US3638074A - Fluxgate magnetometer drive circuit including a sensor demagnetizer - Google Patents

Fluxgate magnetometer drive circuit including a sensor demagnetizer Download PDF

Info

Publication number
US3638074A
US3638074A US31918A US3638074DA US3638074A US 3638074 A US3638074 A US 3638074A US 31918 A US31918 A US 31918A US 3638074D A US3638074D A US 3638074DA US 3638074 A US3638074 A US 3638074A
Authority
US
United States
Prior art keywords
fluxgate
drive
sensor
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US31918A
Inventor
George T Inouye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Space and Mission Systems Corp
Original Assignee
TRW Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRW Inc filed Critical TRW Inc
Application granted granted Critical
Publication of US3638074A publication Critical patent/US3638074A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle

Definitions

  • ABSTRACT A drive circuit for a fluxgate magnetometer including a demagnetizing system for the fluxgate sensor.
  • the drive circuit is arranged to minimize the second harmonic frequency of the drive frequency in the drive signal to reduce interference with the signal output from the magnetometer at the second harmonic frequency.
  • the circuit draws current only half the time to conserve powerand consequently reduce the weight of the power source.
  • the drive voltage is derived from a crystal oscillator having a frequency four times that of the desired frequency and which is connected to the drive circuit through a pair of series connected divide-by-two flip-flops to develop a square wave. Demagnetization is achieved by momentarily increasing the current in the fluxgate sensor and then allowing it to decay back exponentially to a lower value.
  • This invention relates to fluxgate magnetometer drive circuits which may, for example, be used in magnetometers of I the type described in a book entitled,,Methods and Techniques in Geophysics, edited by S. K. Runcorn and published in I960 by IntersciencePublishers Inc. of New York. Reference is particularly made to pages I39 through. I47 of this book and more generally wall of the article entitled, Measurement of the Geomagnetic ElementS by K. Whitham; beginnin'g on page I04. Both the field of invention and the relevant prior art are well set forth therein.
  • the objective of the fluxgate magnetometer drive circuit is to generate a sinusoidal current'of approximately 80 milliam'peres peak to peak in the drive'coil of the fluxgate sensor.
  • the drive frequency maybe I l kilocycles and the waveform should not contain any second harmonic components since this is the signal frequency in the output of the magnetometer which contains the information as to the magnitude and direction of the magnetic field being measured. The manner in which this second harmonic'component of the output signal is analyzed for such measurement is clearly set forth in the above-noted text.
  • One. problem associated with a fluxgate sensor is that it may acquire a perm" or an offset bias of unpredictablemagnitude of the order of several gamma on exposure to fields on the ground having a magnitude of oneor'twogauss.
  • a solution to the perm problem is to obtain a measure of this offset, and then subtract it from the fluxgate reading.
  • Another approach to the perm or offset problem is to demagnetize the fluxgate sensor to eliminate the perm.
  • the object to be demagnetized is subjected to an alternating magnetic field having an envelope which decreases from a large value to zero at a rate which is much slower than the alternating field.
  • the peak amplitude of the envelope should be larger than the field which originally magnetized the object.
  • the ambient magnetic field should be cancelled out.
  • the high-permeability cores are already subject to a large oscillating field of several tens of gauss at the sensor drive frequency. If the field were increased and then reduced to zero to cause demagnetization, the fluxgate sensor would be inoperable during the period of reduced field.
  • the drive -waveform is derived from a divide-by-two flip-flop which is driven by a 22-kilocycle waveform.
  • a 44-kilocycle crystal oscillator is normally used as the primary frequency source to eliminate frequency variations which would cause undesired phase shifts within theinstrument.
  • a 22-kilocycle reference vide-by-two flip-flop is an I l-kilocycle signal which is applied to the drive circuit of the magnetometer sensor.
  • the second harmonic output of the sensor provides the other input for the synchronous detector- Normally, the drive circuit operates as a push-pull Class B amplifier with an input which is a push-pull square wave-and with an output transformer'tuned to I l kc.
  • the secondary of the transformer matches the sensor drive coil.
  • both the 22 kilocycle and the l lkilocycle square wave signals are combined and are applied to the drive circuit'in a manner described below such that current is drawn only one-half of the time, thereby conserving on the power consumption of the instrument.
  • the current in the sensor is momentarily increased, which in turn increases the field of the sensor.
  • the increased filed magnetometer allowed to decay exponentially back to its previous level. The increase in the field and its subsequent decrease causes sufficient-demagnetization of the sensor for most purposes.
  • FIG. 1 there is shown a block diagram of a typical fluxgate magnetometer as described in greaterdetail in the above-referenced book by Runcorn.
  • the magnetometer includes a sensor 10 which is a magnetizable core which is driven in and out of saturation by a driver 11.
  • the peaks detected in the output voltage from sensor 10 will be uniform.
  • the peaks vary in a manner which is well understood in the art and which is measured by applying the output voltage through an output amplifier 12 to one input of a synchronous detector circuit 13.
  • the other input to synchronous detector 13 is derived from a crystal oscillator 14 through a divide-by-two flip-flop 15 which has its output connected to the second input of synchronous detector 13 and also through a second divide-bytwo flip-flop 16 to driver circuit 11.
  • the flip-flop 16 develops a square wave which is impressed on driver circuit 11. Such a square wave has only odd harmonies, and hence, minimizes the second harmonic frequency of the drive frequency.
  • output of synchronous detector 13 is a DC voltage which affords a measure of the ambient field sensed by the core of sensor l0.
  • the magnetometer also includes a fluxgate sensor demagnetizer 17.
  • a fluxgate sensor demagnetizer 17 When a pushbutton 124 is depressed, the current in sensor 10 is increased momentarily by approximately 50 percent. The increased current is then allowed to decay exponentially to its previous value. The increase in current momentarily increases the envelope of the magnetic field surrounding sensor 10. The envelope decreases as the current decays back to the value prior toincrease. The decreasing magnetic field envelope demagnetizes sensor 10, thus reducing'the'efiect of ambient magnetic fields.
  • crystal oscillator 14 is tuned to a 44-kilocycle frequency so that the output of first flip-flop 15 is at 22 kc. It is this 22-kilocycle voltage which is applied to one side of synchronous detector 13 and also to the second dividing flip-flop 16.
  • the output of flip-flop 16 is an l l-kilocycle voltage whichis applied through driver circuit 11 to sensor 10.
  • the fundamental frequency at which sensor 10 is driven alternatively in and out of saturation is l l kc.
  • the information with respect to the ambient magnetic field is contained in the second harmonic of this fundamental frequency to which amplifier 12 is tuned. This second harmonic is, of course, 22 kc. which is the operating frequency of synchronous detector 13.
  • driver circuit 11 In FIG. 2 there is shown a detailed circuit diagram of driver circuit 11 and demagnetizingcircuit 17.
  • Driver 11 consists of a pair of transistors 110 and 111 which may be of the NPN-type as shown and which are connected to operate as a push-pull Class B amplifier with the primary winding 112 of an output transformer driver, and tuned to the l l-kilocycle fundamental drive frequency. Tuning may readily be achieved by capacitor 113.
  • This output transformer is connected through a matching network to match impedances to the drive coil of the fluxgate sensor 10.
  • Drive circuit 11 may be energized by a battery having its negative terminal grounded and its positive terminal, V connected to the midpoint of the primary winding 112 via a resistor 123.
  • a capacitor 122 is connected from the midpoint of primary 112 to ground.
  • the push-pull-connected transistor amplifiers 110-111 are driven through respective gate circuits 114 and 115 which have output resistors 116 and 117 connected from the gate output to the base of transistors 110 and 111, respectively.
  • the gate circuits 114 and 115 may be any logical AND gate circuit, many types of which are well known in the art.
  • the inputs to driver circuit 11 are derived over input lines 120 and 121.
  • line 120 carries the ll-kilocycle output of flip-flop 16
  • line 121 carries the 22-kilocycle output of flip-flop 15.
  • Line 120 is connected directly to one input of first AND-gate 114 and is connected through an inverter amplifier 119 to one input of second AND-gate 115.
  • the 22-kilocycle voltage on input line 121 is connected through a 90 phase shifter 118 and thence to the second inputof each of AND-gate circuits 1 14 and 115. The effect of this type of connection is illustrated graphically in the waveforms of FIG. 3.
  • FIG. 3 there is shown a graph in which volts on the vertical axis are plotted as a function of time on the horizontal axis for various waveforms in the circuit of FIG. 2, each of which has its own separate zero level as indicated on the voltage axis.
  • the 1 l-kilocycle voltage applied to input line 120 is first depicted.
  • the next waveform is the inverted l l-kilocycle voltage which is derived as the output of inverter 119.
  • the 22-kilocycle voltage which is derived as the output from the phase shifter or delay network 118, which is preferably used to introduce a small delay such as 90 in the voltage applied over input line 121 in order to avoid exact coincidence of the leading edges of the ll and 22-kilocycle inputs applied to AND- gate circuits 114 and 115.
  • the next waveform represents the output of AND-gate 114, which is applied to the base of driver 110, and the lower waveform represents the output of AND-gate 115 which is applied to the base of driver 1 l.
  • Demagnetizing circuit 17 is part of the energizing circuit for driver 11.
  • a pushbutton 124 is shunted across resistor 123. Voltage V., which supplies driver circuit 16, likewise controls the current flowing in fluxgate sensor 10. Resistor 123 reduces voltage v, and the current flowing in fluxgate sensor 10 to a desired level. When pushbutton 124 is momentarily depressed, the current flowing in fluxgate sensor 10 is increased. The increased current enlarges the magnetic field envelope surrounding sensor 10 as shown in FIG. 4. The increased current in sensor 10 then decays back to the desired level exponentially.
  • the fluxgate sensor 10 is wound with 0.0035-inch diameter wire, which would create a field of 141 oersted per ampere if wound in a single large solenoid.
  • the solenoid creating the field around the sensor inside the fiuxtank also permed the fiuxtank itself to the extent of 10 gamma as measured by the sensor after it was demagnetized.
  • the net sensor perm was about :tl gamma for a 1100,000-gamma exposure, and doubled to :2 gamma for a 1200,000-gamma exposure.
  • a second test performed was to decrease the peak-demagnetizing current from 0.16 ampere until the effectiveness was degraded for the Z-gauss magnetization. About 0.l0ampere was found to be the minimum current required.
  • the offset thus has a broad peak of 4 gamma for perming fields between 5,000 and l0,000 gamma.
  • driver circuit 11 Since the peak power needed to cause demagnetization is only momentarily needed, power dissipation in driver circuit 11 is inconsequential. However, transistors and 111 and the other components of the driver should be designed to withstand the increased voltages to prevent breakdown.
  • the 22-kilocycle voltage is in effect used to gate a portion of both the original and the inverted l l-kilocycle signal so that the push-pull arrangement is driven during only half of the total time duration of these respective signals. Since each excursion of the 22-kilocycle square wave has a width or time duration only half that of the l l-kilocycle signal, it follows that this must necessarily be so by virtue of .the operation of the AND gates in the circuit shown. Thus, in this manner, the 22-kilocycle and the ll-kilocycle square wave signals are combined so that current is drawn only one-half of the time, thereby conserving on the power consumption of the instrument.
  • An improvement for a fluxgate magnetometer as claimed in claim 1 wherein the means for momentarily increasing the drive current flowing in the fluxgate sensor and for allowing it to decay back exponentially to the value prior -to increase comprises:
  • pushbutton means shorting said resistor to increase the drive current flowing in the fluxgate sensor whenever said pushbutton is depressed.
  • a fluxgate magnetometer drive circuit comprising:
  • push-pull power amplifier means connected to apply a drive signal to the drive coil of the sensor of said magnetometer
  • means for demagnetizing said fluxgate sensor including;
  • first and second gate circuit means connected to control said push-pull amplifier; first control means to apply a signal of the fundamental drive frequency of said sensor to a first of said gate circuits and means to apply a signal of the same frequency but inverted phase to a second of said gate circuits; and second control means to apply to each of said gate circuits a control signal to alternately open and close said gate circuits at a frequency which is an even harmonic of said fundamental drive frequency.
  • a fluxgate magnetometer drive circuit as claimed in claim 3 wherein said means for momentarily increasing the drive current flowing in the fluxgate sensor and for allowing it to decay back exponentially to the value prior to increase comprises:
  • said push-pull power amplifier means comprises a pair of transistors connected to form said amplifier; said outputs of said first and second gate circuit means are connected to the base electrodes of said transistors; and said gate circuits each comprise logical AND gates.
  • said first control means comprises a crystal controlled oscillator stabilized at a frequency which is a harmonic of said fundamental drive frequency and the output from which is applied through at least one divide-by-two flip-flop in order to derive said signal of said fundamental drive frequency which is applied to said gate circuits; and said second control means comprises circuitry to apply a signal of one of said harmonic frequencies generated by said first control means through phase shifting means to control each of said gate circuit means to permit applica- UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent NO, 3,638,07zj Date-d January 25, 1972 Inventor(s) George -Y It is certified that error appears in the above-identified patent and thatsaid Letters Patent are hereby' corrected asshown below:

Abstract

A drive circuit for a fluxgate magnetometer including a demagnetizing system for the fluxgate sensor. The drive circuit is arranged to minimize the second harmonic frequency of the drive frequency in the drive signal to reduce interference with the signal output from the magnetometer at the second harmonic frequency. The circuit draws current only half the time to conserve power and consequently reduce the weight of the power source. The drive voltage is derived from a crystal oscillator having a frequency four times that of the desired frequency and which is connected to the drive circuit through a pair of series connected divide-by-two flip-flops to develop a square wave. Demagnetization is achieved by momentarily increasing the current in the fluxgate sensor and then allowing it to decay back exponentially to a lower value.

Description

United States Patent Inouye [4 1 Jan. 25,1972
[72] Inventor: George T. lnouye, Palos Verdes Peninsula,
Calif.
TRW Inc., Redondo Beach, Calif.
Apr. 27, 1970 [73] Assignee: 22] Filed:
21 Appl. No.: 31,918
Related 0.8. Application Data [63] Continuation-impart of Ser. No. 700,396, Feb. 25,
1968, Pat. No. 3,509,424.
[52] U.S. Cl. ..3l7/l48.5, 3 17/1575, 324/43 R, 307/270 [51] Int. Cl ..l ..G01r 33/02, H01fl3/00 58] Field of Search...
[56] References Cited UNITED STATES PATENTS 3,509,424 4/1970 lnouye ..3l7/l48.5
.... ..3l7/l48.5, 157.5; 324/43 R v 3,093,774 6/1963 Christianson et al. ..3l7/l57.5
Primary ExaminerLee T. Hix
AttorneyDaniel T. Anderson, Harry I. Jacobs and Edwin A. Oser 5 7] ABSTRACT A drive circuit for a fluxgate magnetometer including a demagnetizing system for the fluxgate sensor. The drive circuit is arranged to minimize the second harmonic frequency of the drive frequency in the drive signal to reduce interference with the signal output from the magnetometer at the second harmonic frequency. The circuit draws current only half the time to conserve powerand consequently reduce the weight of the power source. The drive voltage is derived from a crystal oscillator having a frequency four times that of the desired frequency and which is connected to the drive circuit through a pair of series connected divide-by-two flip-flops to develop a square wave. Demagnetization is achieved by momentarily increasing the current in the fluxgate sensor and then allowing it to decay back exponentially to a lower value.
6 Claims, 4 Drawing Figures rwxerr: urrcums I NETWORK SENSOR he I .1
I l I FLUXGATE MAGNETOMETER DRIVE cnicurr INCLUDING A SENSORDEMAGNETIZER CROSS-REFERENCES TO RELATED APPLICATIONS This is a continuation-in-part' of application Ser. No.
700,396, filedJan. 25 1968 which will issue as US Pat. No.-
This invention relates to fluxgate magnetometer drive circuits which may, for example, be used in magnetometers of I the type described in a book entitled,,Methods and Techniques in Geophysics, edited by S. K. Runcorn and published in I960 by IntersciencePublishers Inc. of New York. Reference is particularly made to pages I39 through. I47 of this book and more generally wall of the article entitled, Measurement of the Geomagnetic ElementS by K. Whitham; beginnin'g on page I04. Both the field of invention and the relevant prior art are well set forth therein.
Ina particular application the objective of the fluxgate magnetometer drive circuit is to generate a sinusoidal current'of approximately 80 milliam'peres peak to peak in the drive'coil of the fluxgate sensor. Typically, the drive frequency maybe I l kilocycles and the waveform should not contain any second harmonic components since this is the signal frequency in the output of the magnetometer which contains the information as to the magnitude and direction of the magnetic field being measured. The manner in which this second harmonic'component of the output signal is analyzed for such measurement is clearly set forth in the above-noted text.
One. problem associated with a fluxgate sensor is that it may acquire a perm" or an offset bias of unpredictablemagnitude of the order of several gamma on exposure to fields on the ground having a magnitude of oneor'twogauss.
A solution to the perm problem is to obtain a measure of this offset, and then subtract it from the fluxgate reading.
Several experimenters have added mechanical devices to their fluxgate sensors to periodically mechanically reverse the orientation of the sensors by 180". This reversal permits extraction of the offset by averaging the fluxgate readings-before and after reversal. Mechanical reversers', however, add unnecessary weight and complexity to the magnetometer.
Another approach to the perm or offset problem is to demagnetize the fluxgate sensor to eliminate the perm. In the normal demagnetization process such as is used for demagnetizing magnetic tapes, watches or spacecraft, the object to be demagnetized is subjected to an alternating magnetic field having an envelope which decreases from a large value to zero at a rate which is much slower than the alternating field. The peak amplitude of the envelope should be larger than the field which originally magnetized the object. The ambient magnetic field should be cancelled out.
In the case of the fluxgate magnetometer, the high-permeability cores are already subject to a large oscillating field of several tens of gauss at the sensor drive frequency. If the field were increased and then reduced to zero to cause demagnetization, the fluxgate sensor would be inoperable during the period of reduced field.
It is desirable, therefore, to have a means for demagnetizing the fluxgate sensor without rendering it inoperable during the period of demagnetization. It has been found that if the magnetic field is increased momentarily, and then allowed to decay back to the previous level, fluxgate sensor demagnetization will occur without an interruption in the operation of the fluxgate sensor.
SUMMARY ing its operation.
In order to minimize the second harmonic content, the drive -waveform is derived from a divide-by-two flip-flop which is driven by a 22-kilocycle waveform. A 44-kilocycle crystal oscillator is normally used as the primary frequency source to eliminate frequency variations which would cause undesired phase shifts within theinstrument. A 22-kilocycle reference vide-by-two flip-flop is an I l-kilocycle signal which is applied to the drive circuit of the magnetometer sensor. The second harmonic output of the sensor provides the other input for the synchronous detector- Normally, the drive circuit operates as a push-pull Class B amplifier with an input which is a push-pull square wave-and with an output transformer'tuned to I l kc. The secondary of the transformer matches the sensor drive coil. In the present circuit, both the 22 kilocycle and the l lkilocycle square wave signals are combined and are applied to the drive circuit'in a manner described below such that current is drawn only one-half of the time, thereby conserving on the power consumption of the instrument.
To cause demagnetization of the fluxgate sensor, the current in the sensor is momentarily increased, which in turn increases the field of the sensor. The increased filed magnetometer allowed to decay exponentially back to its previous level. The increase in the field and its subsequent decrease causes sufficient-demagnetization of the sensor for most purposes.
BRIEF DESCRIPTION OF THE DRAWINGS DESCRIPTION OF THE PREFERRED EMBODIMENTS Turning to FIG. 1, there is shown a block diagram of a typical fluxgate magnetometer as described in greaterdetail in the above-referenced book by Runcorn. The magnetometer includes a sensor 10 which is a magnetizable core which is driven in and out of saturation by a driver 11. In the absence of any component of ambient magnetic field, the peaks detected in the output voltage from sensor 10 will be uniform. In the presence of a magnetic field, the peaks vary in a manner which is well understood in the art and which is measured by applying the output voltage through an output amplifier 12 to one input of a synchronous detector circuit 13.
The other input to synchronous detector 13 is derived from a crystal oscillator 14 through a divide-by-two flip-flop 15 which has its output connected to the second input of synchronous detector 13 and also through a second divide-bytwo flip-flop 16 to driver circuit 11. The flip-flop 16 develops a square wave which is impressed on driver circuit 11. Such a square wave has only odd harmonies, and hence, minimizes the second harmonic frequency of the drive frequency. The
output of synchronous detector 13 is a DC voltage which affords a measure of the ambient field sensed by the core of sensor l0.
The magnetometer also includes a fluxgate sensor demagnetizer 17. When a pushbutton 124 is depressed, the current in sensor 10 is increased momentarily by approximately 50 percent. The increased current is then allowed to decay exponentially to its previous value. The increase in current momentarily increases the envelope of the magnetic field surrounding sensor 10. The envelope decreases as the current decays back to the value prior toincrease. The decreasing magnetic field envelope demagnetizes sensor 10, thus reducing'the'efiect of ambient magnetic fields.
In the example shown, it will be noted that crystal oscillator 14 is tuned to a 44-kilocycle frequency so that the output of first flip-flop 15 is at 22 kc. It is this 22-kilocycle voltage which is applied to one side of synchronous detector 13 and also to the second dividing flip-flop 16. The output of flip-flop 16 is an l l-kilocycle voltage whichis applied through driver circuit 11 to sensor 10. Thus, the fundamental frequency at which sensor 10 is driven alternatively in and out of saturation is l l kc. As has been noted above, the information with respect to the ambient magnetic field is contained in the second harmonic of this fundamental frequency to which amplifier 12 is tuned. This second harmonic is, of course, 22 kc. which is the operating frequency of synchronous detector 13.
In FIG. 2 there is shown a detailed circuit diagram of driver circuit 11 and demagnetizingcircuit 17. Driver 11, it will be seen, consists of a pair of transistors 110 and 111 which may be of the NPN-type as shown and which are connected to operate as a push-pull Class B amplifier with the primary winding 112 of an output transformer driver, and tuned to the l l-kilocycle fundamental drive frequency. Tuning may readily be achieved by capacitor 113. This output transformer is connected through a matching network to match impedances to the drive coil of the fluxgate sensor 10.
Drive circuit 11 may be energized by a battery having its negative terminal grounded and its positive terminal, V connected to the midpoint of the primary winding 112 via a resistor 123. A capacitor 122 is connected from the midpoint of primary 112 to ground.
The push-pull-connected transistor amplifiers 110-111 are driven through respective gate circuits 114 and 115 which have output resistors 116 and 117 connected from the gate output to the base of transistors 110 and 111, respectively. The gate circuits 114 and 115 may be any logical AND gate circuit, many types of which are well known in the art.
The inputs to driver circuit 11 (which is shown enclosed in the dash line block in FIG. 2) are derived over input lines 120 and 121. As can be seen by comparing FIGS. 1 and 2, line 120 carries the ll-kilocycle output of flip-flop 16, whereas line 121 carries the 22-kilocycle output of flip-flop 15. Line 120 is connected directly to one input of first AND-gate 114 and is connected through an inverter amplifier 119 to one input of second AND-gate 115. The 22-kilocycle voltage on input line 121 is connected through a 90 phase shifter 118 and thence to the second inputof each of AND-gate circuits 1 14 and 115. The effect of this type of connection is illustrated graphically in the waveforms of FIG. 3.
In FIG. 3, there is shown a graph in which volts on the vertical axis are plotted as a function of time on the horizontal axis for various waveforms in the circuit of FIG. 2, each of which has its own separate zero level as indicated on the voltage axis. Starting at the upper waveform in FIG. 3, the 1 l-kilocycle voltage applied to input line 120 is first depicted. The next waveform is the inverted l l-kilocycle voltage which is derived as the output of inverter 119. Next there is shown the 22-kilocycle voltage which is derived as the output from the phase shifter or delay network 118, which is preferably used to introduce a small delay such as 90 in the voltage applied over input line 121 in order to avoid exact coincidence of the leading edges of the ll and 22-kilocycle inputs applied to AND- gate circuits 114 and 115. Finally, the next waveform represents the output of AND-gate 114, which is applied to the base of driver 110, and the lower waveform represents the output of AND-gate 115 which is applied to the base of driver 1 l.
Demagnetizing circuit 17 is part of the energizing circuit for driver 11. A pushbutton 124 is shunted across resistor 123. Voltage V.,, which supplies driver circuit 16, likewise controls the current flowing in fluxgate sensor 10. Resistor 123 reduces voltage v, and the current flowing in fluxgate sensor 10 to a desired level. When pushbutton 124 is momentarily depressed, the current flowing in fluxgate sensor 10 is increased. The increased current enlarges the magnetic field envelope surrounding sensor 10 as shown in FIG. 4. The increased current in sensor 10 then decays back to the desired level exponentially.
Assume the fluxgate sensor 10 is wound with 0.0035-inch diameter wire, which would create a field of 141 oersted per ampere if wound in a single large solenoid. In a first test performed to measure the offset caused by exposure to high fields, the solenoid creating the field around the sensor inside the fiuxtank also permed the fiuxtank itself to the extent of 10 gamma as measured by the sensor after it was demagnetized. The net sensor perm was about :tl gamma for a 1100,000-gamma exposure, and doubled to :2 gamma for a 1200,000-gamma exposure.
A second test performed was to decrease the peak-demagnetizing current from 0.16 ampere until the effectiveness was degraded for the Z-gauss magnetization. About 0.l0ampere was found to be the minimum current required.
A third test measured the effect of a fixed field created by the fiuxtank solenoid while degaussing with a 0.l2-ampere peak current. The results were as follows:
The offset thus has a broad peak of 4 gamma for perming fields between 5,000 and l0,000 gamma.
The results of these tests show it is possible to demagnetize the fluxgate sensor in the magnetic field environment in which it is making measurements, and still be sufficiently effective to reduce any offset to less than a few tenths of a percent of the ambient field. This order of accuracy is sufficient for the uses to which magnetometers are put. The fact that the magnetometer can make measurements while the sensor is undergoing demagnetization is a decided advantage.
Since the peak power needed to cause demagnetization is only momentarily needed, power dissipation in driver circuit 11 is inconsequential. However, transistors and 111 and the other components of the driver should be designed to withstand the increased voltages to prevent breakdown.
It will be noted that the 22-kilocycle voltage is in effect used to gate a portion of both the original and the inverted l l-kilocycle signal so that the push-pull arrangement is driven during only half of the total time duration of these respective signals. Since each excursion of the 22-kilocycle square wave has a width or time duration only half that of the l l-kilocycle signal, it follows that this must necessarily be so by virtue of .the operation of the AND gates in the circuit shown. Thus, in this manner, the 22-kilocycle and the ll-kilocycle square wave signals are combined so that current is drawn only one-half of the time, thereby conserving on the power consumption of the instrument.
The fact that current is drawn only half of the time is an obvious advantage. Furthermore, the power dissipated in the driver transistors is small because the collectors are shorted to the emitters when current is being drawn. Because they are used in a switching mode, the tolerances on the transistor parameters are relaxed. Since the drive circuit power consumption is a major portion of the power required in the total instrument, this saving is a great advantage for airborne instruments where weight considerations place a limit on available power.
It is possible to combine the 44-kilocycle drive in addition to the 22- and ll-kilocycle drive signals to thereby further reduce the power consumption by drawing current only during one-fourth of the ll-kilocycle signal waveform. Such an extension is by straightforward analogy to that illustrated herein. Since the 22-kilocycle and 44-kilocycle signals are al- 'means for demagnetizing said fluxgate sensor including:
means for momentarily increasing the drive current flowing in said fluxgate sensor and for allowing said increased current to decay back exponentially to the value prior to increase; so that I said fluxgate is demagnetized without interrupting its ability to make measurements.
2. An improvement for a fluxgate magnetometer as claimed in claim 1 wherein the means for momentarily increasing the drive current flowing in the fluxgate sensor and for allowing it to decay back exponentially to the value prior -to increase comprises:
a load resistor in series with the current supply to the fluxgate sensor; and
pushbutton means shorting said resistor to increase the drive current flowing in the fluxgate sensor whenever said pushbutton is depressed.
3. A fluxgate magnetometer drive circuit comprising:
push-pull power amplifier means connected to apply a drive signal to the drive coil of the sensor of said magnetometer;
means for demagnetizing said fluxgate sensor including;
means for momentarily increasing the drive current flowing in said fluxgate sensor and for allowing said increased current to decay back exponentially to the value prior to increase, so that 1 said fluxgate is demagnetized without interrupting its ability to make measurements; first and second gate circuit means connected to control said push-pull amplifier; first control means to apply a signal of the fundamental drive frequency of said sensor to a first of said gate circuits and means to apply a signal of the same frequency but inverted phase to a second of said gate circuits; and second control means to apply to each of said gate circuits a control signal to alternately open and close said gate circuits at a frequency which is an even harmonic of said fundamental drive frequency.
4. A fluxgate magnetometer drive circuit as claimed in claim 3 wherein said means for momentarily increasing the drive current flowing in the fluxgate sensor and for allowing it to decay back exponentially to the value prior to increase comprises:
a load resistor in series with the current supply to the fluxgate sensor; and
pushbutton'means shorting said resistor to increase the drive current flowing in the fluxgate sensor whenever said pushbutton is depressed. 5. A fluxgate magnetometer drive circuit as claimed in claim 3 wherein:
said push-pull power amplifier means comprises a pair of transistors connected to form said amplifier; said outputs of said first and second gate circuit means are connected to the base electrodes of said transistors; and said gate circuits each comprise logical AND gates. 6. A fluxgate magnetometer drive circuit as claimed in claim 3 wherein:
said first control means comprises a crystal controlled oscillator stabilized at a frequency which is a harmonic of said fundamental drive frequency and the output from which is applied through at least one divide-by-two flip-flop in order to derive said signal of said fundamental drive frequency which is applied to said gate circuits; and said second control means comprises circuitry to apply a signal of one of said harmonic frequencies generated by said first control means through phase shifting means to control each of said gate circuit means to permit applica- UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent NO, 3,638,07zj Date-d January 25, 1972 Inventor(s) George -Y It is certified that error appears in the above-identified patent and thatsaid Letters Patent are hereby' corrected asshown below:
Column 2, line 24, the" sentence should read v The increased field is allowed to decayexponentially back to its previous level.
Column 4, lines 20 through 30 should read;
Perming field (Y) Offset (Y) 300 I 41 600 1 1,000 T 2,000 3,000 5,000 7,000 9,000 11,000
Signed and sealed this 29th day of August 1972.
(SEAL) Attest:
EDWARD MJ LETGHERJR. ROBERT G-OT'ISCHALK Attesting Officer a Commissionerof Patents FORM PO-1050 (10-69) USCOMM-DC 6O376-P69 U45, GOVERNMENT PRINTING OFFICE 1 I959 o-ass-asn UNITED STATES PATENT ()FFICE CERTIFICATE 0F (JQRRECTlON Patent No. 3 I 638 1 Dated nuary 25 1972 Inventor(s) George T. Inouye It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, line 24, the" sentence should read The increased field is allowed to decay exponentially back to its previous level.
Column 4, lines 20 through 30 should read:
Perming field (Y) Offset (W 300 (.1 600 1 1,000 2,000 3,000 5 000 7,000 9 000 11, 000 21,000 40 000 80,000 110,000
HNNUOvhnkrh-ubbdbdh) Signed and sealed this 29th day of August 1972.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT G-OTTSCHALK Attesting Officer Commissioner of Patents FORM PO-1050 (10-69) USCOMM-DC 60376-P69 w u.s, GOVERNMENT PRINTING OFFICE: I969 o-3ss-334

Claims (6)

1. In a fluxgate magnetometer of the type wherein the sensor is driven by a fixed oscillator, the improvement comprising means for demagnetizing said fluxgate sensor including: means for momentarily increasing the drive current flowing in said fluxgate sensor and for allowing said increased current to decay back exponentially to the value prior to increase; so that said fluxgate is demagnetized without interrupting its ability to make measurements.
2. An improvement for a fluxgate magnetometer as claimed in claim 1 wherein the means for momentarily increasing the drive current flowing in the fluxgate sensor and for allowing it to decay back exponentially to the value prior to increase comprises: a load resistor in series with the current supply to the fluxgate sensor; and pushbutton means shorting said resistor to increase the drive current flowing in the fluxgate sensor whenever said pushbutton is depressed.
3. A fluxgate magnetometer drive circuit comprising: push-pull power amplifier means connected to apply a drive signal to the drive coil of the sensor of said magnetometer; means for demagnetizing said fluxgate sensor including; means for momentarily increasing the drive current flowing in said fluxgate sensor and for allowing said increased current to decay back exponentially to the value prior to increase, so that said fluxgate is demagnetized without interrupting its ability to mAke measurements; first and second gate circuit means connected to control said push-pull amplifier; first control means to apply a signal of the fundamental drive frequency of said sensor to a first of said gate circuits and means to apply a signal of the same frequency but inverted phase to a second of said gate circuits; and second control means to apply to each of said gate circuits a control signal to alternately open and close said gate circuits at a frequency which is an even harmonic of said fundamental drive frequency.
4. A fluxgate magnetometer drive circuit as claimed in claim 3 wherein said means for momentarily increasing the drive current flowing in the fluxgate sensor and for allowing it to decay back exponentially to the value prior to increase comprises: a load resistor in series with the current supply to the fluxgate sensor; and pushbutton means shorting said resistor to increase the drive current flowing in the fluxgate sensor whenever said pushbutton is depressed.
5. A fluxgate magnetometer drive circuit as claimed in claim 3 wherein: said push-pull power amplifier means comprises a pair of transistors connected to form said amplifier; said outputs of said first and second gate circuit means are connected to the base electrodes of said transistors; and said gate circuits each comprise logical AND gates.
6. A fluxgate magnetometer drive circuit as claimed in claim 3 wherein: said first control means comprises a crystal controlled oscillator stabilized at a frequency which is a harmonic of said fundamental drive frequency and the output from which is applied through at least one divide-by-two flip-flop in order to derive said signal of said fundamental drive frequency which is applied to said gate circuits; and said second control means comprises circuitry to apply a signal of one of said harmonic frequencies generated by said first control means through phase shifting means to control each of said gate circuit means to permit application of said signal of said fundamental drive frequency through said gate means only during a fraction of the time duration of said fundamental frequency signal.
US31918A 1970-04-27 1970-04-27 Fluxgate magnetometer drive circuit including a sensor demagnetizer Expired - Lifetime US3638074A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3191870A 1970-04-27 1970-04-27

Publications (1)

Publication Number Publication Date
US3638074A true US3638074A (en) 1972-01-25

Family

ID=21862102

Family Applications (1)

Application Number Title Priority Date Filing Date
US31918A Expired - Lifetime US3638074A (en) 1970-04-27 1970-04-27 Fluxgate magnetometer drive circuit including a sensor demagnetizer

Country Status (1)

Country Link
US (1) US3638074A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946287A (en) * 1974-02-25 1976-03-23 The Globe Tool And Engineering Company Solenoid operated fluid valves
US4384313A (en) * 1980-02-16 1983-05-17 Erich Steingroever Process for demagnetizing components by alternating magnetic fields of varying intensity
US4485342A (en) * 1982-07-27 1984-11-27 General Electric Company Load driving circuitry with load current sensing
US4621299A (en) * 1982-11-05 1986-11-04 General Kinetics Inc. High energy degausser
US4633361A (en) * 1984-10-01 1986-12-30 Walker Magnetics Group, Inc. Chuck control for a workpiece holding electromagnet
US4748408A (en) * 1984-10-01 1988-05-31 Hitachi Metals, Ltd. Method and apparatus for providing direction-indicative output signals to the integrating amplifier of a device for detecting magnetic direction
US5592133A (en) * 1993-04-30 1997-01-07 Fujitsu Limited Build-out network for a built-in type balanced line driver circuit
US5798902A (en) * 1996-10-11 1998-08-25 Lucent Technologies Inc. Linearity signal coupler
US6268725B1 (en) 1998-04-29 2001-07-31 Medtronic, Inc. Flux-gate magnetometer with drive signal for reducing effects of electromagnetic interference
WO2003007008A1 (en) * 2001-07-10 2003-01-23 Totalförsvarets Forskningsinstitut A method of estimating target signals by a dynamical fluxgate sensor
WO2004013645A1 (en) * 2002-08-01 2004-02-12 Sentron Ag Magnetic field sensor and method for operating said magnetic field sensor
US20070170916A1 (en) * 2006-01-26 2007-07-26 Commissariat A L'energie Atomique Pulsed excitation and sampled detection fluxgate type magnetometer
US20130170264A1 (en) * 2010-07-27 2013-07-04 Georgia Tech Research Corporation Systems And Methods For Providing AC/DC Boost Converters For Energy Harvesting
WO2015155326A1 (en) 2014-04-11 2015-10-15 Neelogy Magnetic field transducer with quadrature excitation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093774A (en) * 1959-06-22 1963-06-11 Charles L Christianson Microwave ferrite-rotator degaussing system
US3509424A (en) * 1968-01-25 1970-04-28 Trw Inc Fluxgate magnetometer drive circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093774A (en) * 1959-06-22 1963-06-11 Charles L Christianson Microwave ferrite-rotator degaussing system
US3509424A (en) * 1968-01-25 1970-04-28 Trw Inc Fluxgate magnetometer drive circuit

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946287A (en) * 1974-02-25 1976-03-23 The Globe Tool And Engineering Company Solenoid operated fluid valves
US4384313A (en) * 1980-02-16 1983-05-17 Erich Steingroever Process for demagnetizing components by alternating magnetic fields of varying intensity
US4485342A (en) * 1982-07-27 1984-11-27 General Electric Company Load driving circuitry with load current sensing
US4621299A (en) * 1982-11-05 1986-11-04 General Kinetics Inc. High energy degausser
US4633361A (en) * 1984-10-01 1986-12-30 Walker Magnetics Group, Inc. Chuck control for a workpiece holding electromagnet
US4748408A (en) * 1984-10-01 1988-05-31 Hitachi Metals, Ltd. Method and apparatus for providing direction-indicative output signals to the integrating amplifier of a device for detecting magnetic direction
US5592133A (en) * 1993-04-30 1997-01-07 Fujitsu Limited Build-out network for a built-in type balanced line driver circuit
US5793262A (en) * 1993-04-30 1998-08-11 Fujitsu Limited Build-out network for a built-in type balanced line driver circuit
US5798902A (en) * 1996-10-11 1998-08-25 Lucent Technologies Inc. Linearity signal coupler
US6268725B1 (en) 1998-04-29 2001-07-31 Medtronic, Inc. Flux-gate magnetometer with drive signal for reducing effects of electromagnetic interference
WO2003007008A1 (en) * 2001-07-10 2003-01-23 Totalförsvarets Forskningsinstitut A method of estimating target signals by a dynamical fluxgate sensor
US20040183531A1 (en) * 2001-07-10 2004-09-23 Robinson John W.C. Method of estimating target signals by a dynamical fluxgate sensor
US7009392B2 (en) 2001-07-10 2006-03-07 Totalforsvarets Forskningsinstitut Method of estimating target signals by a dynamical fluxgate sensor
WO2004013645A1 (en) * 2002-08-01 2004-02-12 Sentron Ag Magnetic field sensor and method for operating said magnetic field sensor
US20060164080A1 (en) * 2002-08-01 2006-07-27 Sentron Ag Magnetic field sensor and method for operating the magnetic field sensor
US7259556B2 (en) 2002-08-01 2007-08-21 Melexis Technologies Sa Magnetic field sensor and method for operating the magnetic field sensor
US20070170916A1 (en) * 2006-01-26 2007-07-26 Commissariat A L'energie Atomique Pulsed excitation and sampled detection fluxgate type magnetometer
FR2896593A1 (en) * 2006-01-26 2007-07-27 Commissariat Energie Atomique MAGNETOMETER OF FLUXGATE TYPE WITH PULSE EXCITATION AND SAMPLE DETECTION
US7378843B2 (en) 2006-01-26 2008-05-27 Commissariat A L'energie Atomique Pulsed excitation and sampled detection fluxgate type magnetometer
EP1813953A3 (en) * 2006-01-26 2009-09-02 Commissariat A L'energie Atomique Fluxgate magnetometer with pulsed excitation and sampled detection
US20130170264A1 (en) * 2010-07-27 2013-07-04 Georgia Tech Research Corporation Systems And Methods For Providing AC/DC Boost Converters For Energy Harvesting
US8953349B2 (en) * 2010-07-27 2015-02-10 Georgia Tech Research Corporation Systems and methods for providing AC/DC boost converters for energy harvesting
WO2015155326A1 (en) 2014-04-11 2015-10-15 Neelogy Magnetic field transducer with quadrature excitation

Similar Documents

Publication Publication Date Title
US3638074A (en) Fluxgate magnetometer drive circuit including a sensor demagnetizer
GB797941A (en) Apparatus for the storage of digital information
JPH02108206A (en) Spurious suppressing method and device
Marshall An analytic model for the fluxgate magnetometer
US2958074A (en) Magnetic core storage systems
US3568052A (en) Time interval magnetometer
US2855464A (en) Electromagnetic head
GB795057A (en) Digital data storage apparatus for methods employing the spin-echo technique
US3427534A (en) Device for measuring the magnitudes of unidirectional magnetic fiels
US3509424A (en) Fluxgate magnetometer drive circuit
GB798021A (en) Digital data storage apparatus and methods employing the spin echo technique
Friedlaender Flux reversal in magnetic amplifier cores
US2854586A (en) Magnetic amplifier circuit
GB1000454A (en) Improvements in unidirectional magnetic field detecting apparatus
GB829637A (en) Improvements in or relating to magnetic data storage systems
SU832502A1 (en) Method of device measuring magnetic field
Greer Characterization of the Magnetic Second-Harmonic Analog Memory
GB1087980A (en) Improvements in and relating to magnetic fluid measuring devices
US3016465A (en) Coincidence detectors
US2820151A (en) Parallel magnetic complementers
GB1033097A (en) Data store arrangements
US3458693A (en) Magnetic analog multiplication element
SU587493A1 (en) Flux-sensitive magnetic head
JPS5525874A (en) Magnetic recording reproducer
SU611164A1 (en) Method of measuring magnetic field induction