparatus
US2696049A (en) Method of and apparatus for cutting tooth structure by means of an abrasive-laden stream of gas
US5199229A (en) Sand blasting device
US3852918A (en) Gas-abrasive mixing and feeding device
US3270464A (en) Abrasive blasting apparatus
DE68905901T2 (en) DEVICE FOR DISPENSING THE CONTENT OF PRESSURIZED CONTAINERS.
US3942561A (en) Apparatus for filling containers with difficultly-flowable material
US4893440A (en) Abrasive jet machining
US4733503A (en) Abrasive jet machining
US3570716A (en) Fluidizer and dispenser
US3626841A (en) Abrasive propellent apparatus
US5283991A (en) Sandblasting method and a moist-sand blasting apparatus
US3815286A (en) Pneumatic abrasive cutting apparatus
GB1072354A (en) Apparatus for packaging dry divided solid materials
US4678119A (en) Abrasive slurry supply system for use in metallographic sample preparation
GB1232034A (en)
US4445809A (en) Apparatus for emptying containers filled with powder
GB1003609A (en) Apparatus for cleaning hands and arms
US2188066A (en) Apparatus for injecting foam stabilizing solutions
WO1995022432A1 (en) Blasting device with adjustable blast strength
US2652662A (en) Blast cleaning
US2766558A (en) Apparatus for mixing an abrasive powder with a gaseous carrier under pressure
CA1213144A (en) Apparatus for feeding particulate materials
GB1384842A (en) Electrochemical machining apparatus
GB2145389A (en) Apparatus for feeding particulate materials