Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.


  1. Búsqueda avanzada de patentes
Número de publicaciónUS3641373 A
Tipo de publicaciónConcesión
Fecha de publicación8 Feb 1972
Fecha de presentación2 Oct 1969
Fecha de prioridad8 Oct 1968
También publicado comoDE1948659A1, US3769531
Número de publicaciónUS 3641373 A, US 3641373A, US-A-3641373, US3641373 A, US3641373A
InventoresElkuch Franz
Cesionario originalProctor Ets
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Electrostatic system for generating periodical mechanical vibrations
US 3641373 A
The present invention concerns means for generating periodical mechanical vibrations by means of electric energy, and deals with a greatly simplified and efficacious swing system, which produces mechanical vibratory movements, which system dispenses with any active elements or components except for an energy or current source or cell, the energy losses produced by ohmic resistances in the system being reduced to a minimum and resulting in a high degree of efficiency, reliability and accurate performance.
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

Q United States Patent [151 3,641,373

Elkuch Feb. 8, 1972 [54] ELECTROSTATIC SYSTEM FOR 2,606,222 8/1952 Clifford et al ..3l0/6 X GENERATING PERIODICAL 5/1958 Itiavey ..58/28 8 1965 schu in..- ..310/22 MECHANICAL VIBRATIONS 3,283,226 11/1966 Umpleb'y et al ..3 17/250 X 721 t: FranzElkuchShllbe,L' l 1 w c e FOREIGN PATENTS OR APPLICATIONS 73 Ass :Eta tProcorVad,L'htel 1 Stein mm 922,033 3/1963 Great Britain ..310/5 [22] Filed: Oct. 2, 1969 Primary Examinerl). F. Duggan [2!] Appl- No 863,056 Attorney-Leon M. Strauss [57] ABSTRACT [30] Foreign Application Data The present invention concerns means for generating periodi- Oct. 8, 1968 Switzerland ..l4948/68 cal mechanical vibrations by means of electric energy, and deals with a greatly simplified and efficacious swing system, I 52] 0.8. CI ..3l0/6, 58/23 which produces mechanical vibratory movements, which [51 Int. Cl. .1102]! 1/00 system dispenses with any active elements or components ex- [58] Field of Search ..310/5, 6, 21, 22, 25, 31, 32; cep't'for n energy or current source or cell, he energy losses 317/250; 318/1 16; 58/23, 23 TF, 23 MV, 28, 28 A, produced by ohmic resistances in the system being reduced to 29 a minimum and resulting in a high degree of efficiency, reliability and accurate performance. 56 R 1 CM l l e mm 1 Claims, 5 Drawing Figures UNITED STATES PATENTS 1,910,434 5/1933 Hayes ..58/29 45 f A; j

PATENTEDFEB 8 I972 3.641.873

NVENTO Q /VZ E 619 ELECTROSTATIC SYSTEM FOR GENERATING PERIODICAL MECHANICAL VIBRATIONS Two or more electrodes are arranged to constitute a mechanical oscillating or swinging arrangement of which at least one electrode is resiliently supported and is capable of flexing and swinging along a predetermined length of an oscillating course and direction toward and away from the other electrode or electrodes; a charge compensation in condenser fashion occurring when selected ones of said electrodes approach each other closely enough, within an electric field established between said electrodes. In the position of rest said electrodes are sufficiently remote or spaced from each other, but are aligned with their frontal faces confronting each other.

SUMMARY OF THE INVENTION The invention is applicable more generally to the operation and performance of clocks, watches and similar instruments requiring substantially no surveillance and nevertheless acting dependently and accurately for an extensive length of time.

It is therefore one of the important objects of the invention to provide means resulting in a highly economical and inexpensive vibratory drive system which can be easily adapted to the clockwork of timepieces and similar instruments preferably employable in the scientific field which require precision and exactitude for their operation.

It is another object of the present invention to provide means conducive to a compact and relatively sturdy device for transferring electric energy to a mechanical drive arrangement which includes vibratory motion release and distribution.

Yet a further object of the invention is directed to means affording convenient and continuous replacement or replenishment of energy losses to which said device or instrumentality is being subjected during operation.

These and other objects and features of the invention ensue from the following detailed specification, reference thereto being made in the attached drawings illustrating some preferred embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 shows a basic diagram of a device according to the invention employing two electrodes, one of which can be excited to perform mechanical vibrations.

FIG. 2 is another form or embodiment pursuant to the invention with two electrodes, both of which being excitable to carry out vibrations.

FIG. 3 is a similar embodiment equipped with three electrodes, two of which being movable.

FIG. 4 is still another form of the invention having incorporated three electrodes, of which only one is movable.

FIG. 5 shows schematically the application of the embodiment of FIG. 4 to a ratchet wheel drive.

DETAILED SPECIFICATION For achieving a structure capable of performing desired 7 vibrations a mass must be mounted in a resilient or springy manner and in a fashion that the mass can transmit its kinetic energy to a resiliently suspended or supported member, and after complete transmission or transfer of kinetic energy of the mass, the static energy stored in the resiliently suspended member is again completely transferred to the mass in the form of kinetic energy. To maintain the resultant vibration, it becomes further necessary to replace any inevitably resulting energy losses.

In FIG. 1 there is disclosed a device with an arrangement capable of executing vibratory motions for the drive of a clock or timepiece mechanism. On an elastic or resilient member or tongue 1 is fastened an electrode 2, which constitutes at the same time primarily the vibrating mass. The other end of the tongue I is rigidly connected with an insulating block 3. The electrode can swing back and forth in the direction of arrow 4, when it is excited or caused to do so. For this purpose a second electrode 5 is provided at a distance and location opposite the movable electrode 2, which is likewise fastened on said block 3 by means of a relatively heavier support or carrier 6.

Tongue I and carrier 6 are electric conductors, so that through connections 7 and 8 electric current can be supplied to the electrodes from a voltage source or energy cell (not shown) for the charging of these electrodes. Block 3 contains or consists of insulation material.

The two opposite electrodes 2 and 5 constitute or function as a condenser, the capacity of which depends on the size of the mutually opposite faces of the electrodes and the distance between them. This condenser charges across the connections 7 and 8, so that electrode 5 has a positive and electrode 2 a negative potential. By the action of the electric field between these two electrodes the latter are pulled and attracted toward each other, the movable electrode 2 being moved counter to the force of the elastic tongue 1 toward and up to electrode 5.

As soon as the electrodes closely approach or touch each other, as is indicated in broken lines (FIG. 2), the potential difference between these two electrodes is compensated and the electric field rapidly disappears. Electrode 2 is now exposed only to the action or force of the tensioned elastic tongue member 1 and hence can swing back, passing, owing to inertia, beyond its neutral or initial position to a second end position shown in broken lines (FIG. I).

The voltage source with which the electrodes are connected is high-ohmic, or has purposely been rendered high-ohmic by a preconnected or series ohmic resistance (not shown), in order that at the time of contact of the electrodes the short circuit current is limited and, on the other hand, the condenser constituted by the electrodes, after these latter two do no longer touch each other due to the return movement of the movable electrode, is charged again with delay. This internal resistance is so great that the condenser is charged to practically the full voltage of the energy supply source at the earliest after attainment of the central position of electrode 2.

In the selection of the active internal resistance it must be also taken into consideration that the capacityof this condenser may vary, whereby the charging time may likewise be varied.

In FIG. 2 another form of construction according to the invention is revealed in principle. It differs from the first embodiment only in the likewise resilient arrangement of the second electrode 5, which is fastened to an elastic tongue 1', so that the two electrodes 2 and 5 are able to execute mutually oppositely directed swinging movements, whereby they touch once in the course of each occurrence of vibration for the purpose of charge exchange, as is indicated in broken lines. Also these electrodes are connectable to a high-ohmic voltage or like energy source (not shown).

In the embodiment of the invention according to FIG. 3, two electrodes 10 and l l, maintained at a distance by a web or bridge element 9, and electrically insulated from each other, are arranged at the freely vibrating end of a resilient tongue 12. These electrodes are connected for electric conduction via flexible conductors l3 and 14 with the terminals l5, 16 so that corresponding charges can be supplied to them from an energy cell or source (not shown).

Between these two movable electrodes 10 and 11, there is arranged a stationary or fixed third electrode 17 which is electrically insulated. Between the two outer electrodes 10 and 11 there exists a voltage difference, and when by a single external influence electrode 10, for example, has been brought into contact with the central electrode 17, the latter assumes the same polarity, and subsequently electrode 10 is repelled from and simultaneously electrode 11 is attracted by electrode I7, because the latter two carry opposite charges. These two forces acting in the same direction deflect tongue 12in the opposite direction until electrode 11 comes in contact with electrode 17, thereby causing a charge exchange and the aforementioned operation and phenomenon repeating itself in reverse direction.

In contrast to the two first-mentioned examples pursuant to the inventionas per FIG. 3 forces act on the vibrating mass in either direction of movement thereof, and during the brief contact of the electrodes 10, 17 and l1, 17 only a relative small compensating current flows, which is independent of the resistance of the circuit including electrode 10, conductor 13, terminal 15, voltage source, terminal 16, conductor 14 and electrode 11. The voltage source must simply replenish the electrons intermittently absorbed by electrode 17 from electrode 11, which it transfers to electrode 10. Therefore the efficiency of this device is extremely high and dependable.

FIG. 4 shows a variant of the embodiment of the invention of FIG. 3, in that the two outer electrodes 18 and 19 are fixedly attached or held in position and the central electrode 20 is fastened to the freely vibrating end of tongue 21 as indicated in FIG. 4 at 25, 26. Electrode 20. is electrically insulated from the remaining part 7 of the instrumentality, as shown. The operation of this structure of FIG. 4 is basically the same as that of FIG. 3 with the exception that the central electrode 20 is able to swing back and forth between the two outer electrodes l8 and 19. (See wiring diagram of FIG. 5.)

Contact points 22, 23 and 2A of a known conductive metal or material resistant to burning down or melting are arranged on the end faces of the respective electrodes. They render it possible that when using a voltage source of 1,000 volts, for

example, the electrodes need not approach each other completely for the charge exchange or load compensation, in that already at a sufficiently minute or small distance between the contact points a spark arcs over, which suffices for charge compensation. In this way the harmonic vibratory movement of the mass (electrodes) is not disturbed by any impact of the electrodes on each other.

For the partial decoupling of the vibration energy a transducer may be inserted in the circuit, which transforms the current surges occurring during a charge reversal into an alternating current voltage, which can be tapped at the terminals of the secondary winding of the transformer or transducer, At

the resilient tongue a pawl may be arranged which engages in the asymmetrical teeth of a gear, the latter being advanced by one tooth during each vibratory movement. (See FIG. 5.)

Since for generating a force necessary for vibrating the electrodes a voltage source of relatively high voltage, say, of at least 100 volts, is necessitated, an isotropic generator is advantageously employed. Such voltage cells or sources can be accommodated within a minimum of space and yet furnish a terminal voltage of more than 1,000 volts.

The electric circuit of these above described aggregates or instrumentalities is very simple and any necessary changes of direction of the electric field are effectuated automatically by the movements of the electrodes. The great advantage of this with a very high efficiency and is suitable for installation in timing instruments, clockworks and the like.

It will be seen from the aforesaid disclosure that there has been created according to this invention a very compact and highly efficient vibratory system, which lends itself to a great variety of applications in the instrument field and may be modified or altered according to the purpose intended.

What is claimed is: I

1. A system for generating periodical mechanical oscillations with relatively high-frequency stability, in particular for use in connection with timepieces and like instruments, characterized by two electrodes springedly and swingably supported and mutually electrically insulated, a common bridge element for said two electrodes forming the support therefore and maintaining the two electrodes at predetermined fixed distance from each other, a third electrode having opposed power source.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US1910434 *26 Ene 192923 May 1933Hayes Harvey CElectrically driven pendulum
US2606222 *16 Ago 19485 Ago 1952Frank Clifford CecilElectric motor
US2835105 *24 May 195420 May 1958Ancienne Manufacture D HorlogeElectrostatic balance clock
US3204133 *29 Ene 196331 Ago 1965Straumann Inst AgElectric reciprocating drive with motion conversion
US3283226 *7 Ene 19651 Nov 1966Berry Ind IncResonant reed assembly
GB922033A * Título no disponible
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3772537 *27 Oct 197213 Nov 1973Trw IncElectrostatically actuated device
US3805511 *24 Ene 197323 Abr 1974Biviator SaElectric timepiece assembly
US3881309 *5 Mar 19746 May 1975Biviator SaElectronic timepiece
US3961209 *24 Oct 19741 Jun 1976Biviator S.A.Oscillator for time measurement
US5072288 *21 Feb 198910 Dic 1991Cornell Research Foundation, Inc.Microdynamic release structure
US5149673 *19 Sep 199122 Sep 1992Cornell Research Foundation, Inc.Selective chemical vapor deposition of tungsten for microdynamic structures
US6184607 *29 Dic 19986 Feb 2001Honeywell International Inc.Driving strategy for non-parallel arrays of electrostatic actuators sharing a common electrode
US65682862 Jun 200027 May 2003Honeywell International Inc.3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US67298569 Oct 20014 May 2004Honeywell International Inc.Electrostatically actuated pump with elastic restoring forces
US675810710 Ene 20036 Jul 2004Honeywell International Inc.3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US676719025 Feb 200327 Jul 2004Honeywell International Inc.Methods of operating an electrostatically actuated pump
US683747619 Jun 20024 Ene 2005Honeywell International Inc.Electrostatically actuated valve
US688956710 Ene 200310 May 2005Honeywell International Inc.3D array integrated cells for the sampling and detection of air bound chemical and biological species
US69688623 Nov 200429 Nov 2005Honeywell International Inc.Electrostatically actuated valve
US70003302 Jul 200321 Feb 2006Honeywell International Inc.Method and apparatus for receiving a removable media member
US7112911 *30 Ene 200426 Sep 2006Hitachi, Ltd.Vibrational power generation device vibrator
US722263929 Dic 200429 May 2007Honeywell International Inc.Electrostatically actuated gas valve
US7245062 *7 May 200317 Jul 2007Enocean GmbhDevice for converting mechanical energy into electrical energy
US73203383 Jun 200522 Ene 2008Honeywell International Inc.Microvalve package assembly
US73288826 Ene 200512 Feb 2008Honeywell International Inc.Microfluidic modulating valve
US742065925 Abr 20052 Sep 2008Honeywell Interantional Inc.Flow control system of a cartridge
US744501728 Ene 20054 Nov 2008Honeywell International Inc.Mesovalve modulator
US746777913 Dic 200723 Dic 2008Honeywell International Inc.Microfluidic modulating valve
US751720114 Jul 200514 Abr 2009Honeywell International Inc.Asymmetric dual diaphragm pump
US752376222 Mar 200628 Abr 2009Honeywell International Inc.Modulating gas valves and systems
US76247559 Dic 20051 Dic 2009Honeywell International Inc.Gas valve with overtravel
US764473130 Nov 200612 Ene 2010Honeywell International Inc.Gas valve with resilient seat
US800770420 Jul 200630 Ago 2011Honeywell International Inc.Insert molded actuator components
US8030807 *9 Dic 20054 Oct 2011Chubb International Holdings LimitedElectromechanical energy harvesting system
US822277530 Ago 201117 Jul 2012Chubb International Holdings LimitedElectromechanical energy harvesting system
US883981515 Dic 201123 Sep 2014Honeywell International Inc.Gas valve with electronic cycle counter
US889926415 Dic 20112 Dic 2014Honeywell International Inc.Gas valve with electronic proof of closure system
US890506315 Dic 20119 Dic 2014Honeywell International Inc.Gas valve with fuel rate monitor
US894724215 Dic 20113 Feb 2015Honeywell International Inc.Gas valve with valve leakage test
US907477015 Dic 20117 Jul 2015Honeywell International Inc.Gas valve with electronic valve proving system
US20040211077 *2 Jul 200328 Oct 2004Honeywell International Inc.Method and apparatus for receiving a removable media member
US20050040654 *30 Ene 200424 Feb 2005Hitachi, Ltd.Vibrational power generation device vibrator
US20050062001 *3 Nov 200424 Mar 2005Cleopatra CabuzElectrostatically actuated valve
US20050253486 *7 May 200317 Nov 2005Enocean GmbhDevice for converting mechanical energy into electrical energy
US20060134510 *21 Dic 200422 Jun 2006Cleopatra CabuzAir cell air flow control system and method
US20060137749 *29 Dic 200429 Jun 2006Ulrich BonneElectrostatically actuated gas valve
US20060145110 *6 Ene 20056 Jul 2006Tzu-Yu WangMicrofluidic modulating valve
US20060169326 *28 Ene 20053 Ago 2006Honyewll International Inc.Mesovalve modulator
US20060272718 *3 Jun 20057 Dic 2006Honeywell International Inc.Microvalve package assembly
US20070014676 *14 Jul 200518 Ene 2007Honeywell International Inc.Asymmetric dual diaphragm pump
US20070051415 *7 Sep 20058 Mar 2007Honeywell International Inc.Microvalve switching array
Clasificación de EE.UU.310/309, 368/160, 968/480, 968/456
Clasificación internacionalG04C3/08, G04C3/00, G04C3/02
Clasificación cooperativaG04C3/024, G04C3/08
Clasificación europeaG04C3/02D, G04C3/08