US3647567A - Post-dipping of acidic deposition coatings - Google Patents

Post-dipping of acidic deposition coatings Download PDF

Info

Publication number
US3647567A
US3647567A US3647567DA US3647567A US 3647567 A US3647567 A US 3647567A US 3647567D A US3647567D A US 3647567DA US 3647567 A US3647567 A US 3647567A
Authority
US
United States
Prior art keywords
acid
water
emulsion
bath
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Raphael Joseph Schweri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hi Tek Polymers Inc
Original Assignee
Celanese Coatings Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Coatings Co filed Critical Celanese Coatings Co
Application granted granted Critical
Publication of US3647567A publication Critical patent/US3647567A/en
Assigned to INTEREZ, INC. reassignment INTEREZ, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CELANESE CORPORATION, A CORP. OF DE.
Assigned to INTEREZ, INC. reassignment INTEREZ, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: INTEREZ, INC., A CORP. OF DE (MERGED INTO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/088Autophoretic paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/142Auto-deposited coatings, i.e. autophoretic coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • Y10T428/31699Ester, halide or nitrile of addition polymer

Definitions

  • This invention pertains to the deposition of coatings on a metal substrate and to the improvement in the properties of such coatings by a post-dipping process.
  • the coating of metallic articles by acidic deposition is disclosed in copending patent application Ser. No. 880,914 filed Nov. 28, 1969.
  • the acidic deposition process involves coating a metallic article from a bath which contains an oxidizing acid system and a synthetic film forming emulsion stabilized by nonionic or anionic surfactants.
  • the oxidizing acid system must be capable of producing metal ions at the surface of the metallic article.
  • the emulsion on the other hand, must be stable to this acid system 'but coagulatable onto the surface of the article by the action of the acid system produced metallic ions.
  • Films prepared by acidic deposition generally contain at least a small amount of water soluble species along with various metal ions such as those of the substrate which has been coated. It is thought that these water soluble species contribute to the poor water and salt spray resistance often exhibited by acidic deposition films.
  • This invention relates to an improvement in the acidic deposition process. Specifically it has been found that the resistance properties of acidic deposition films, especially to salt spray and water can be improved by contacting uh-baked or uncurred acidic deposited coatings with a solution of about 0.25 to 7.0 weight percent (based on the total solution weight) of a material selected from phosphoric acid (H P chromium trioxide (CrO and water or acid soluble chromates and dichromates. Following this step the acidic deposition films or coatings are then baked or dried according to standard methods.
  • phosphoric acid H P chromium trioxide (CrO and water or acid soluble chromates and dichromates.
  • Acidic deposition as referred to in this invention involves the addition of an oxidizing acid system to an aqueous emulsion (also called a latex or an aqueous polymeric dispersion) and the subsequent coagulation of this emulsion onto a metal substrate in the form of an adherent coating or film.
  • aqueous emulsion also called a latex or an aqueous polymeric dispersion
  • any aqueous, synthetic, resinous, film forming emulsion is satisfactory in forming the acidic deposition bath used therein.
  • the emulsions used should be formed of vinyl or ethylenically polymerizable monomers.
  • these emulsions be prepared in an aqueous medium by addition polymerization in the presence of anionic or nonionic surfactants or both.
  • the preparation of these synthetic film forming emulsions can be accomplished by any of the standard emulsion processing techniques. Thus it is common to charge a portion of the polymerization catalysts or initiators into the reaction flask. The temperature of this mixture is then increased to about F.200 F. at which time separate additions of the remainder of the monomers and catalysts are carried out. Following these additions the emulsion mixture is held a reaction temperature until substantially complete monomer conversion is attained.
  • Variations on this procedure include the use of a separate surfactant feed to be carried out during the monomer addition, the use of pre-emulsified monomers, the use of a water alcohol mixture as the emulsification medium and other well known variations.
  • compositions of these emulsions can vary. Generally any of the normal emulsion monomers can be used.
  • the vinyl esters of fatty acids having from 1 to 18 carbon atoms including vinyl acetate, vinyl propionate, vinyl butyrate, vinyl laurate, vinyl oleate, and vinyl stearate can be used.
  • the various vinyl polymerizable acids such as acrylic, methacrylic, crotonic, itaconic and fumaric acids or maleic anhydride, etc., are useful.
  • Esters of acrylic acid, methacrylic acid, maleic acid, or of other vinyl polymerizable acids with .alcohols, glycols or epoxides having from 1 to 18 carbon atoms can likewise be employed.
  • esters examples include methyl acrylate or methacrylate, ethyl acrylate or methacrylate, propyl acrylate or methacrylate, isopropyl acrylate or methacrylate, the various butyl acrylyates or methacrylates, cyclohexyl, acrylate or methacrylate, berrzyl acrylate or methacrylate, isobornyl acrylate or methacrylate, phenyl acrylate or methacrylate, n-hexyl, n-octyl, 2-ethyl hexyl, t-octyl, dodecyl, hexadecyl, or octadecyl acrylates or methacrylates.
  • Water resistance is expressed herein as percent water up-take. It is determined by immersing a baked coated panel in a bath of boiling water. The heat is then removed and the bath allowed to cool at room temperature for 3 hours. Prior to immersion in the bath, the panel is weighed and the area of its coated surface determined.
  • various acid functional polymerizable monomers Preferred among these monomers are acrylic acid, methacrylic acid and itaconic acid. The incorporation of these acid monomers serve to improve film adhesion to the particular metallic substrate. However, if too large an amount of these acids is used, the water resistance of the resulting films can suffer. Therefore, it is desirable to have from about 0.25 weight percent to about 5.0- weight percent of these acids present based upon the total emulsion solids content.
  • a Cross-linking monomer e.g., glycidyl methacrylates and acrylates, methylol functional monomers, e.g., methylol acrylamide or methacrylamide and alkylated methylol monomers, e.g., methylated, ethylated or butylated methylol acrylamide or methacrylamide.
  • aqueous, emulsion, film forming compositions examples include:
  • composition useful herein is a copolymer of about 0.5 to 15 weight percent of isobornyl methacrylate, about 0.5 to 10 weight percent of methylol acrylamide or methacrylamide, about to 60 weight percent of acrylonitrile or methacrylonitrile, about to 80 weight percent of a 1 to 8 carbon alcohol ester of an acid functional polymerizable monomer and about 0.25 to 5.0 weight percent of an acid functional polymerizable monomer.
  • the emulsions as are useful in the processes of this invention can be either anionically or nonionically stabilized.
  • the emulsion preferably should include, as one of its co-monomers, a polymerizable acid.
  • any of the common nonionic surfactants can be used with advantage.
  • These nonionic surfactants generally are polyethylene or polypropylene oxide derivatives having pendant hydrophobic groups such as phenoxy, or phenyl groups.
  • Illus- 4 trative of these ethylene oxide or propylene oxide derived surfactants are the Igepals, which are members of an homologous series of alkylphenoxypoly(ethyleneoxy) ethanols, which can be represented by the general forwherein R represents an alkyl radical and n represents the number of mols of ethylene oxide employed.
  • alkylphenoxypoly(ethyleneoxy) ethanols having alkyl groups containing from about 7 to about 18 carbon atoms inclusive, and having from about 4 to about ethyleneoxy units, such as the heptylphenoxypoly(ethyleneoxy) ethanols, nonylphenoxypoly (ethyleneoxy) ethanols and dodecylphenoxypoly(ethyleneoxy) ethanols; the sodium, potassium or ammonium salts of the sulfate esters of these alkylphenoxypoly(ethyleneoxy) ethanols; alkypoly(ethyleneoxy) ethanols; alkylpoly (propyleneoxy) ethanols octylphenoxyethoxy ethyldimethylbenzylammonium chloride; polyethylene glycol t-dodecylthioether; the Pluronics, which are condensates of ethylene oxide with a hydrophobic base, formed by condensing propylene oxide with propylene glycol; the Tritons;
  • anionic stabilizers When anionically stabilized emulsions are prepared, the anionic stabilizers can be used alone or in admixture with the above nonionic surfactants. Generally any of the standard anionic stabilizers can be used in the emulsions herein prepared. These stabilizers (also called emulsifiers or surfactants) are salts--generally alkali metal salts of organic acids particularly the sulfates, phosphates or carboxylates. Examples include Triton 770 cone.
  • co-reactive anionic surfactants which can be used either alone or in combination with nonionic surfactants, anionic surfactants or both.
  • coereactive surfactants can be prepared by forming the alkali metal, amine or ammonia salt of sulfonic, phosphoric or carboxylic acids having sites of polymerizable unsaturation.
  • Examples include the sodium salt of 2-sulfoethyl methacrylate, sodium vinyl sulfonate, the sodium salt of styrene sulfonic acid, as well as the sodium salts of the various polymerizable acids, e.g., acrylic acid, methacrylic acid, itaconic acid, maleic or fumaric acids, or ester acids, etc.
  • the level of surfactant should be sufiicient to maintain emulsion stability in the presence of the dilute, oxidizing acid systems.
  • the absolute amount of surfactant required can vary greatly. This amount is controlled by many factors including the emulsion monomers, polymer molecular weight, surfactant solubility, and surfactant unit charge.
  • the preferred emul- HaCHzOH sions are prepared using the above described co-reactive surfactants. These surfactants can be used at very low levels (0.5 to and still produce oxidizing acid stable emulsions. In particular the use of these surfactants produces cured films having excellent water and solvent resistance properties.
  • surfactants that can be used in preparing the emulsions of this invention preferably should not be substantially degraded in the presence of the dilute oxidizing acid systems.
  • sugar saccharide, dextrose, etc.
  • starch based surfactants are in many instances unsatisfactory as emulsion stabilizers for nitric acid containing acidic deposition baths.
  • surfactants several systems are preferable. In one about 0.5 to 1.5 weight percent of the sodium salt of 2-sulfoethyl methacrylate based on the total emulsion solids is mixed with a like amount of sodium vinyl sulfonate. In another preferred system from about 0.25 to 1.5 percent of sodium lauryl sulfate is used. In yet another system a mixture of about 2.5 to 6.0 percent of an anionic phosphate surfactant is used. Finally, in another system, nonionic surfactants derived from nonylphenoxy poly(ethyleneoxy)ethanol are used.
  • the monomers used herein are polymerized in the usual manner, i.e., by means of a catalytic amount of a conventional free radical polymerization catalyst or catalyst system (which can also be referred to as an addition polymerization catalyst, a vinyl polymerization catalyst or a polymerization initiator).
  • a conventional free radical polymerization catalyst or catalyst system which can also be referred to as an addition polymerization catalyst, a vinyl polymerization catalyst or a polymerization initiator.
  • An illustrative but by no means exhaustive enumeration of such catalysts includes inorganic peroxides such as hydrogen peroxide, sodium perchlorate and sodium perborate, inorganic persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate, and redox systems such as sodium metabisulfite-potassium persulfate, and the like.
  • initiators can be used. These include tertiary butyl hydroperoxide, benzoyl peroxide, tertiary butyl perbenzoate, tertiary butyl peroctoate, lauryl peroxide, azo-bis-isobutyronitrile (AIBN) and any of the other commonly used initiators.
  • AIBN azo-bis-isobutyronitrile
  • the emulsion which has previously been prepared is placed in a non-metallic container and an oxidizing acid system is added thereto.
  • the solids of the resulting bath can vary from about 2% to about the solids level of the emulsion itself. However, when controlled film thicknesses are desired, it is preferred that the bath contain about 5-20% of the solid emulsion cop0lymerthe remainder being acid and water.
  • the oxidizing acid systems which are used in this bath comprise those acid systems which act upon the particular metallic substrate to be coated producing a concentration of substrate metal ions at the bath-substrate interface sufficient to cause coagulation of the emulsion onto the metal.
  • the metallic substrate contains iron, zinc or tin, nitric acid and in some cases sulfuric acid will cause the emulsions herein described to coagulate onto these substrata.
  • Most preferred among the above acid systems is nitric acid.
  • the substrate is either copper or aluminum more vigorous conditions are required. For example, by using a mixture of fiuoroboric acid, hydrofluoric acid, chromic anhydride and potassium ferricyanide either aluminum or copper can be coated by acidic deposition.
  • This mixture can also coagulate emulsions onto normal iron, tin or Zinc type substrata.
  • the amount of the oxidizing acid system that is used herein can vary depending on the stability of the particular emulsion and on the substrate that is to be coated. For example tin plate requires lower acid level baths than does steel. In general the amount of acid can vary from about 1.0% to 50% by weight based upon the solids weight of the emulsion that is used. Preferably this acid content should be in the 2.5 to 15 weight percent range.
  • the preferred method of incorporating the desired acid system into these baths is to add the diluted emulsion to a solution of the oxidizing acid system, it is also possible to prepare the emulsions in the presence of the dilute acid system itself. This method then eliminates the necessity of post-adding acid to the diluted emulsion.
  • any metallic substrate can be used in the process of this invention. Included are cold rolled steel, phosphatized steel, sand blasted steel, tin free steel, galvanized steel, iron, zinc, tin-plated steel, tin, copper, aluminum, etc.
  • the only requirement of the substrate is that it produces sufiicient ions to coagulate the particular emulsion on its surface when it is immersed in the oxidizing acid system containing bath.
  • tin is coated the most rapidly. For example, in a bath containing about 5 to 15 weight percent based on emulsion solids of nitric acid, a tin plated panel will be plated in about 10-40 seconds. On the other hand when steel panels are immersed in a bath containing a like amount of the same acid, plating can take from about 1 to 20 minutes.
  • substrate coating can be carried out at room temperature or lower Without difficulty.
  • the bath temperature can be increased to 50 C. or higher with a corresponding decrease in substrate plating time.
  • the water resistance of the plated panels also increases.
  • plating can be carried out between just above the freezing point of the bath and just below its boiling point.
  • the baths as prepared herein can be used repeatedly to coat a large number of metal articles.
  • a 10% solids emulsion bath placed in a 500 ml. beaker can be used to plate as many as 150 or more 3" x 6" steel panels.
  • the bath emulsion solids tends to decrease while the bath pH increases.
  • additional amounts of the acid system and the emulsion must periodically be introduced into the coating bath.
  • residual metal ion content in the bath increases due to the surface dissolution of the metallic articles.
  • This metal ion content can be controlled by any conventional means of metallic ion separation, e.g., electrodeposition, precipitation, ion exchange, etc.
  • the process herein disclosed is not limited to the coating of metal panels.
  • car bodies, siding material, appliance bodies, metal containers, or any other metallic substrate can be coated with advantage.
  • a metal tank or container can be coated by pumping the bath as described above into this container and then removing the bath after a coating of sufl'icient thickness is obtained.
  • any metallic substrate can be coated simply by contacting it With the baths herein prepared.
  • the emulsions of this invention can be formed into paints.
  • the pigments which are useful, however, are preferably limited to those pigments which are nonreactive with oxidizing acid systems.
  • pigmented emulsions can be employed to coat metallic articles by the processes described herein in the same manner that non-pigmented emulsions can be used.
  • the coated metal articles are contacted with the solution described hereinafter, preferably washed with water, and then either air dried or baked using standard methods.
  • the substrate is baked at a low temperature (about F.l75 F.) for about 1 minute to 25 minutes. This step allows the removal of water trapped in the coated films.
  • a higher temperature bake (about 225 F. to 400 F.) is carried out over a like period to insure complete cure of the coating.
  • cure is used herein it is meant ot be synonymous with crosslinking or drying.
  • any solvent which will solvate the materials hereinafter described can be used with the proviso that this solvent not act to dissolve the acidic deposition films during immersion.
  • this solvent it is preferred that a major portion of the solvent be water.
  • the active portion of this post-dipping bath is about 0.25 to about 7.0 weight percent (based upon the total post-dip bath content) of a material selected from chromium trioxide, phosphoric acid, and water soluble or acid soluble chromates and dichromates. Included among these materials are the following chromates; potassium, sodium, ammonium, calcium, cesium, lithium, magnesium, zinc, etc., and dichromates; sodium, ammonium, lithium, etc. Preferred among these chromates and dichromates is zinc chromate.
  • phosphoric acid When phosphoric acid is used in the post-dipping bath it is preferred that it be added to the bath at about the 0.25 to 3.0 weight percent level.
  • this level preferably can range from 0.25 to 5.0 percent. Most preferable results, in general, are obtained when any of the above bath materials are present at about the 0.5 to 1.5 weight percent level.
  • the amount of time that the uncured or unbaked acidic deposited film is exposed to this bath can vary from about seconds to 5-10 minutes. However it is preferred that hath exposure generally be in the 90 seconds range. Exposures of greater than 15 or minutes generally cause redispersion of the uncured film and result in baked films which are highly discolored.
  • the unbaked acidic deposited :films can be exposed to the above bath by any convenient method.
  • a tank or container which has been coated by acidic deposition can be subjected to this bath by pumping the bath solution into the container itself.
  • this bath can be applied by spraying or brushing.
  • the preferred method of bringing the acidic deposited, coated metal substrate into contact with this bath is by dipping.
  • ferrous ions Fe++
  • ferric ions Fe+++
  • Fe o Fe Hzr These metal ions in turn can act to coagulate the emulsion. Since this coagulation effect occurs at the interface of the metallic article and the emulsion, a film of the emulsion is thereby deposited onto the surface of the metallic article.
  • An acidic deposition bath was prepared by adding 40 ml. of the above emulsion to 150 ml. of water and 10 ml. of a 10% aqueous nitric acid solution. Seven duplicate sets of panels Were dipped in the above bath for five minutes producting uniform coatings thereon. Immediately after the coating process, one of the coated panels from each set was dipped for 30 seconds in water while the other panel of the set was dipped for 30 seconds in a 0.5% aqueous chromium trioXide solution. Both panels were then baked for 5 minutes at F. followed by 5 minutes at 300 F. The water uptake of all panels was determined with the following results.
  • EXAMPLE 2 from each set was then immersed in a 1% aqueous phosphorie acid solution for 30 seconds and then baked for 5 minutes at 140 F. followed by 5 minutes at 300 F.
  • the other panel in each set was baked as above immediately after its removal from the acidic deposition bath. Water up-take was evaluated with the following results:
  • EXAMPLE 3 An emulsion was prepared as described in Example 1. An acidic deposition bath was prepared by adding 20 ml. of this emulsion to 10 ml. of a 5% aqueous nitric acid solution and 70 ml. of water. A zinc chromate containing solution was prepared by adding an excess of zinc carbonate to a 10% aqueous chromium trioxide solution. For a 3.0% zinc chromate post-dip bath 60 ml. of this zinc chromate-chromium trioxide solution were added to 140 ml. of water. For a 0.5% post-dip solution 10 ml. were added to 190 ml. of water.
  • EXAMPLE 4 Using the same procedure as described in Example 1, an emulsion was prepared which exhibited a #1 spindle, 20 r.p.m., Brookfield viscosity of 23 cps., essentially no free monomer, a pH of 2.90 and a solids content of 48.5% (48.1% theoretical). At the same time a pigment paste was prepared comprising 12 parts of a mixture of magnesium silicate and calcium silicate, 24 parts of barytes, 24 parts of red iron oxide, 24.0 parts of water, 1.6 parts of Daxad 30, an anionic surfactant derived from the sodium salt of a polymerized carboxylic acid obtained from W. R.
  • An acid deposition bath was prepared by mixing 10 ml. of a 10% aqueous nitric acid solution, 10 ml. of the above pigment paste, 20 ml. of, the above emulsion and 60 ml. of water.
  • a cold rolledsteel panel was dipped into this bath for minutes and then dipped into a bath containing 0.5 weight percent chromium trioxide. This panel was then baked for 15 minutes at 140 F. followed by 15 minutes at 300 F.
  • a red coating resulted which had excellent appearance and exhibited a water up-take of 2.41%.
  • EXAMPLE 5 Using the same procedure as in Example 1, a similar emulsion was prepared except that #3 contained 90 additional grams of water, and 16.2 additional grams of itaconic acid and that #4 contained 16.2 less grams of butyl acrylate. The resulting emulsion exhibited a solids content of 45.6% (47.0% theoretical), less than 0.2 free monomer, a density of 1.03 g./ml. and a pH of 3.05.
  • a ml. acidic deposition bath was prepared by mixing 20 ml. of the above emulsion with 5 ml. of a 10 weight percent aqueous nitric acid solution and 75 ml. of water. Six pairs of cold rolled steel panels were dipped in this bath for 5 minutes. Out of each pair one was dipped in a bath containing 10 ml. of a 10% by weight aqueous chromium trioxide solution and 190 ml. of water. Both the dipped and the non-dipped panels were then baked for 5 minutes at F. followed by 5 minutes at 300 F. Water up-take tests were performed on each set of panels with the following results:
  • Chromate Set post-dip EXAMPLE 6 An emulsion was prepared according to Example 1. 600 ml. of this emulsion were added to a mixture of 2250 ml. of water and ml. of a 10% aqueous nitric acid solution. In addition a 0.5% chromate bath was prepared by adding 5 grams of chromium trioxide to 1000 grams of water. 2 sets of cold rolled steel panels were coated for 5 minutes in the above acidic deposition bath. Out of each set one panel was dipped for 30 seconds in the chromate post dip solution and baked with the non-post-dipped P31861501 5 minutes at 140 F. followed by 5 minutes at 3 The first set of panels were placed in 70 C. salt spray for 24 hours and removed.
  • the chromate post-dipped panel showed little evidence of degradation.
  • the non-post-dipped panel was completely blistered and discolored after this period of salt spray.
  • the postdipped panel was kept in salt spray for 23 additional hours before substantial film degradation occurred. But even after this 47 hours of total salt spray exposure no blistering of the film was evident.
  • the second set of panels as prepared above-one nonpost-dipped and one post-dipped was placed in boiling water. After 2 hours immersion the film on the postdipped panel was still tough with no evidence of discoloration. However, after only /2 hours immersion in boiling water, the film on the non-post-dipped panel was severely discolored. One hours immersion resulted in a bubbling of the film while after 1 /2 hours immersion, the non-post-dipped film peeled off its steel substrate.
  • EXAMPLE 7 Using the same procedure as in Example 1 a similar emulsion was prepared except that part #4 contained 629 grams of butyl acetate, 59 grams of isobornyl methacrylate, and 368 grams of 'acrylonitrile. The resulting emulsion exhibited a solids content of 47.6% (47.7% theoretical), and a percent monomer conversion of 9916-.
  • An acidic deposition bath was prepared by adding 20 ml. of the above emulsion to 5 ml. of a 10% aqueous nitric acid solution and 75 ml. of water. Two sets of steel panels were dipped in the above bath for 5 minutes and one set was post-dipped for 30 seconds in a 1.0 weight percent chromium trioxide solution while the other set was dipped for a like amount of time in a 3.0 weight percent chromium trioxide solution. These panels were then baked Percent Chromium Water trioxide up-take Film appearance and general water resistance were excellent.
  • An improvement in the process of coating metallic articles by acidic deposition which comprises:
  • An improvement in the process of coating metallic articles by acidic deposition which comprises:

Abstract

METALLIC ARTICLES ARE COATED WITH AN ADHERENT POLYMER FILM BY THE ACIDIC DEPOSITION PROCESS WHICH COMPRISES CONTACTING THESE METALLIC ARTICLES WITH AN AQUEOUS BATH CONTAINING A SYNTHETIC RESINOUS FILM FORMING EMULSION AND AN OXIDIZING ACID SYSTEM. BY SUBJECTING THESE ACIDIC DEPOSITION COATINGS TO A SOLUTON, ABOUT 0.25 TO 7.0 WEIGHT PERCENT OF WHICH CONTAINES A MATERIAL SELECTED FROM PHOSPHORIC ACID, CHROMIUM TROXIDE AND WATER OR ACID SOLUBLE CHROMATES AND DICHLROMATES, THE RESISTANCE PROPERTIES-ESPECIALLY WATER AND SALT SPRAY RESISTANCE-OF THESE COATINGS ARE ENHANCED.

Description

United States Patent Oflice 3,647,567 Patented Mar. 7, 1972 3,647,567 POST-DIPPING OF ACIDIC DEPOSITION COATINGS Raphael Joseph Schweri, Louisville, Ky., assignor to Celanese Coatings Company, New York, N.Y. No Drawing. Filed Nov. 28, 1969, Ser. No. 880,981 Int. Cl. B44d 1/44 US. Cl. 148-6.15 R 10 Claims ABSTRACT OF THE DISCLOSURE Metallic articles are coated with an adherent polymer film by the acidic deposition process which comprises contacting these metallic articles with an aqueous bath containing a synthetic resinous film forming emulsion and an oxidizing acid system. By subjecting these acidic deposition coatings to a solution, about 0.25 to 7.0 weight percent of which contains a material selected from phosphoric acid, chromium trioxide and water or acid soluble chromates and dichromates, the resistance properties-especially water and salt spray resistance-of these coatings are enhanced.
BACKGROUND OF THE INVENTION This invention pertains to the deposition of coatings on a metal substrate and to the improvement in the properties of such coatings by a post-dipping process. The coating of metallic articles by acidic deposition is disclosed in copending patent application Ser. No. 880,914 filed Nov. 28, 1969.
Generally the acidic deposition process involves coating a metallic article from a bath which contains an oxidizing acid system and a synthetic film forming emulsion stabilized by nonionic or anionic surfactants. The oxidizing acid system must be capable of producing metal ions at the surface of the metallic article. The emulsion, on the other hand, must be stable to this acid system 'but coagulatable onto the surface of the article by the action of the acid system produced metallic ions.
Films prepared by acidic deposition generally contain at least a small amount of water soluble species along with various metal ions such as those of the substrate which has been coated. It is thought that these water soluble species contribute to the poor water and salt spray resistance often exhibited by acidic deposition films.
SUMMARY OF THE INVENTION This invention relates to an improvement in the acidic deposition process. Specifically it has been found that the resistance properties of acidic deposition films, especially to salt spray and water can be improved by contacting uh-baked or uncurred acidic deposited coatings with a solution of about 0.25 to 7.0 weight percent (based on the total solution weight) of a material selected from phosphoric acid (H P chromium trioxide (CrO and water or acid soluble chromates and dichromates. Following this step the acidic deposition films or coatings are then baked or dried according to standard methods.
DESCRIPTION OF THE INVENTION Acidic deposition as referred to in this invention involves the addition of an oxidizing acid system to an aqueous emulsion (also called a latex or an aqueous polymeric dispersion) and the subsequent coagulation of this emulsion onto a metal substrate in the form of an adherent coating or film.
Generally any aqueous, synthetic, resinous, film forming emulsion is satisfactory in forming the acidic deposition bath used therein. In particular however, the emulsions used should be formed of vinyl or ethylenically polymerizable monomers. Furthermore it is desirable that these emulsions be prepared in an aqueous medium by addition polymerization in the presence of anionic or nonionic surfactants or both.
The preparation of these synthetic film forming emulsions can be accomplished by any of the standard emulsion processing techniques. Thus it is common to charge a portion of the polymerization catalysts or initiators into the reaction flask. The temperature of this mixture is then increased to about F.200 F. at which time separate additions of the remainder of the monomers and catalysts are carried out. Following these additions the emulsion mixture is held a reaction temperature until substantially complete monomer conversion is attained.
Variations on this procedure include the use of a separate surfactant feed to be carried out during the monomer addition, the use of pre-emulsified monomers, the use of a water alcohol mixture as the emulsification medium and other well known variations.
The compositions of these emulsions can vary. Generally any of the normal emulsion monomers can be used. For example, the vinyl esters of fatty acids having from 1 to 18 carbon atoms including vinyl acetate, vinyl propionate, vinyl butyrate, vinyl laurate, vinyl oleate, and vinyl stearate can be used. Likewise, the various vinyl polymerizable acids such as acrylic, methacrylic, crotonic, itaconic and fumaric acids or maleic anhydride, etc., are useful. Esters of acrylic acid, methacrylic acid, maleic acid, or of other vinyl polymerizable acids with .alcohols, glycols or epoxides having from 1 to 18 carbon atoms can likewise be employed. Examples of such esters include methyl acrylate or methacrylate, ethyl acrylate or methacrylate, propyl acrylate or methacrylate, isopropyl acrylate or methacrylate, the various butyl acrylyates or methacrylates, cyclohexyl, acrylate or methacrylate, berrzyl acrylate or methacrylate, isobornyl acrylate or methacrylate, phenyl acrylate or methacrylate, n-hexyl, n-octyl, 2-ethyl hexyl, t-octyl, dodecyl, hexadecyl, or octadecyl acrylates or methacrylates. Acrylonitrile, methacrylonitrile, acrylamide, methacr'ylamide, styrene, a-methyl styrene, vinyl toluenes, allyl acetate, glycidyl methacrylate, t-butylaminoethyl methacryate, hydroxylal-kyl acrylates or methacrylates, such as hydroxyethyl methacrylate, hydroxy propyl methacrylate or acrylate, hydroxyethyl vinyl ether, hydroxyethyl vinyl sulfide, vinyl pyrrolidone, lN,N-dimethylaminoethyl methacrylate, ethylene, propylene, vinyl chloride, vinyl fluoride, vinylidene fluoride, hexafluoropropylene, chlorotrifluoroethylene, and tetrafluoroethylene, can also be used as the monomers herein.
Several of the above monomers give preferred results when incorporated into the emulsions hereinafter described. In particular, isobornyl methacrylate, styrene and hydroxyl propyl methacrylate produce films which have superior wet adhesion. Wet adhesion is defined as the adhesion of the unbakcd coating to the particular metallic substrate. When emulsions are prepared having poor wet adhesion, their acidic deposited, unbaked films tend to sag and drip oif the panel onto which they are coated. On the other hand superior emulsions, including those prepared using the above monomers, when plated, generally adhere tightly to the metal substrate and 'do not sag On the coated article prior to baking.
Since almost all emulsions are prepared containing water sensitive surfactants, the resistance of films prepared from these emulsions to water is a problem. The incorporation of about 15 to 60 solids weight percent of acrylonitrile or methacrylonitrile into the emulsions as prepared herein gives improved water resistance.
Water resistance is expressed herein as percent water up-take. It is determined by immersing a baked coated panel in a bath of boiling water. The heat is then removed and the bath allowed to cool at room temperature for 3 hours. Prior to immersion in the bath, the panel is weighed and the area of its coated surface determined.
total Weight of film Speclfic film welght: total area coated weight, of water absorbed Specific Water up-take= specific water up-take Percent water up-take: specific film Weight In addition to the above preferred monomers it is desirable, but not required, to include in the emulsions herein prepared various acid functional polymerizable monomers. Preferred among these monomers are acrylic acid, methacrylic acid and itaconic acid. The incorporation of these acid monomers serve to improve film adhesion to the particular metallic substrate. However, if too large an amount of these acids is used, the water resistance of the resulting films can suffer. Therefore, it is desirable to have from about 0.25 weight percent to about 5.0- weight percent of these acids present based upon the total emulsion solids content.
Finally, in order to prepare films having increased solvent resistance properties, it is desirable to incorporate into the above emulsion monomer compositions from about 0.25 to about 10 weight percent of a Cross-linking monomer. Included are monomers containing epoxide functional groups, e.g., glycidyl methacrylates and acrylates, methylol functional monomers, e.g., methylol acrylamide or methacrylamide and alkylated methylol monomers, e.g., methylated, ethylated or butylated methylol acrylamide or methacrylamide.
Examples of preferred aqueous, emulsion, film forming compositions useful herein include:
(1) Homo or copolymers of 1-8 carbon alcohol esters of an acid functional monomer.
(2) Copolymer of 1-8 carbon alcohol esters of an acid functional monomer and an acid functional monomer.
, (3) Copolymers of a 1-8 carbon alcohol ester of an acid functional monomer, an acid functional monomer and acrylonitrile or methacrylonitrile.
(4) Any of the above having as an additional component methylol acrylamide or methacrylamide.
(5) Any of the above having as an additional component isobornyl methacrylate.
(6) Any of the above having as an additional component a vinyl aromatic monomer such as styrene or vinyl toluene.
Most preferable among the composition useful herein isa copolymer of about 0.5 to 15 weight percent of isobornyl methacrylate, about 0.5 to 10 weight percent of methylol acrylamide or methacrylamide, about to 60 weight percent of acrylonitrile or methacrylonitrile, about to 80 weight percent of a 1 to 8 carbon alcohol ester of an acid functional polymerizable monomer and about 0.25 to 5.0 weight percent of an acid functional polymerizable monomer.
The emulsions as are useful in the processes of this invention can be either anionically or nonionically stabilized. However, if nonionic surfactants are used, the emulsion preferably should include, as one of its co-monomers, a polymerizable acid. Generally, when nonionically stabilized emulsions are prepared, any of the common nonionic surfactants can be used with advantage. These nonionic surfactants generally are polyethylene or polypropylene oxide derivatives having pendant hydrophobic groups such as phenoxy, or phenyl groups. Illus- 4 trative of these ethylene oxide or propylene oxide derived surfactants are the Igepals, which are members of an homologous series of alkylphenoxypoly(ethyleneoxy) ethanols, which can be represented by the general forwherein R represents an alkyl radical and n represents the number of mols of ethylene oxide employed. Included among this series are alkylphenoxypoly(ethyleneoxy) ethanols having alkyl groups containing from about 7 to about 18 carbon atoms inclusive, and having from about 4 to about ethyleneoxy units, such as the heptylphenoxypoly(ethyleneoxy) ethanols, nonylphenoxypoly (ethyleneoxy) ethanols and dodecylphenoxypoly(ethyleneoxy) ethanols; the sodium, potassium or ammonium salts of the sulfate esters of these alkylphenoxypoly(ethyleneoxy) ethanols; alkypoly(ethyleneoxy) ethanols; alkylpoly (propyleneoxy) ethanols octylphenoxyethoxy ethyldimethylbenzylammonium chloride; polyethylene glycol t-dodecylthioether; the Pluronics, which are condensates of ethylene oxide with a hydrophobic base, formed by condensing propylene oxide with propylene glycol; the Tritons; the nonionic Tergitols; and the like.
When anionically stabilized emulsions are prepared, the anionic stabilizers can be used alone or in admixture with the above nonionic surfactants. Generally any of the standard anionic stabilizers can be used in the emulsions herein prepared. These stabilizers (also called emulsifiers or surfactants) are salts--generally alkali metal salts of organic acids particularly the sulfates, phosphates or carboxylates. Examples include Triton 770 cone. or Triton X200--the sodium salt of alkyloxy polyether sulfate; Triton GR 5 or GR 7dioctyl sodium sulfosuccinate; Triton QS 44phosphate surfactant in free acid form; sodium lauryl sulfate; Dowfax 2A1 (Benax2Al)- sodium dodecyl diphenyl ether disulfate; Dowfax 3B1- sodium n-nonyldiphenyl ether disulfate; Daxad 30-50- dium salt of a polymerized carboxylic acid; Daxad 23- sodium salt of polymerized, substituted, benzoid alkyl sulfonic acid; Daxad llKLS-polymerized potassium salts of alkyl naphthalene sulfonic acids; and the like.
Particularly useful in the emulsions of this invention are the co-reactive anionic surfactants which can be used either alone or in combination with nonionic surfactants, anionic surfactants or both. These coereactive surfactants can be prepared by forming the alkali metal, amine or ammonia salt of sulfonic, phosphoric or carboxylic acids having sites of polymerizable unsaturation. Examples include the sodium salt of 2-sulfoethyl methacrylate, sodium vinyl sulfonate, the sodium salt of styrene sulfonic acid, as well as the sodium salts of the various polymerizable acids, e.g., acrylic acid, methacrylic acid, itaconic acid, maleic or fumaric acids, or ester acids, etc.
In preparing emulsions from any of the above anionic or nonionic surfactants it is desirable to use the least amount of surfactant that will produce oxidizing acid stable emulsions. Thus if surfactant levels in excess of 6-8 percent based upon the total emulsion monomer content are used, the rate of acidic deposition is greatly slowed. In fact in some instances the surfactant level can be increased to such a level that the emulsion will be too stable to coagulate onto a metal article exposed to the acidic bath. On the other hand, the level of surfactant should be sufiicient to maintain emulsion stability in the presence of the dilute, oxidizing acid systems.
It can readily be seen that the absolute amount of surfactant required can vary greatly. This amount is controlled by many factors including the emulsion monomers, polymer molecular weight, surfactant solubility, and surfactant unit charge. However, the preferred emul- HaCHzOH sions are prepared using the above described co-reactive surfactants. These surfactants can be used at very low levels (0.5 to and still produce oxidizing acid stable emulsions. In particular the use of these surfactants produces cured films having excellent water and solvent resistance properties.
Furthermore the surfactants that can be used in preparing the emulsions of this invention preferably should not be substantially degraded in the presence of the dilute oxidizing acid systems. For example, sugar (sucrose, dextrose, etc.) or starch based surfactants are in many instances unsatisfactory as emulsion stabilizers for nitric acid containing acidic deposition baths.
Among the above surfactants several systems are preferable. In one about 0.5 to 1.5 weight percent of the sodium salt of 2-sulfoethyl methacrylate based on the total emulsion solids is mixed with a like amount of sodium vinyl sulfonate. In another preferred system from about 0.25 to 1.5 percent of sodium lauryl sulfate is used. In yet another system a mixture of about 2.5 to 6.0 percent of an anionic phosphate surfactant is used. Finally, in another system, nonionic surfactants derived from nonylphenoxy poly(ethyleneoxy)ethanol are used.
The monomers used herein are polymerized in the usual manner, i.e., by means of a catalytic amount of a conventional free radical polymerization catalyst or catalyst system (which can also be referred to as an addition polymerization catalyst, a vinyl polymerization catalyst or a polymerization initiator). An illustrative but by no means exhaustive enumeration of such catalysts includes inorganic peroxides such as hydrogen peroxide, sodium perchlorate and sodium perborate, inorganic persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate, and redox systems such as sodium metabisulfite-potassium persulfate, and the like.
In addition other initiators can be used. These include tertiary butyl hydroperoxide, benzoyl peroxide, tertiary butyl perbenzoate, tertiary butyl peroctoate, lauryl peroxide, azo-bis-isobutyronitrile (AIBN) and any of the other commonly used initiators.
In order to prepare the acid deposition baths as are used herein, the emulsion which has previously been prepared is placed in a non-metallic container and an oxidizing acid system is added thereto. The solids of the resulting bath can vary from about 2% to about the solids level of the emulsion itself. However, when controlled film thicknesses are desired, it is preferred that the bath contain about 5-20% of the solid emulsion cop0lymerthe remainder being acid and water.
The oxidizing acid systems which are used in this bath comprise those acid systems which act upon the particular metallic substrate to be coated producing a concentration of substrate metal ions at the bath-substrate interface sufficient to cause coagulation of the emulsion onto the metal. When the metallic substrate contains iron, zinc or tin, nitric acid and in some cases sulfuric acid will cause the emulsions herein described to coagulate onto these substrata. Most preferred among the above acid systems is nitric acid. When the substrate is either copper or aluminum more vigorous conditions are required. For example, by using a mixture of fiuoroboric acid, hydrofluoric acid, chromic anhydride and potassium ferricyanide either aluminum or copper can be coated by acidic deposition. This mixture can also coagulate emulsions onto normal iron, tin or Zinc type substrata. The amount of the oxidizing acid system that is used herein can vary depending on the stability of the particular emulsion and on the substrate that is to be coated. For example tin plate requires lower acid level baths than does steel. In general the amount of acid can vary from about 1.0% to 50% by weight based upon the solids weight of the emulsion that is used. Preferably this acid content should be in the 2.5 to 15 weight percent range.
Although the preferred method of incorporating the desired acid system into these baths is to add the diluted emulsion to a solution of the oxidizing acid system, it is also possible to prepare the emulsions in the presence of the dilute acid system itself. This method then eliminates the necessity of post-adding acid to the diluted emulsion.
Generally any metallic substrate can be used in the process of this invention. Included are cold rolled steel, phosphatized steel, sand blasted steel, tin free steel, galvanized steel, iron, zinc, tin-plated steel, tin, copper, aluminum, etc. The only requirement of the substrate is that it produces sufiicient ions to coagulate the particular emulsion on its surface when it is immersed in the oxidizing acid system containing bath. Among the various substrata, tin is coated the most rapidly. For example, in a bath containing about 5 to 15 weight percent based on emulsion solids of nitric acid, a tin plated panel will be plated in about 10-40 seconds. On the other hand when steel panels are immersed in a bath containing a like amount of the same acid, plating can take from about 1 to 20 minutes.
When baths are prepared as above, substrate coating can be carried out at room temperature or lower Without difficulty. Likewise the bath temperature can be increased to 50 C. or higher with a corresponding decrease in substrate plating time. Surprisingly, as the bath temperature is increased, the water resistance of the plated panels also increases. In general, plating can be carried out between just above the freezing point of the bath and just below its boiling point.
The baths as prepared herein can be used repeatedly to coat a large number of metal articles. For example, a 10% solids emulsion bath placed in a 500 ml. beaker can be used to plate as many as 150 or more 3" x 6" steel panels. However, as increasing numbers of articles are coated the bath emulsion solids tends to decrease while the bath pH increases. Thus additional amounts of the acid system and the emulsion must periodically be introduced into the coating bath. Furthermore, as more panels are coated residual metal ion content in the bath increases due to the surface dissolution of the metallic articles. This metal ion content can be controlled by any conventional means of metallic ion separation, e.g., electrodeposition, precipitation, ion exchange, etc.
The process herein disclosed is not limited to the coating of metal panels. Thus, car bodies, siding material, appliance bodies, metal containers, or any other metallic substrate can be coated with advantage. Moreover, in a variation of this process a metal tank or container can be coated by pumping the bath as described above into this container and then removing the bath after a coating of sufl'icient thickness is obtained. In general any metallic substrate can be coated simply by contacting it With the baths herein prepared. Furthermore using normal pigmentation techniques, the emulsions of this invention can be formed into paints. The pigments which are useful, however, are preferably limited to those pigments which are nonreactive with oxidizing acid systems. For example: barytes, red iron oxide, titanium dioxide, magnesium silicate, calcium silicate, carbon black, etc., are useful. These pigmented emulsions can be employed to coat metallic articles by the processes described herein in the same manner that non-pigmented emulsions can be used.
Following the above deposition step, the coated metal articles are contacted with the solution described hereinafter, preferably washed with water, and then either air dried or baked using standard methods. Although not required it has been found particularly advantageous when baking to carry out a two step baking process. In the first step the substrate is baked at a low temperature (about F.l75 F.) for about 1 minute to 25 minutes. This step allows the removal of water trapped in the coated films. Following this step a higher temperature bake (about 225 F. to 400 F.) is carried out over a like period to insure complete cure of the coating. When cure is used herein it is meant ot be synonymous with crosslinking or drying.
In preparing the post-dip solutions of this invention (also referred to as wash solution or bath) any solvent which will solvate the materials hereinafter described can be used with the proviso that this solvent not act to dissolve the acidic deposition films during immersion. However, it is preferred that a major portion of the solvent be water.
The active portion of this post-dipping bath is about 0.25 to about 7.0 weight percent (based upon the total post-dip bath content) of a material selected from chromium trioxide, phosphoric acid, and water soluble or acid soluble chromates and dichromates. Included among these materials are the following chromates; potassium, sodium, ammonium, calcium, cesium, lithium, magnesium, zinc, etc., and dichromates; sodium, ammonium, lithium, etc. Preferred among these chromates and dichromates is zinc chromate.
When phosphoric acid is used in the post-dipping bath it is preferred that it be added to the bath at about the 0.25 to 3.0 weight percent level. However, when the chromates are used, e.g., zinc chromate or chromium trioxide, this level preferably can range from 0.25 to 5.0 percent. Most preferable results, in general, are obtained when any of the above bath materials are present at about the 0.5 to 1.5 weight percent level.
The amount of time that the uncured or unbaked acidic deposited film is exposed to this bath can vary from about seconds to 5-10 minutes. However it is preferred that hath exposure generally be in the 90 seconds range. Exposures of greater than 15 or minutes generally cause redispersion of the uncured film and result in baked films which are highly discolored.
The unbaked acidic deposited :films can be exposed to the above bath by any convenient method. For example, a tank or container which has been coated by acidic deposition can be subjected to this bath by pumping the bath solution into the container itself. Likewise, this bath can be applied by spraying or brushing. However the preferred method of bringing the acidic deposited, coated metal substrate into contact with this bath is by dipping.
Although the exact mechanism by which the emulsions as used herein coagulate onto the surface of a metal article in the presence of an oxidizing acid system is not known, it is thought that the particular acid systems which are useful react with the metallic substrate to produce metal ions. This can be illustrated for iron and nitric acid as follows:
The ferrous ions (Fe++) can then be further oxidized to ferric ions (Fe+++) in the presence of oxygen and acid:
Fe o Fe Hzr These metal ions in turn can act to coagulate the emulsion. Since this coagulation effect occurs at the interface of the metallic article and the emulsion, a film of the emulsion is thereby deposited onto the surface of the metallic article.
It is thought that this interfacial coagulation is caused by the metal ions acting to reduce the absolute electrochemical potential or zeta potential of the emulsion particles. Zeta potential is defined as the difference between the movable outer layer emulsion particle charge and the overall charge of the emulsifying liquid. When the magnitude of this charge is reduced sufiiciently by a high concentration of metal ions as are found at the emulsionsubstrate interface, the individual emulsion particles are then caused to coagulate. This explanation is oifered only to clarify the process of the invention herein described. It is not included as a limitation upon this invention. In the following examples parts unless otherwise specified are understood to mean parts by weight.
8 EXAMPLE 1 An aqueous emulsion was prepared by the following procedure:
(1) Into a reaction flask equipped with a mechanical agitator, thermometer, three addition funnels and reflux condenser were added 720 gramsv of water, 64.8 grams of a 5% aqueous solution of the sodium salt of 2-sulfoethyl methacrylate and 4.8 grams of sodium vinyl sulfonate.
(2) A mixture was prepared containing 64.8 grams of a 5% aqueous solution of the sodium salt of 2-sulfoethyl methacrylate, 4.8 grams of sodium vinyl sulfonate, 47.4 grams of a 60% aqueous solution of N-methylol acrylamide and grams of water.
(3) 7.8 grams of potassium persulfate and 16.2 grams of itaconic acid were dissolved in 240 grams of water.
(4) A solution of 28.2 grams of isobornyl methacrylate, 367.8 grams of acrylonitrile and 658.2 grams of butyl acrylate was prepared.
#1 was heated to 149 F. with a continuous nitrogen flow. When the temperature became stable at 149 F., 7.8 grams of sodium metabisulfite were added. Separate three hour additions of #2, #3, and #4 were begun. At the end of the addition, the reaction temperature was increased to 167 F. and 60 drops of tertiary butyl hydroperoxide were added. 1 /2 hours later an additional 60 drops of tertiary butyl hydroperoxide were added and the resulting mixture was held 2 /2 more hours. An emulsion resulted having no free monomer, a density of 1.02 grams/mL, a pH of 2.72 and a #1 spindle, 20 r.p.m., Brookfield viscosity of 24 cps.
An acidic deposition bath was prepared by adding 40 ml. of the above emulsion to 150 ml. of water and 10 ml. of a 10% aqueous nitric acid solution. Seven duplicate sets of panels Were dipped in the above bath for five minutes producting uniform coatings thereon. Immediately after the coating process, one of the coated panels from each set was dipped for 30 seconds in water while the other panel of the set was dipped for 30 seconds in a 0.5% aqueous chromium trioXide solution. Both panels were then baked for 5 minutes at F. followed by 5 minutes at 300 F. The water uptake of all panels was determined with the following results.
Water up-take, Set Post-dip percent 1 Water Ohr0mate.-
7.... 7 Chromate.
Following the above tests all chromium trioxide dipped panels showed much less surface discoloration than did the water dipped panels.
EXAMPLE 2 from each set was then immersed in a 1% aqueous phosphorie acid solution for 30 seconds and then baked for 5 minutes at 140 F. followed by 5 minutes at 300 F. The other panel in each set was baked as above immediately after its removal from the acidic deposition bath. Water up-take was evaluated with the following results:
Water Phosphate up-take, Set post-dip percent All phosphoric acid post dipped panels exhibited very little discoloration after the water up-take test. However, the non-dipped panels discolored severely.
EXAMPLE 3 An emulsion was prepared as described in Example 1. An acidic deposition bath was prepared by adding 20 ml. of this emulsion to 10 ml. of a 5% aqueous nitric acid solution and 70 ml. of water. A zinc chromate containing solution was prepared by adding an excess of zinc carbonate to a 10% aqueous chromium trioxide solution. For a 3.0% zinc chromate post-dip bath 60 ml. of this zinc chromate-chromium trioxide solution were added to 140 ml. of water. For a 0.5% post-dip solution 10 ml. were added to 190 ml. of water. Two cold rolled steel panels were dipped into the above acidic deposition bath for 5 minutes, washed, and one was post-dipped in the 3% zinc chromate solution for 30 seconds while the other was similarly dipped in the 0.5% zinc chromate post-dip solution.
A normal water up-take test was run except that both panels were allowed to remain in the room temperature water for 20 additional hours. The 0.5% zinc chromate post dipped panel exhibited a water up-take of 1.6% while the 3% zinc chromate post dipped panel gained no weight at all.
EXAMPLE 4 Using the same procedure as described in Example 1, an emulsion was prepared which exhibited a #1 spindle, 20 r.p.m., Brookfield viscosity of 23 cps., essentially no free monomer, a pH of 2.90 and a solids content of 48.5% (48.1% theoretical). At the same time a pigment paste was prepared comprising 12 parts of a mixture of magnesium silicate and calcium silicate, 24 parts of barytes, 24 parts of red iron oxide, 24.0 parts of water, 1.6 parts of Daxad 30, an anionic surfactant derived from the sodium salt of a polymerized carboxylic acid obtained from W. R. Grace and Company, 1.6 parts of Igepal -610 a nonionic surfactant derived from nonyl phenoxy poly(ethyleneoxy)ethanol obtained from the GAP Co., and 0.8 part of an anti-foaming agent AF-100 obtained from the NOPCO Company.
An acid deposition bath was prepared by mixing 10 ml. of a 10% aqueous nitric acid solution, 10 ml. of the above pigment paste, 20 ml. of, the above emulsion and 60 ml. of water. A cold rolledsteel panel was dipped into this bath for minutes and then dipped into a bath containing 0.5 weight percent chromium trioxide. This panel was then baked for 15 minutes at 140 F. followed by 15 minutes at 300 F. A red coating resulted which had excellent appearance and exhibited a water up-take of 2.41%.
EXAMPLE 5 Using the same procedure as in Example 1, a similar emulsion was prepared except that #3 contained 90 additional grams of water, and 16.2 additional grams of itaconic acid and that #4 contained 16.2 less grams of butyl acrylate. The resulting emulsion exhibited a solids content of 45.6% (47.0% theoretical), less than 0.2 free monomer, a density of 1.03 g./ml. and a pH of 3.05.
A ml. acidic deposition bath was prepared by mixing 20 ml. of the above emulsion with 5 ml. of a 10 weight percent aqueous nitric acid solution and 75 ml. of water. Six pairs of cold rolled steel panels were dipped in this bath for 5 minutes. Out of each pair one was dipped in a bath containing 10 ml. of a 10% by weight aqueous chromium trioxide solution and 190 ml. of water. Both the dipped and the non-dipped panels were then baked for 5 minutes at F. followed by 5 minutes at 300 F. Water up-take tests were performed on each set of panels with the following results:
Chromate Set post-dip EXAMPLE 6 An emulsion was prepared according to Example 1. 600 ml. of this emulsion were added to a mixture of 2250 ml. of water and ml. of a 10% aqueous nitric acid solution. In addition a 0.5% chromate bath was prepared by adding 5 grams of chromium trioxide to 1000 grams of water. 2 sets of cold rolled steel panels were coated for 5 minutes in the above acidic deposition bath. Out of each set one panel was dipped for 30 seconds in the chromate post dip solution and baked with the non-post-dipped P31861501 5 minutes at 140 F. followed by 5 minutes at 3 The first set of panels were placed in 70 C. salt spray for 24 hours and removed. The chromate post-dipped panel showed little evidence of degradation. On the other hand the non-post-dipped panel was completely blistered and discolored after this period of salt spray. The postdipped panel was kept in salt spray for 23 additional hours before substantial film degradation occurred. But even after this 47 hours of total salt spray exposure no blistering of the film was evident.
The second set of panels as prepared above-one nonpost-dipped and one post-dipped was placed in boiling water. After 2 hours immersion the film on the postdipped panel was still tough with no evidence of discoloration. However, after only /2 hours immersion in boiling water, the film on the non-post-dipped panel was severely discolored. One hours immersion resulted in a bubbling of the film while after 1 /2 hours immersion, the non-post-dipped film peeled off its steel substrate.
EXAMPLE 7 Using the same procedure as in Example 1 a similar emulsion was prepared except that part #4 contained 629 grams of butyl acetate, 59 grams of isobornyl methacrylate, and 368 grams of 'acrylonitrile. The resulting emulsion exhibited a solids content of 47.6% (47.7% theoretical), and a percent monomer conversion of 9916-.
An acidic deposition bath was prepared by adding 20 ml. of the above emulsion to 5 ml. of a 10% aqueous nitric acid solution and 75 ml. of water. Two sets of steel panels were dipped in the above bath for 5 minutes and one set was post-dipped for 30 seconds in a 1.0 weight percent chromium trioxide solution while the other set was dipped for a like amount of time in a 3.0 weight percent chromium trioxide solution. These panels were then baked Percent Chromium Water trioxide up-take Film appearance and general water resistance were excellent.
In the same manner a series of comparisons between water post-dipped and chromate post-dipped acidic deposition coated panels was made for levels of chromium trioxide of 0.5%, 1.0%, 3.0%, and 5.0%. On the average post-dipping in the chromate bath improved the water resistance of these acidic deposited films by 50% over the water post-dipped films.
It is understood that the foregoing detailed description is given merely by way of illustration and that many variations can be made therein without departing from the spirit of this invention.
The embodiments of this invention in which an exclusive privilege or property is claimed are:
1. An improvement in the process of coating metallic articles by acidic deposition which comprises:
contacting an un-baked or uncured acidic deposited coating of a synthetic film-forming resin on a metallic article with a solution comprising about 0.25 to 7 weight percent, based on the total solution weight, of a material selected from the group consisting of phosphoric acid, chromium trioxide, and water or acid soluble chromates and dichromates.
2. An improvement in the process of coating metallic articles by acidic deposition which comprises:
contacting an unbaked or uncured acidic deposited coating of a synthetic film-forming resin on a metallic article with a solution comprising about 0.25 to 7 weight percent based on the total solution weight, of a material selected from the group consisting of phosphoric acid, chromium trioxide, and water or acid soluble chromates and dichromates; and baking said article for a time suflicient to cure the coating thereon.
3. The process of claim 1 wherein said solution is aqueous.
4. The process of claim 1 wherein said material is selected from the group consisting of phosphoric acid, chromium trioxide and zinc chromate.
5. The process of claim 1 wherein said solution comprises about 0.25 to 5.0 weight percent of chromium trioxide.
6. The process of claim 1 wherein said solution comprises 0.25 to 3.0 weight percent of phosphoric acid.
7. The process of claim 1 wherein said solution com prises 0.25 to 5.0 weight percent of zinc chromate.
8. The process of claim 1 wherein said material is present in an amount equal to about 0.5 to 1.5 weight percent based on the total solution weight.
9. The coated article obtained by the process of claim 1.
10. The coated article obtained by the process of claim 2.
References Cited UNITED STATES PATENTS 2,296,070 9/1942 Thompson et a1 148-6.15
RALPH S. KENDALL, Primary Examiner U.S. Cl. X.R.
ll762.l, 132 C; 148-62, 31.5
US3647567D 1969-11-28 1969-11-28 Post-dipping of acidic deposition coatings Expired - Lifetime US3647567A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88098169A 1969-11-28 1969-11-28

Publications (1)

Publication Number Publication Date
US3647567A true US3647567A (en) 1972-03-07

Family

ID=25377534

Family Applications (1)

Application Number Title Priority Date Filing Date
US3647567D Expired - Lifetime US3647567A (en) 1969-11-28 1969-11-28 Post-dipping of acidic deposition coatings

Country Status (2)

Country Link
US (1) US3647567A (en)
AT (1) AT301978B (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839097A (en) * 1972-05-26 1974-10-01 Amchem Prod Stabilization of acidic aqueous coating compositions containing an organic coating-forming material
US3865617A (en) * 1971-08-11 1975-02-11 Toyota Motor Co Ltd Method of coating by redox polymerization
US3936546A (en) * 1971-06-14 1976-02-03 Amchem Products, Inc. Prolonging the stability of coating baths
DE2719558A1 (en) * 1976-05-04 1977-11-17 Nippon Paint Co Ltd METAL SURFACE TREATMENT METHOD
US4138276A (en) * 1976-03-01 1979-02-06 J. M. Eltzroth & Associates, Inc. Coating compositions
US4170671A (en) * 1977-05-03 1979-10-09 Nippon Paint Co., Ltd. Method for treatment of metal surface
US4180603A (en) * 1977-01-31 1979-12-25 Oxy Metal Industries Corporation Coating bath composition and method
US4186226A (en) * 1978-06-21 1980-01-29 Union Carbide Corporation Autodeposited coatings with increased surface slip
US4190468A (en) * 1977-08-15 1980-02-26 Nippon Steel Corporation Process for coating an electrical steel sheet with an anti-sticking layer
US4214022A (en) * 1975-05-30 1980-07-22 Akzo N.V. Coating metal by immersion
US4215162A (en) * 1975-05-30 1980-07-29 Akzo N.V. Process of coating metal surfaces
US4229492A (en) * 1977-12-30 1980-10-21 Amchem Products, Inc. Control of autodeposition baths
US4255305A (en) * 1977-01-31 1981-03-10 Oxy Metal Industries Corporation Coating bath composition and method
US4357372A (en) * 1977-12-30 1982-11-02 Amchem Products, Inc. Control of autodeposition baths
US4411950A (en) * 1978-06-21 1983-10-25 Amchem Products, Inc. Autodeposited coatings with increased surface slip
US4562098A (en) * 1983-07-25 1985-12-31 Amchem Products Inc. Water or steam cure of autodeposited resin coatings on metallic substrates
US4636264A (en) * 1985-01-09 1987-01-13 Gerhard Collardin Gmbh Autodeposition post-bath rinse process
US4636265A (en) * 1984-11-26 1987-01-13 Henkel Kommanditgesellschaft Auf Aktien Autodeposition post-bath rinse
US4637839A (en) * 1975-08-29 1987-01-20 Amchem Products, Inc. Treating autodeposited coating with Cr composition
US4647480A (en) * 1983-07-25 1987-03-03 Amchem Products, Inc. Use of additive in aqueous cure of autodeposited coatings
US4657788A (en) * 1986-03-31 1987-04-14 The Standard Oil Company Process for multiple stage autodeposition of organic coatings onto metals
US4800106A (en) * 1987-06-19 1989-01-24 Amchem Products, Inc. Gloss enhancement of autodeposited coatings
US5114751A (en) * 1989-10-24 1992-05-19 Henkel Corporation Application of an organic coating to small metal articles
US5164234A (en) * 1991-01-24 1992-11-17 Henkel Corporation Treating an autodeposited coating with an alkaline solution containing organophosphonate ions
US5248525A (en) * 1991-01-24 1993-09-28 Henkel Corporation Treating an autodeposited coating with an alkaline solution containing anions of multifunctional organic acids
US5342694A (en) * 1983-07-25 1994-08-30 Henkel Corporation Treating an autodeposited coating with an alkaline material
US5688560A (en) * 1993-11-09 1997-11-18 Henkel Corporation Process for coating metal surfaces
US6143365A (en) * 1998-06-03 2000-11-07 Henkel Corporation Autodeposited coating with improved thermal stability and composition and process therefor
WO2000071265A1 (en) 1999-05-21 2000-11-30 Henkel Corporation Autodeposition post-bath rinse process
US20020011309A1 (en) * 2000-02-18 2002-01-31 Agarwal Rajat K. Rubber-metal Composites
US20030104212A1 (en) * 1999-05-26 2003-06-05 Agarwal Rajat K. Epoxy resin-based autodeposition coatings
US6613387B2 (en) 2000-11-22 2003-09-02 Henkel Corporation Protective reaction rinse for autodeposition coatings
US20040220058A1 (en) * 2002-09-06 2004-11-04 Eoff Larry S. Compositions and methods of stabilizing subterranean formations containing reactive shales
US20040229757A1 (en) * 2003-05-16 2004-11-18 Eoff Larry S. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US20040229756A1 (en) * 2003-05-16 2004-11-18 Eoff Larry S. Method for stimulating hydrocarbon production and reducing the production of water from a subterranean formation
US20050164894A1 (en) * 2004-01-24 2005-07-28 Eoff Larry S. Methods and compositions for the diversion of aqueous injection fluids in injection operations
US20050194140A1 (en) * 2003-05-16 2005-09-08 Halliburton Energy Services, Inc. Methods useful for diverting aqueous fluids in subterranean operations
US20050199396A1 (en) * 2003-05-16 2005-09-15 Leopoldo Sierra Methods useful for controlling fluid loss in subterranean treatments
US20050230116A1 (en) * 2004-04-15 2005-10-20 Eoff Larry S Methods and compositions for use with spacer fluids used in subterranean well bores
US20060137875A1 (en) * 2003-05-16 2006-06-29 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss in subterranean formations
US20060266522A1 (en) * 2003-05-16 2006-11-30 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US20060283592A1 (en) * 2003-05-16 2006-12-21 Halliburton Energy Services, Inc. Method useful for controlling fluid loss in subterranean formations
US7398825B2 (en) 2004-12-03 2008-07-15 Halliburton Energy Services, Inc. Methods of controlling sand and water production in subterranean zones
US20080173448A1 (en) * 2007-01-19 2008-07-24 Halliburton Energy Services, Inc. Methods for treating intervals of a subterranean formation having variable permeability
US7493957B2 (en) 2005-07-15 2009-02-24 Halliburton Energy Services, Inc. Methods for controlling water and sand production in subterranean wells
US20090090056A1 (en) * 2007-10-09 2009-04-09 Greatpoint Energy, Inc. Compositions for Catalytic Gasification of a Petroleum Coke
US20090120642A1 (en) * 2007-11-14 2009-05-14 Halliburton Energy Services, Inc. Methods to enhance gas production following a relative-permeability-modifier treatment
US20090253594A1 (en) * 2008-04-04 2009-10-08 Halliburton Energy Services, Inc. Methods for placement of sealant in subterranean intervals
US20100186954A1 (en) * 2005-07-15 2010-07-29 Nguyen Phillip D Methods for controlling water and particulate production in subterranean wells
US20100216672A1 (en) * 2009-02-24 2010-08-26 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
US20110034351A1 (en) * 2009-08-10 2011-02-10 Eoff Larry S Hydrophobically and Cationically Modified Relative Permeability Modifiers and Associated Methods
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
US8962535B2 (en) 2003-05-16 2015-02-24 Halliburton Energy Services, Inc. Methods of diverting chelating agents in subterranean treatments

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936546A (en) * 1971-06-14 1976-02-03 Amchem Products, Inc. Prolonging the stability of coating baths
US3865617A (en) * 1971-08-11 1975-02-11 Toyota Motor Co Ltd Method of coating by redox polymerization
US3839097A (en) * 1972-05-26 1974-10-01 Amchem Prod Stabilization of acidic aqueous coating compositions containing an organic coating-forming material
US4214022A (en) * 1975-05-30 1980-07-22 Akzo N.V. Coating metal by immersion
US4215162A (en) * 1975-05-30 1980-07-29 Akzo N.V. Process of coating metal surfaces
US4637839A (en) * 1975-08-29 1987-01-20 Amchem Products, Inc. Treating autodeposited coating with Cr composition
US4138276A (en) * 1976-03-01 1979-02-06 J. M. Eltzroth & Associates, Inc. Coating compositions
DE2719558A1 (en) * 1976-05-04 1977-11-17 Nippon Paint Co Ltd METAL SURFACE TREATMENT METHOD
US4180603A (en) * 1977-01-31 1979-12-25 Oxy Metal Industries Corporation Coating bath composition and method
US4255305A (en) * 1977-01-31 1981-03-10 Oxy Metal Industries Corporation Coating bath composition and method
US4170671A (en) * 1977-05-03 1979-10-09 Nippon Paint Co., Ltd. Method for treatment of metal surface
US4190468A (en) * 1977-08-15 1980-02-26 Nippon Steel Corporation Process for coating an electrical steel sheet with an anti-sticking layer
US4357372A (en) * 1977-12-30 1982-11-02 Amchem Products, Inc. Control of autodeposition baths
US4229492A (en) * 1977-12-30 1980-10-21 Amchem Products, Inc. Control of autodeposition baths
US4186226A (en) * 1978-06-21 1980-01-29 Union Carbide Corporation Autodeposited coatings with increased surface slip
US4411950A (en) * 1978-06-21 1983-10-25 Amchem Products, Inc. Autodeposited coatings with increased surface slip
US4562098A (en) * 1983-07-25 1985-12-31 Amchem Products Inc. Water or steam cure of autodeposited resin coatings on metallic substrates
US5342694A (en) * 1983-07-25 1994-08-30 Henkel Corporation Treating an autodeposited coating with an alkaline material
US4647480A (en) * 1983-07-25 1987-03-03 Amchem Products, Inc. Use of additive in aqueous cure of autodeposited coatings
US4636265A (en) * 1984-11-26 1987-01-13 Henkel Kommanditgesellschaft Auf Aktien Autodeposition post-bath rinse
US4636264A (en) * 1985-01-09 1987-01-13 Gerhard Collardin Gmbh Autodeposition post-bath rinse process
US4657788A (en) * 1986-03-31 1987-04-14 The Standard Oil Company Process for multiple stage autodeposition of organic coatings onto metals
US4800106A (en) * 1987-06-19 1989-01-24 Amchem Products, Inc. Gloss enhancement of autodeposited coatings
US5114751A (en) * 1989-10-24 1992-05-19 Henkel Corporation Application of an organic coating to small metal articles
US5248525A (en) * 1991-01-24 1993-09-28 Henkel Corporation Treating an autodeposited coating with an alkaline solution containing anions of multifunctional organic acids
US5164234A (en) * 1991-01-24 1992-11-17 Henkel Corporation Treating an autodeposited coating with an alkaline solution containing organophosphonate ions
US5688560A (en) * 1993-11-09 1997-11-18 Henkel Corporation Process for coating metal surfaces
US6143365A (en) * 1998-06-03 2000-11-07 Henkel Corporation Autodeposited coating with improved thermal stability and composition and process therefor
US6410092B1 (en) 1999-05-21 2002-06-25 Henkel Corporation Autodeposition post-bath rinse process
WO2000071265A1 (en) 1999-05-21 2000-11-30 Henkel Corporation Autodeposition post-bath rinse process
US20030104212A1 (en) * 1999-05-26 2003-06-05 Agarwal Rajat K. Epoxy resin-based autodeposition coatings
US6833398B2 (en) * 1999-05-26 2004-12-21 Henkel Kommanditgesellschaft Auf Aktien Epoxy resin-based autodeposition coatings
US20020011309A1 (en) * 2000-02-18 2002-01-31 Agarwal Rajat K. Rubber-metal Composites
US6805768B2 (en) 2000-02-18 2004-10-19 Henkel Kommanditgesellschaft Auf Aktien Method of forming rubber-metal composites
US6613387B2 (en) 2000-11-22 2003-09-02 Henkel Corporation Protective reaction rinse for autodeposition coatings
EP1339504A1 (en) * 2000-11-22 2003-09-03 Henkel Kommanditgesellschaft auf Aktien Protective reaction rinse for autodeposition coatings
EP1339504A4 (en) * 2000-11-22 2004-03-31 Henkel Kgaa Protective reaction rinse for autodeposition coatings
US20040220058A1 (en) * 2002-09-06 2004-11-04 Eoff Larry S. Compositions and methods of stabilizing subterranean formations containing reactive shales
US7741251B2 (en) 2002-09-06 2010-06-22 Halliburton Energy Services, Inc. Compositions and methods of stabilizing subterranean formations containing reactive shales
US20040229757A1 (en) * 2003-05-16 2004-11-18 Eoff Larry S. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US20040229756A1 (en) * 2003-05-16 2004-11-18 Eoff Larry S. Method for stimulating hydrocarbon production and reducing the production of water from a subterranean formation
US8962535B2 (en) 2003-05-16 2015-02-24 Halliburton Energy Services, Inc. Methods of diverting chelating agents in subterranean treatments
US20050194140A1 (en) * 2003-05-16 2005-09-08 Halliburton Energy Services, Inc. Methods useful for diverting aqueous fluids in subterranean operations
US20050199396A1 (en) * 2003-05-16 2005-09-15 Leopoldo Sierra Methods useful for controlling fluid loss in subterranean treatments
US8631869B2 (en) 2003-05-16 2014-01-21 Leopoldo Sierra Methods useful for controlling fluid loss in subterranean treatments
US20060137875A1 (en) * 2003-05-16 2006-06-29 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss in subterranean formations
US8278250B2 (en) 2003-05-16 2012-10-02 Halliburton Energy Services, Inc. Methods useful for diverting aqueous fluids in subterranean operations
US8251141B2 (en) 2003-05-16 2012-08-28 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US20060266522A1 (en) * 2003-05-16 2006-11-30 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US20060283592A1 (en) * 2003-05-16 2006-12-21 Halliburton Energy Services, Inc. Method useful for controlling fluid loss in subterranean formations
US8181703B2 (en) 2003-05-16 2012-05-22 Halliburton Energy Services, Inc. Method useful for controlling fluid loss in subterranean formations
US8091638B2 (en) 2003-05-16 2012-01-10 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss in subterranean formations
US7759292B2 (en) 2003-05-16 2010-07-20 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US7595283B2 (en) 2004-01-20 2009-09-29 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US20060234874A1 (en) * 2004-01-20 2006-10-19 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US8008235B2 (en) 2004-01-20 2011-08-30 Halliburton Energy Services, Inc. Permeability-modifying drilling fluids and methods of use
US20060240994A1 (en) * 2004-01-20 2006-10-26 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US7589048B2 (en) 2004-01-20 2009-09-15 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US20050155796A1 (en) * 2004-01-20 2005-07-21 Eoff Larry S. Permeability-modifying drilling fluids and methods of use
US20050164894A1 (en) * 2004-01-24 2005-07-28 Eoff Larry S. Methods and compositions for the diversion of aqueous injection fluids in injection operations
US7563750B2 (en) 2004-01-24 2009-07-21 Halliburton Energy Services, Inc. Methods and compositions for the diversion of aqueous injection fluids in injection operations
US20050230116A1 (en) * 2004-04-15 2005-10-20 Eoff Larry S Methods and compositions for use with spacer fluids used in subterranean well bores
US7398825B2 (en) 2004-12-03 2008-07-15 Halliburton Energy Services, Inc. Methods of controlling sand and water production in subterranean zones
US7493957B2 (en) 2005-07-15 2009-02-24 Halliburton Energy Services, Inc. Methods for controlling water and sand production in subterranean wells
US20100186954A1 (en) * 2005-07-15 2010-07-29 Nguyen Phillip D Methods for controlling water and particulate production in subterranean wells
US7730950B2 (en) 2007-01-19 2010-06-08 Halliburton Energy Services, Inc. Methods for treating intervals of a subterranean formation having variable permeability
US20080173448A1 (en) * 2007-01-19 2008-07-24 Halliburton Energy Services, Inc. Methods for treating intervals of a subterranean formation having variable permeability
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
US20090090056A1 (en) * 2007-10-09 2009-04-09 Greatpoint Energy, Inc. Compositions for Catalytic Gasification of a Petroleum Coke
US20090120642A1 (en) * 2007-11-14 2009-05-14 Halliburton Energy Services, Inc. Methods to enhance gas production following a relative-permeability-modifier treatment
US7552771B2 (en) 2007-11-14 2009-06-30 Halliburton Energy Services, Inc. Methods to enhance gas production following a relative-permeability-modifier treatment
US20100116498A1 (en) * 2008-04-04 2010-05-13 Dalrymple Eldon D Methods for Placement of Sealant in Subterranean Intervals
US8272440B2 (en) 2008-04-04 2012-09-25 Halliburton Energy Services, Inc. Methods for placement of sealant in subterranean intervals
US20090253594A1 (en) * 2008-04-04 2009-10-08 Halliburton Energy Services, Inc. Methods for placement of sealant in subterranean intervals
US7998910B2 (en) 2009-02-24 2011-08-16 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
US20100216672A1 (en) * 2009-02-24 2010-08-26 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
US20110034351A1 (en) * 2009-08-10 2011-02-10 Eoff Larry S Hydrophobically and Cationically Modified Relative Permeability Modifiers and Associated Methods
US8420576B2 (en) 2009-08-10 2013-04-16 Halliburton Energy Services, Inc. Hydrophobically and cationically modified relative permeability modifiers and associated methods

Also Published As

Publication number Publication date
AT301978B (en) 1972-09-25

Similar Documents

Publication Publication Date Title
US3647567A (en) Post-dipping of acidic deposition coatings
US3709743A (en) Acidic deposition process
US3922451A (en) Coated beverage container and process of coating
US3883453A (en) Coating compositions containing acrylic polymers polymerized in the presence of cellulose acetate butyrate
US5342694A (en) Treating an autodeposited coating with an alkaline material
US3503918A (en) Aqueous dispersion of thermosettable acrylonitrile copolymers and articles coated therewith
US3617368A (en) Process for preparing inherently colloidally stable interpolymers in aqueous dispersion and products coated therewith
US4103049A (en) Process for applying resinous coating to metal surface
US4373050A (en) Process and composition for coating metals
US2918391A (en) Resinous coating composition, method of preparing and method of coating with same
EP0295713B1 (en) Gloss enhancement of autodeposited coatings
EP0132828B1 (en) Vinylidene chloride latex in autodeposition and low temperature cure
US5352726A (en) Autodepositing composition containing vinylidene chloride based resin
US4104424A (en) Process for coating metals
US3036934A (en) Coated article and method of making same
US4874673A (en) Use of fugitive plasticizer in autodepositing composition
US3655426A (en) Process of coating metal with polyvinyl fluoride and resultant product
US3328330A (en) Vinylidene chloride copolymer latices
US4657788A (en) Process for multiple stage autodeposition of organic coatings onto metals
US4160756A (en) Use of metal compound in an autodeposition coating composition
EP0071355B1 (en) Corrosion resistant autodeposition coatings
US6224947B1 (en) Process for forming a resinous coating from an autodepositing composition which includes internally stabilized vinylidene chloride copolymer
US5912297A (en) Internally stabilized vinylidene chloride resin in autodeposition
EP0186113A2 (en) Use of fugitive plasticizer in autodepositing composition
US3282867A (en) Water base interpolymer coatings

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEREZ, INC.,STATELESS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELANESE CORPORATION, A CORP. OF DE.;REEL/FRAME:004599/0982

Effective date: 19860715

Owner name: INTEREZ, INC.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CELANESE CORPORATION, A CORP. OF DE.;REEL/FRAME:004599/0982

Effective date: 19860715

AS Assignment

Owner name: INTEREZ, INC., A CORP. OF GA

Free format text: MERGER;ASSIGNOR:INTEREZ, INC., A CORP. OF DE (MERGED INTO);REEL/FRAME:004756/0154

Effective date: 19861230