US3650877A - Cushioning dunnage product - Google Patents

Cushioning dunnage product Download PDF

Info

Publication number
US3650877A
US3650877A US3650877DA US3650877A US 3650877 A US3650877 A US 3650877A US 3650877D A US3650877D A US 3650877DA US 3650877 A US3650877 A US 3650877A
Authority
US
United States
Prior art keywords
dunnage
strip
product
lengthwise
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
George R Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arpax Co
Original Assignee
Arpax Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arpax Co filed Critical Arpax Co
Application granted granted Critical
Publication of US3650877A publication Critical patent/US3650877A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D5/00Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles
    • B31D5/0039Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making dunnage or cushion pads
    • B31D5/0043Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making dunnage or cushion pads including crumpling flat material
    • B31D5/0047Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making dunnage or cushion pads including crumpling flat material involving toothed wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/09Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using flowable discrete elements of shock-absorbing material, e.g. pellets or popcorn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D2205/00Multiple-step processes for making three-dimensional articles
    • B31D2205/0005Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads
    • B31D2205/0011Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads including particular additional operations
    • B31D2205/0017Providing stock material in a particular form
    • B31D2205/0023Providing stock material in a particular form as web from a roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D2205/00Multiple-step processes for making three-dimensional articles
    • B31D2205/0005Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads
    • B31D2205/0011Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads including particular additional operations
    • B31D2205/0047Feeding, guiding or shaping the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D2205/00Multiple-step processes for making three-dimensional articles
    • B31D2205/0005Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads
    • B31D2205/0011Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads including particular additional operations
    • B31D2205/0058Cutting; Individualising the final products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S206/00Special receptacle or package
    • Y10S206/814Space filler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S493/00Manufacturing container or tube from paper; or other manufacturing from a sheet or web
    • Y10S493/967Dunnage, wadding, stuffing, or filling excelsior
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1016Transverse corrugating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249922Embodying intertwined or helical component[s]

Definitions

  • ABSTRACT A resilient cushioning dunnage product of helical coil like configuration produced from a web of low cost sheet like material, such as paper, by crumpling the web down into a relatively narrow strip and then forming the strip by pressure into generally helical coiled form.
  • tubular like dunnage product formed by taking a web of flexible sheet like material, such as paper, forming the web into generally tubular-like shape by moving lengthwise edges of the web inwardly toward one another and then loosely crumpling the tubular-like product and stitching it along the lengthwise extent thereof to maintain the formed configuration.
  • This invention relates in general to novel cushioning dunnage products and more particularly, dunnage products formed from sheetlike or weblike material, such as paper, into highly resilient configurations for use in packing and cushioning articles or products in shipping containers and thelike.
  • the present invention provides novel dunnage products, possessing considerable resiliency for greatly improving the cushioning characteristics of the packing material.
  • the dunnage products of the invention are relatively economical, may be produced at the location of use, and have resilient characteristics heretofore unknown in formed paper dunnage.
  • an object of the invention is to provide novel dunnage products or packing material.
  • a further object of the invention is to provide a novel dunnage product which is in substantially helical coiled form.
  • a further object of the invention is to provide a novel dunnage product in helical coiled form by passing sheet like material, such as paper, through crumpler means and then through intermeshing bevel gear means to form the sheet like material into a relatively narrow strip, by compressing and coining the strip of crumpled sheetlike material to form it into helical coiled form.
  • a still further object of the invention is to provide a novel dunnage product of helical coiled form, but having spaced, malformed, non coiled portions along the lengthwise extent thereof so that the dunnage product will fall into a tangled resilient mass when compressed and will not collapse axially of the helix.
  • a still further object of the invention is to provide a novel dunnage product formed of a plurality of webs of sheet like material, which are combined and formed into an integral, highly resilient product of tubular pad like construction.
  • a still further object of the invention is to provide novel dunnage products which utilize sheet like stock material for fabricating the dunnage, with the sheet like stock material being able to be stored in compact dense condition, requiring relatively little cubic feet for storage, and which stock material is expanded many times over in the formation of the latter into a dunnage product, and wherein the dunnage product can be formed at the point of packing operations for efficient transmittal of the formed dunnage product directly into containers being packed.
  • a further object of the invention is to provide a novel cushioning dunnage product which is formed of paper sheet stock material which has been oriented into a concave configuration in a direction transverse thereof for guiding the sheet material generally toward tubularlike configuration, with the sheet like material being radially crumpled into a tubularlike lightweight pad which is stitched lengthwise thereof to maintain it in its resilient tubularlike form.
  • a still further object of the invention is to provide a dunnage product of the latter described type which utilizes a plurality of sheets of paper stock material coacting in engaged relation to form the resilient tubularlike product.
  • FIG. 1 is a diagrammatic 'front elevational view showing one embodiment of the invention with the sheetlike material being drawn through crumpler means in the form of a funnellike mechanism, to form an elongated crumpled strip or rope of material for dunnage;
  • FIG. 2 is a side elevational view of the FIG. 1 mechanism
  • FIG. 3 is an enlarged top plan view of a section of the dunnage strip as formed by the mechanism of FIGS. 1 and 2;
  • FIG. 4 is an enlarged sectional view of the dunnage strip taken generally along the plane of line 4-4 of FIG. 3, looking in the direction of the arrows;
  • FIG. 5 is a generally diagrammatic perspective illustration of a dunnage producing mechanism illustrating a preferred embodiment thereof, and one utilizing miter bevel gears for drawing the sheet material through crumpler means, to form the resultant relatively narrow strip or rope of material into coiled or spiral form;
  • FIG. 6 is atop plan, diagrammatic illustration of the mechanism illustrated in FIG. 5;
  • FIG. 7 is a reduced size, fragmentary, perspective view of the mechanism illustrated in FIGS. 5 and 6, and illustrating a kinker mechanism coacting therewith, for preventing the strip of dunnage from being coiled into symmetrical or regular helical form, so as to reduce the density of the dunnage;
  • FIG. 8 is an elevational view of a section of the dunnage formed by the mechanism of FIGS. 5 through 7;
  • FIG. 9 is a sectional view taken along the plane of line 9-9 of FIG. 8;
  • FIG. 9A is a fragmentary, enlarged elevational view of a section of the dunnage of FIG. 8 showing the generally corrugated configuration thereof;
  • FIG. 10 is a fragmentary elevational, generally diagrammatic view illustrating a mechanism adapted for use with the dunnage mechanism of FIGS. 5 and 6 for producing predetermined weights of a quantity or slug (as they will be hereinafter called) of the dunnage material;
  • FIG. 11 is a diagrammatic, sectional view of a shipping container with an'article packed therein with a quantity of the dunnage material illustrated in FIG. 8;
  • FIG. 12 is a fragmentary elevational view generally similar to FIG. 1 but illustrating another embodiment of the invention, and one utilizing spur gear means for drawing the sheetlike material through the crumpler mechanism, to produce a strip or rope of coined or intermittently compressed dunnage;
  • FIG. 13 is a fragmentary side elevational view of the FIG. 12 mechanism
  • FIG. 14 is an enlarged top plan view of a section of the dunnage produced by the mechanism of FIGS. 12 and 13;
  • FIG. 15 is a side elevational view of the dunnage of FIG. 14;
  • FIG. 16 is a top plan view of a piece of dunnage produced in a dunnage mechanism generally similar to that of FIGS. 12 and 13 but wherein helical gears are utilized instead of spur gears, for drawing the sheetlike material through the crumpler and to coin the strip of dunnage;
  • FIG. 17 is a fragmentary, enlarged diagrammatic illustration of another embodiment of dunnage producing mechanism utilizing a belt operating on a spirallike rod or mandrel, for forming a strip or rope of sheetlike material, which has been previously formed into strip or rope form by a crumpler or folder means, into a coiled strip or rope of dunnage;
  • FIG. 18 is a reduced size, top plan view of the mechanism illustrated in FIG. 17;
  • FIG. 19 is a side elevational view of the FIG. 18 mechanism
  • FIG. 20 is an enlarged, perspective fragmentary view of a piece of the sheetlike material as folded into striplike or ropelike form by the crumpler or folder means of the FIG. 17 mechanism;
  • FIG. 21 is an enlarged, fragmentary, illustration of a section of the coiled dunnage as formed by the spiral mandrel and coacting belt ofthe FIG. 17 mechanism;
  • FIG. 22 is a reduced size, generally diagrammatic illustration of the belt utilized in the FIGS. 17-19 mechanism and illustrating the full twist formed in the belt for effective coaction with the spiral mandrel for producing the coiled configuration of dunnage;
  • FIG. 23 is a partially broken front elevation ofa further embodiment of dunnage producing mechanism and one utilizing a plurality of webs of sheetlike material for forming a resilient tubularlike dunnage product oflow density;
  • FIG. 24 is a partially broken side elevational view of the FIG. 23 embodiment
  • FIG. 25 is an elevational view of a section of dunnage produced by the dunnage producing mechanism of for instance FIGS. 5-7, and wherein the formed coils are not as tight as those of the FIG. 8 dunnage, and the strip or rope of paper material is not compressed to the extent of that of the FIG. 8 dunnage;
  • FIG. 26 is a sectional view taken generally along the plane ofline 26-26 of FIG. 25;
  • FIG. 27 is an elevational view of a section of tubularlike dunnage produced by the mechanism of FIGS. 23 and 24;
  • FIG. 28 is a sectional view taken generally along the plane ofline 28-28 of FIG. 27;
  • FIG. 29 is an elevational view of a modified form of tubularlikc dunnage, which is coined only on one lengthwise edge thereof instead of on both lengthwise edges as in the FIG. 27 embodiment;
  • FIG. 30 is a sectional view taken generally along the plane ofline 3030 of FIG. 29.
  • FIG. 31 is a diagrammatic top plan view of the geared cutter mechanism of the FIGS. 23 and 24 machine, illustrating the cutting geometrics thereof.
  • FIG. 1 illustrates a roll 10 of sheetlike material 14 supported on trunnions 1011 with a crumpler means 12 being preferably disposed in generally vertical downwardly spaced relation to the roll 10, and through which the sheetlike material 14 is adapted to move to form such sheetlike material into a relative narrow continuous strip or rope 16.
  • a suitable sheetlike material has been found to be Kraft paper having a density of 47.5 pounds per cubic foot. It will be understood however that other types of papers and other sheetlike materials would also be satisfactory.
  • the crumpler mechanism 12 in the embodiment illustrated, comprises a funnellike device having a widened mouth portion 18 and a relatively narrow discharge end portion 20, thereby causing a gathering of the sheetlike material 14 as it comes off the roll and formation of such material into a relatively narrow strip or rope as it exits from the discharge end 20.
  • Means 22 may be provided for pulling the sheetlike material through the crumpler I2, and in the embodiment illustrated such means comprises a pair of rotatable rolls 24, 24a (such as rubber rollers) which may be drivingly connected to one another by means of gearing 26 at the ends thereof, and with one of said rolls (e.g., 24) being operatively coupled to a preferably variable speed, power unit 28, such as an electric motor, for rotating the rolls.
  • a preferably variable speed, power unit 28 such as an electric motor
  • the rolls 24, 24a are driven to cause drawing of the sheet material through the crumpler 12.
  • the outer surfaces of the rolls 24, 24a may be serrated, especially if they are formed ofa material of low coefficient of friction, so as to increase the frictional coaction with the strip emitting from the discharge end of the crumpler.
  • a braking device comprising in the embodiment illustrated a strip of material 29 anchored as at 29a and coacting in frictional engagement with roll 10, may be provided to prevent overrunning of the roll.
  • weight 30 attached to strip 29 maintains the frictional coaction between the roll 10 and strip 29. As can be best seen in FIG.
  • the finished generally flattened strip of dunnage material is of generally irregular configuration and is formed of plies or folds of the sheet material 14 as it is crumpled together by the crumpler mechanism 12.
  • a cutter mechanism 31 of any suitable type may be provided for cutting the strip of dunnage material after it is formed by crumpler l2 and rolls 24, 240, into suitable length sections for use as dunnage.
  • Such cutter mechanism may comprise a conventional pivotal knife which may be either manually or power operated, and preferably is under the selective control of the operator.
  • the dunnage strip sections may be of any desired length, and may be fed from the dunnage producing mechanism directly into the shipping container or the like in which articles are being packed, or such dunnage strip may be cut into predetermined length sections, and then placed in the shipping container in mass.
  • such mechanism may comprise a support 34 for mounting a roll 10 of the sheetlike material 14, with such support 34 being preferably adjustable with respect to the platform 36, upon which the support may be mounted and preferably being adapted to accommodate a variety of roll widths.
  • the crumpler means 38 of the FIG. 5 mechanism may comprise a funnellike arrangement somewhat similar to that in the first embodiment having a widened mouth and a relatively narrow discharge nozzle portion 39 and with such sheetlike material being adapted to be pulled through such crumpler means by coacting bevel gear mechanism 40 which may be rotatively mounted on platform 36.
  • the bevel gear mechanism is miter gearing and the axis ofthe nozzle 39 is disposed at an angle of approximately 37 degrees with respect to the horizontal.
  • One of the bevel gears (e.g., 40a) may be drivingly coupled to a geared speed reducer 42 as by means of belt and pulley mechanism 44, which in turn may be coupled to a power means, such as a preferably variable speed electric motor 46.
  • the other miter gear 40b is adapted to coact in meshing relation with gear 40a.
  • Gears 40a, 4011 are preferably adjustably mounted so that the degree of meshing can be selectively varied, and as by means of nuts 48 coacting in threaded relation with threaded portions of associated shafts 50 rotatably mounting the respective gear 40a or 40b.
  • each gear is preferably adjustable in an axial direction, so as to vary the meshing relation between gears 40a, 40b.
  • the sheetlike material 14 is adapted to be pulled from the roll 10 thereof through the crumpler 38 by the coacting gears 40a, 40b, and as it passes between the rotating gears, the strip is coined or formed by the teeth of the gears as diagrammatically illustrated at 52 in FIG. 8. Moreover passage of the strip of material between the bevel gears causes the strip to be coiled as it passes through the gears so that it takes the form of spiral springlike loops 54 which loops have considerable resiliency and thus afford an extremely effective type of packing for use in shipping containers and the like.
  • the crumpler means 38 is preferably adjustably mounted for generally horizontal movement with respect to the gear mechanism so that the discharge end of the nozzle can be moved toward and away from the meshing gears for varying the overshoot of the strip or rope of crumpled sheet material emitting from the nozzle.
  • the closer the nozzle is moved in a forward direction toward the center of engagement of the miter gears the greater the overshoot" of the crumpled strip with respect to the gears, and the less of the material of the crumpled rope or strip that actually passes between the teeth of the coacting gears (some of the material passing downwardly exteriorly of the teeth of the gears). Accordingly, the greater the overshoot," the looser the coils of the spiral-like dunnage product.
  • varying the nozzle diameter will also vary the dunnage product, with a larger diameter nozzle generally producing a dunnage product having looser coils or, in other words,-dunnage having less coils per unit length as compared to a smaller diameter nozzle.
  • Nozzle diameters of between inch to inch in increments of one-sixteenth inch have been tried and found to operate satisfactorily using 6-inch wide, 30-pound Kraft paper, with miter gears possessing a pitch diameter of 1.5 inches.
  • Varying the meshing relation between the gears from, for instance, a tight meshing relation to a loose meshing relation also will vary the dunnage product, with a tight gear mesh producing a dunnage product having tighter coils than a dunnage product produced on a loose gear mesh.
  • Gear teeth overlap of approximately one thirtysecond of an inch may be considered a generally loose gear mesh, while a tooth overlap of approximately three thirtyscconds of an inch may be considered a generally tight gear mesh, utilizing the stock sheet material and miter gears aforementioned.
  • FIGS. 25 and 26 illustrate a less dense dunnage product produced with looser coils than that of the FIG. 8 dunnage, and with a loose mesh relation of the gears, and relatively great overshoot for the mechanism as above described.
  • a shielding means 56 is preferably provided in partially encircling relation to the underside of the gears and through which the coiled strip of material passes, so as to prevent the spiral strip from passing back upwardly into the rotating gears after exiting therefrom. It will be seen that if a coiled strip coming between the gears attempts to move upwardly it will engage the downwardly sloping surface of the half conicallike shield 56, and be urged downwardly away from the gears, thus preventing movement of the coiled strip back into the coacting gears.
  • a cutter mechanism 58 Disposed below the shield means 56 may be a cutter mechanism 58 of any suitabletype, for cutting the strip of coiled dunnage into lengths, if desired, for use as dunnage.
  • a mass of the dunnage material in irregular or tangled condition is illustrated in FIG. 11 in a shipping container 62 and surrounding an article A and it will be understood that while certain of the coils or spirals 54 may collapse into symmetrical coiled form during retraction or compression of the dunnage section, that the malformed portion 60 which may extend in generally vertical planes as opposed to the generally obliquely horizontal planes of extension of the spirals, prevent complete symmetrical collapsing into coiled form, and result in offsetting of the spiral sections from axial alignment with one another during axial compression of the dunnage strip, resulting in a tangled and highly resilient mass of dunnage.
  • the dunnage strip sections do not completely collapse but form an irregular configuration for giving less density and greater resiliency to the dunnage mass.
  • a means may be provided for interrupting the regular coil or spiral formation of the dunnage strip produced from its passage through the bevel gears, and causing the strip of material to be kinked or reversed in its spiral formation, thus interrupting the regular coil configuration being formed by the gears.
  • the strip of material is emitted in generally spiral form from between the gears 40a, 40b, the lower end of the spiral strip is moving in a generally rotary path about the lengthwise axis of the spiral. Accordingly, in order to interrupt the formation of a regular spiral or helical configuration, a resistance to this rotary movement of the lower portion of the spiral strip results in the formation of the malformed or kinked portions 60 of the dunnage strip.
  • This means for applying a resistance or interruption of the regular spiral production of the strip in the embodiment illus trated in FIG. 7, comprises a cylindrical-like housing 66 open at the top thereof and encompassing the shielding means 56 and which has an openable bottom wall 660 pivoted-as at 67 to the housing so that as the strip of material coils down from the gears, the frictional engagement thereof with bottom wall 660 will cause a reversal of the regular coiling formed by the gears, thus making the malformed portions 60 in the spiral strip.
  • the bottom wall may be counterbalanced as at 70, so that upon relatively slight predetermined pressure due to engagement of the spiral dunnage with the door, the door will tip downwardly about its pivot and permit the coiled material to be emitted from the housing 56.
  • Housing 56 is preferably readily detachable from coaction with the dunnage mechanism for ease in assembling and removal.
  • a work bench 74 may serve as the kink producing means instead of housing 56, since engagement of the lower rotating end of the spiral strip with the top surface of the work bench will produce a resistance or drag on the spiraling movement of the strip resulting in malformed or kink portions 60. Also stuffing or handling of the dunnage into a container for packing while the machine is running will also produce the kinked or malformed portions of the dunnage product.
  • the dunnage when the dunnage is compressed it does not collapse into regular coil form due to the fact that the coils are not all symmetrically formed into a symmetrical helix, but due to the irregular configuration of the dunnage sections due to the malformed portions or sections 60, the dunnage resists collapsing and becomes a resilient mass when packed in a container, which gives good cushioning to articles packed in the dunnage.
  • FIG. 9 it can be seen from the cross section of the dunnage strip that the latter is formed of layers or folds of the sheetlike material or paper as compressed between the teeth of the gears, with the teeth having coined the dunnage strip into generally wave-like or corrugated form in a direction generally crosswise of the strip, and as shown in FIG. 9A.
  • FIGS. 25 and 26 illustrate a coiled form of dunnage produced with relatively loose coils, by having a relatively loose mesh relation between the coining gears and by having a relatively great overshoot of the crumpled rope or strip from the crumpler, into the gears.
  • the exit end of the nozzle 39 is relatively close to the center of the engagement between the gears (say for instance, one-eighth inch back from the center of engagement) and the gear teeth have an overlap of approximately one thirty-second of an inch for a loose mesh relation.
  • Such a dunnage product 75 is of low density, with the intermediate layers 75a of material being loosely formed in the interior of the outer layer, giving the product low density and high resiliency.
  • the increased overshoot" produces an enlarged end portion 77 (in a direction transverse of the product) which tapers or converges toward the other end.
  • Enlarged or unsqueezed portion 77 is formed due to the fact that with a relatively great overshoot and a loose mesh relation, the forward edge of the rope or strip from the crumpler passes outside or forwardly of the gear teeth and thus is not coined or squeezed, while the tapered portion passes between the teeth and is coined or squeezed.
  • the loose mesh of the gears coins the rope or strip materially less than that ofthe FIG. 8 dunnage product.
  • FIG. 10 discloses a mechanism for weighing out a predetermined weight or slug (as it is hereinafter referred to) of the dunnage material, as produced by the dunnage mechanism of FIGS. 5 and 6.
  • This mechanism would be usually used where repetitive packaging requires the same amount of dunnage.
  • Such mechanism may comprise a metering housing 78 open at the top thereof, and which encloses the gears 40a, 40b and the aforementioned shield 56, and into which the dunnage strip as it comes down from between the gears, is adapted to drop.
  • the bottom wall 78a of the housing may be pivoted to the housing for opening and closing movements and may have a counterweight mechanism 80 thereon so that after a predetermined weight ofthe strip dunnage has gathered in the housing, the bottom wall is forced open and the slug of dunnage material passes downwardly onto a supporting surface or work table 82. The bottom wall then recloses due to the removal of the weight of the dunnage therefrom, and the strip may be cut by means ofthe associated cutter means 58. Meanwhile, another slug of dunnage is being formed in the housing. Kinking or malformation of the dunnage occurs in housing 78 in the manner aforedescribed.
  • the interior of the housing is preferably completely smooth so that the slug of dunnage has nothing to catch on in the housing 78, so that when the bottom door pivots downwardly the slug of dunnage readily falls downwardly out of the housing.
  • the counterbalance may comprise a hollow tube 80a having ball weights (not shown) rollingly mounted therein to increase the sensitivity of the Wall 7811 and provide for quick dumping and more accurate weighing. In the closed condition of wall 78a, the weighted end of tube 80a may be disposed slightly below the horizontal, with a stop being provided to limit the upward pivotal movement of the counterweight and associated downward pivotal movement of the door 78a.
  • FIG. 12 and 13 there is shown a dunnage mechanism which is generally similar to that of the type illustrated in FIGS. 1 and 2, except that the mechanism for pulling the strip of crumpled sheetlike material through the crumpler comprises meshing gears 84, which in the embodiment illustrated are spur gears. These spur gears are rotatively mounted with respect to supporting means 86 and may be power driven as means of a preferably variable speed electric motor 88.
  • the dunnage strip passes through the spur gears and is coined by the teeth of the gears, and the strip comes out as an elongated generally linear strip of material.
  • Such dunnage material due in part to its corrugated configuration 90 (FIGS.
  • dunnage strip 14 and 15 does possess considerable cushioning effect, and may be cut into suitable sections for providing dunnage for use in packing, and as shown for instance in FIG. 11. It will be understood, of course, that the dunnage strip can be fed in one continuous strip into a packing or shipping carton without cutting it into predetermined length sections.
  • the dunnage section illustrated in FIG. 16 is similar to the dunnage of FIG. 14, except that the gears which coin the strip of sheetlike material and pull it through the crumpler are helical gears, thereby giving the strip 92 of dunnage a corrugated configuration at oblique angles with respect to the lengthwise axis of the strip.
  • the gears which coin the strip of sheetlike material and pull it through the crumpler are helical gears, thereby giving the strip 92 of dunnage a corrugated configuration at oblique angles with respect to the lengthwise axis of the strip.
  • Such dunnage possesses considerable cushioning effect.
  • it does not possess the cushioning effect possessed by the spirally formed dunnage produced by the FIGS. 5 to 7 mechanism.
  • the crumpler mechanism takes the form of a framework 96 which has a plurality of converging slats 96a, 96b mounted in a fabricated support 98, with the slats being offset with respect to one another at their distal ends and in generally horizontal directions, and being generally aligned at their proximate ends 100, so as the sheetlike material 14 coming from the vertically oriented rotatable roll 102 (FIG. 19) is pulled through the slat framework, the sheetlike material is automatically folded or creased into a generally flat elongated relatively narrow strip 104 of material, such as shown for instance in FIG. 20.
  • the sheetlike material 14 coming from the roll 102 first passes around the exterior of generally vertical rib 106 and then passes behind generally vertically arcuate rib 108 prior to passing through vertical slot 110 (FIG. 17) in the support 98 and into coaction with creasing slats 96a, 96b.
  • Rib 108 tensions the web 14 of paper into a generally vertically concave configuration which aids in the folding thereof into strip form 104 by crumpler mechanism 96.
  • a friction braking mechanism 112 anchored as at 1120 and l12b maintains a tension on the material of roll 102 and prevents overrunning thereof.
  • the relatively narrow strip of sheetlike material 104 is then passed between a pair of coacting rollers 114, 11411 which are geared together, as at 115, and with one (e.g., 114) of the rollers being power driven, so as to actually pull the strip through the crumpler or folding mechanism 96.
  • the strip may then pass over a rotatable roller 116, and is fed onto the underside ofa belt 118 which coacts with a spiral or helical mandrel 120, to draw the strip of material around the helix in compressed relation, thus forming the linear strip 104 of material into a permanent helical or spiral form, which helical form, as shown in FIG. 21, has a considerable amount of resiliency both axially and transversely thereof.
  • the belt 118 winds around the helical mandrel 120, as at 124 (FIG. 17) and which is set at approximately a 45 angle in a horizontal plane, with respect to the axis of the roller 116, and then passes around a large crown-faced pulley or drum 126 which is power driven as by means of an electric motor 128 and coacting geared speed reduction unit 130.
  • the belt 118 then extends forwardly to pass around crown-faced pulley 132 and then beneath the pulley 132 to coact with roller 116 in drawing the strip 104 of material coming from crumpler 96, around the spiral mandrel 120.
  • Roller 116 and pulley 132 may be geared together as at 133.
  • a chain and sprocket drive mechanism 134 may be used to drive a pulley 136 which is connected as by means of a belt 138 to pulley 140 (FIG. 18) coupled to one (e.g., 114) of the drawing rollers which are geared together as aforementioned. Coacting with the belt 118 there may be an idler arm and roller means 142 which places a predetermined tension on the belt to maintain the belt in tensioned relationship as it passes around the pulleys 126 and 132. As can be best seen in FIG.
  • the belt 118 is formed with a full 360 degree twist, for enabling the belt to coact with the spiral mandrel 120, in a manner to permit the belt to travel flat without twist as it moves from the top of 126 to top of 132.
  • a preferably rotatable guide means 144 coacting with the outer edge of the belt 118 may also be provided for guiding the movement of the belt.
  • the coiled dunnage as it exits from the outer end of mandrel 120 is rotating about its lengthwise axis, and curls about takeoff and guide rod 148 which is sloped downwardly to direct the endless coil of dunnage along the takeoff rod to a receptacle 150 or the like.
  • a cutter mechanism 152 may be provided, which in the embodiment illustrated comprises a shearslike means 154 through which the strip of coiled dunnage must pass, in order to coact with the takeoff rod 148.
  • One of the blades of the shear mechanism may be coupled to a fluid powered motor unit 156 which may be of the double-acting cylinder type, and which may be selectively controlled by an operator to cut the strip of dunnage as it is emitting from the mandrel 120 and coacting belt 118. Operation of the cutter mechanism will cut the coiled strip of dunnage into selected lengths for use as loose packing material. The operator may preset the machine to automatically cut off desired lengths. It will be understood that the distal end of the coiled dunnage comming off the .takeoff rod 148 should be free, so as to prevent uncoiling forces from being applied thereto.
  • dunnage-producing mechanism which is adapted in the embodiment illustrated, to utilize a plurality of webs of a sheetlike material and to combine and form such plurality of webs into an integral,resi1ient, tubularlike construction of cushioning dunnage. It will be understood that only one web of stock material could also be used to form a tubularlike dunnage product.
  • Such mechanism as illustrated may comprise a base support 160 having rack structure 162 mounted thereon, which rack structure is adapted to support a plurality of spaced rolls 164, 164a of the sheet or weblike material.
  • the lower roll 164 is preferably of a lesser width material as compared to the upper roll 164a.
  • the rolls 164, 164a are rotatably mounted on rack structure 162, and suitable braking mechanism (not shown) is preferably provided coacting with the rolls to prevent overrunning of the latter.
  • the web of sheet material from the respective roll is adapted to be drawn downwardly into the crumpler mechanism 169 where it is formed into a generally loose tubularlike configuration after which it is passed through gear means 170 which stitches or coins together at least the free lengthwise 171, 17111 of the tubular-shaped sheet stock emitting from the crumpler 169, to thus maintain the multiweb dunnage product in integral assembled tubularlike condition.
  • the crumpler 169 in the embodiment illustrated comprises a funnellike portion 172 which gathers in the plurality of webs coming from the rolls 164, 164a, and a lower, sleeve portion 174 which forms such gathered webs of material into a generally tubular configuration, and guides the latter into the gear means 170.
  • the sleeve portion 174 has cutaway portions 174a at its lower end for providing clearance for the stitcher or coining gear means 170 (FIG. 24) which are adapted to draw the multiweb tubular assembly down through the crumpler, and to stitch theopposite sides thereof.
  • the gears are so positioned with respect to the sleeve portion 174 that they will engage just opposite edges of the multiweb assembly as it passes from the sleeve portion into the teeth or bite ofthe gear means.
  • two sets of coacting spur gears 170 are illustrated, with one gear of each set being power driven as by means of the motor 178 and associated belt drive 180 coacting with a pulley 182 fixed to a shaft 184 to which one (186) of the gears of each set of gear means 170 if keyed or otherwise secured.
  • the gears of each set are preferably adjustable with respect to one another so as to provide for varying the mesh clearance.
  • the web from the lower roll 164 passes interiorly of ring 190 while the web from upper roll 164a passes exteriorly of the ring.
  • Extending upwardly from the distal side of the gathering ring 190 may be a belly pusher rod 192 (FIG.
  • Rod 192 which is adapted to engage the front face of the web of material from the upper stock roll 164a, and helps to guide the web into the funnel portion in the tubular forming operation.
  • Rod 192 preferably has a rounded upper end 194 for preventing tearing of the web of stock material by the rod during engagement thereof with the web.
  • the web of material from the upper stock roll is adapted to pass rearwardly of the rod 192 and down into the funnel to be formed into generally tubular condition, after which the opposite lengthwise edges of the formed sleeve of material from both the upper and lower stock rolls are stitched by the gear means 170.
  • a forming ring 198 Disposed above the guide ring may be a forming ring 198, also projecting outwardly from support 188 into overlying relationship with respect to the funnel portion 172, and as can be seen in FIG. 24 generally centered thereabove.
  • Forming ring 198 is adapted to engage the front surface of the web or lower stock roll 164 and to aid in forming it into generally tubular shape for entry into the crumpler.
  • Extending downwardly through the crumpler mechanism may be a guide rod 200 which likewise may be supported on support 188, and which passes down through the guide ring 190, through the crumpler 169, to terminate approximately at the support 160.
  • Such guide rod aids in guiding the plurality of webs from the upper and lower stock rolls into a tubularlike dunnage product and in stabilizing and centering the tubular stock material as it passes through the gear means 170.
  • the tubularlike dunnage product 203 emitting from between the gear means passes downwardly through an opening 202 (FIG. 23) in the support 160, and between a cutter mechanism 204 which may be selectively operated to cut the dunnage product into selected lengths.
  • the dunnage product is of generally irregular tubular configuration comprising an outer layer or envelope 206 formed from the web of material from upper roll 164a, and generally loosely interleaved inner filler layers 208 formed primarily from the lower roll 164, all of which is stitched along opposing lengthwise sides 210 of the product by the gear means 170.
  • Such a dunnage product has low density and high resilience, and results in a dunnageproduct possessing good cushioning properties.
  • FIGS. 29 and 30 disclose a dunnage product 212 produced by a machine generally similar to that of FIGS. 23 and 24, except utilizing only one set of gear means so that the tubularlike dunnage is stitched or coined along only the open edges (as at 214) with the opposite side edge not being coined.
  • This product likewise comprises an outer envelope 216 and loosely interleaved inner layers 218, and giving good cushioning properties.
  • the outer envelope of the tubularlike dunnage product may be expeditiously formed of a relatively high strength sheet material, such as for instance Kraft paper, while the inner filler layers provided by roll 164 may be formed of a cheaper and less high strength material, such as for instance newsprint paper.
  • a dunnage product formed from an outer envelope of a softer sheet material, such as for instance Kraft dry waxed paper, with the inner filler material formed from the stiffer standard Kraft thirty pound paper has been found to provide an expeditious cushioning dunnage product having dust free and soft exterior characteristics, while still possessing internal stiffness for relatively high resiliency.
  • the aforementioned cutter mechanism 204 may comprise shear blades 220 including arm portions 221 (FIG. 31) which are pivoted to one another as at 222 and are pivotally mounted as at 223, to a respective gear 224, 226 disposed in meshing relation, and with a handle mechanism 228 (FIG. 24) being provided for rotating gear 224, thereby causing rotation of gear 226 and opening and closing movements of the shear blades.
  • arm portions 221 FIG. 31
  • gear 224, 226 disposed in meshing relation
  • a handle mechanism 228 FIG. 24
  • the pivotal axes 223 of the arm portions 221 of the cutter to the respective gear moves for instance from position 1 to position 2 wherein the blades 220 are spaced apart as illustrated by the dashed lines, then to position 3 wherein the blades commence to close as shown by the dotted lines, then to position 4 wherein the blades are closed a greater amount as illustrated by the dot-dashed lines, with the blades being extended for- 11 wardly to their forwardmost position, then back to position 1 wherein the blades are retracted and close, to cause cutting of the dunnage. Accordingly, the dunnage is cut as the blades are being retracted and severing of the tubular like dunnage product is accomplished without tearing thereof.
  • the invention provides a novel cushioning dunnage product which may be readily formed from a roll of sheet like material into an elongated, relatively narrow strip or rope which is formed into helicallike coiled configuration to give substantial resiliency to the dunnage product, thus improving the cushioning characteristics thereof in its use as loose packing material.
  • the dunnage product may include spaced, malformed noncoiled portions disposed along the lengthwise extent of the product to prevent the product from collapsing under compression.
  • the invention provides a novel lightweight dunnage product of tubular like form, which may be produced by forming a web of sheet like material, such as paper, into tubular like configuration and crumpling the formed web, and then stitching it lengthwise thereof, to maintain the tubular like configuration of product.
  • the dunnage product has increased resiliency over paper dunnage heretofore known and is formed from sheetlike material such as ordinary kraft paper which may be stored in compact roll form prior to its formation into suitable dunnage, and which may be fed directly from a dunnage producing mechanism into containers at the location of use.
  • the dunnage products are produced by methods which materially simplify the production of the dunnage resulting in economies in such production.
  • Dunnage for packing comprising, an elongated relatively narrow compressed strip of crumpled sheet-paper material formed into generally helicallike coil configuration in a direction lengthwise thereof, opposite faces of said strip being coined into spaced corrugations extending generally tranversely of said strip faces.
  • dunnage product in accordance with claim 1 wherein the dunnage product comprises portions of said helicallike coiled configuration alternated with noncoiled portions.
  • each of said noncoiled portions comprises a strip section extending generally linearly in the lengthwise direction of said dunnage product, each of said coiled portions comprising a plurality of helicallike coils, each of said linear sections being disposed intermediate lengthwise spaced of said coiled portions, each of said linear sections being coined into corrugations extending generally transversely thereof, said noncoiled portions of the dunnage product being adapted to cause the dunnage to be resistant to lengthwise axial collapsing and insuring that the dunnage material when packed into a container becomes a tangled resilient mass, possessing good cushioning characteristics.
  • a dunnage product in accordance with claim 3 wherein the product is of a relatively low density and wherein one lengthwise edge thereof is comprised of relatively loosely crumpled material forming an enlarged edge portion extending for the full length of said product, said strip tapering in a direction transversely thereof toward the opposite edge portion which is relatively highly compressed and of a smaller cross sectional area as compared to the cross sectional area of the first mentioned edge portion.

Abstract

A resilient cushioning dunnage product of helical coil like configuration produced from a web of low cost sheet like material, such as paper, by crumpling the web down into a relatively narrow strip and then forming the strip by pressure into generally helical coiled form. Also a tubular like dunnage product formed by taking a web of flexible sheet like material, such as paper, forming the web into generally tubular-like shape by moving lengthwise edges of the web inwardly toward one another and then loosely crumpling the tubular-like product and stitching it along the lengthwise extent thereof to maintain the formed configuration.

Description

United States Patent Johnson CUSHIONING DUNNAGE PRODUCT George R. Johnson, Chagrin Falls, Ohio Assignee: The Arpax Company, Chagrin Falls, Ohio Filed: Oct. 6, 1969 Appl. No.: 863,856
Inventor:
Related US. Application Data Division of Ser. No. 640,145, May 22, 1967.
U.S.Cl ..l61/47,93/1, 156/183, 156/205, 156/591, 161/128, 161/132, 161/133, 161/149, 162/113, 206/46 Int. Cl ..B32b 3/28 Field ofSearch ..93/1 WZ, 84; 131/88; 156/183, l56/591594, 597; 161/35, 47, 50,118, 126,128, 129,132, 133,172,173, DIG. 4, DIG. 3; 162/111, 113; 206/46, 46 FR References Cited UNITED STATES PATENTS 2,045,498 6/1936 Stevenson ..93/84 2,499,463 3/1950 3,238,852 3/1966 3,377,224 4/1968 Gresham et a1 ..162/1 13 X Primary ExaminerWilliam A. Powell Attorney-Baldwin, Egan, Walling & Fetzer [5 7] ABSTRACT A resilient cushioning dunnage product of helical coil like configuration produced from a web of low cost sheet like material, such as paper, by crumpling the web down into a relatively narrow strip and then forming the strip by pressure into generally helical coiled form. Also a tubular like dunnage product formed by taking a web of flexible sheet like material, such as paper, forming the web into generally tubular-like shape by moving lengthwise edges of the web inwardly toward one another and then loosely crumpling the tubular-like product and stitching it along the lengthwise extent thereof to maintain the formed configuration.
4 Claims, 32 Drawing Figures PATENTEDMARE? I972 3,650,877
sum mar 10 INVENTOR.
PATENTEUMARMIQR 3,650,877
SHEET BEUF 1O INVENTOR.
PATENTEUMARZI 1972 SHEET OEUF 10 Q E 3 wk g.
PMENIIHJ M21 1912 3, 650 877 SHEET 0a or 10 INVENTOR. GEORGE E. Jwusau @aiigw,
PATENTEDMARZI m2 SHEET 09 0F 10 INVENTOR. GEO/P65 A whwca/v PATENTEUMARZJ I972 SHEET 1UUF 10 N Rw w m MM; WM X M (N R. 5 M Ta 1 GMM w CUSHIONING DUNNAGE PRODUCT This is a divisional application of my copending US. patent application Ser. No. 640,145, filed May 22, 1967 by George R. Johnson and entitled Mechanism and methodfor producing dunnage.
This invention relates in general to novel cushioning dunnage products and more particularly, dunnage products formed from sheetlike or weblike material, such as paper, into highly resilient configurations for use in packing and cushioning articles or products in shipping containers and thelike.
Various mechanisms and methods for producing lengths of packing material for use in packing fragile or breakable articles in enclosing containers are known in the art. One such mechanism is disclosed in US. Pat. No. 2,882,802 issued Apr. 21, 1959 to Charles Robert Walker and entitled Crumpling Device. However, the quality of dunnageproduced on such prior art mechanisms often times does not provide adequate cushioning capacity for the uses to which "the dunnage is applied. Moreover, the mechanisms and methods utilized to produce such prior art dunnage products are either too complex for the quality of dunnage produced or they do not produce dunnage packing material having suitable resiliency. Accordingly, the general practice has been to crumple paper material manually, with the packers crumpling the material and placing it into the containers as needed. The latter method is inefficient and time consuming. Various other types of dunnage materials such as, for instance, plastic dunnage, are known in the art, but these other types generally either require too much storage space or are too expensive for universal use.
The present invention provides novel dunnage products, possessing considerable resiliency for greatly improving the cushioning characteristics of the packing material. The dunnage products of the invention are relatively economical, may be produced at the location of use, and have resilient characteristics heretofore unknown in formed paper dunnage.
Accordingly, an object of the invention is to provide novel dunnage products or packing material.
A further object of the invention is to provide a novel dunnage product which is in substantially helical coiled form.
A further object of the invention is to provide a novel dunnage product in helical coiled form by passing sheet like material, such as paper, through crumpler means and then through intermeshing bevel gear means to form the sheet like material into a relatively narrow strip, by compressing and coining the strip of crumpled sheetlike material to form it into helical coiled form.
A still further object of the invention is to provide a novel dunnage product of helical coiled form, but having spaced, malformed, non coiled portions along the lengthwise extent thereof so that the dunnage product will fall into a tangled resilient mass when compressed and will not collapse axially of the helix.
A still further object of the invention is to provide a novel dunnage product formed of a plurality of webs of sheet like material, which are combined and formed into an integral, highly resilient product of tubular pad like construction.
A still further object of the invention is to provide novel dunnage products which utilize sheet like stock material for fabricating the dunnage, with the sheet like stock material being able to be stored in compact dense condition, requiring relatively little cubic feet for storage, and which stock material is expanded many times over in the formation of the latter into a dunnage product, and wherein the dunnage product can be formed at the point of packing operations for efficient transmittal of the formed dunnage product directly into containers being packed.
A further object of the invention is to provide a novel cushioning dunnage product which is formed of paper sheet stock material which has been oriented into a concave configuration in a direction transverse thereof for guiding the sheet material generally toward tubularlike configuration, with the sheet like material being radially crumpled into a tubularlike lightweight pad which is stitched lengthwise thereof to maintain it in its resilient tubularlike form.
A still further object of the invention is to provide a dunnage product of the latter described type which utilizes a plurality of sheets of paper stock material coacting in engaged relation to form the resilient tubularlike product.
Other objects and advantages of the invention will be apparent from the following description taken in conjunction withthe accompanying drawings wherein:
FIG. 1 is a diagrammatic 'front elevational view showing one embodiment of the invention with the sheetlike material being drawn through crumpler means in the form of a funnellike mechanism, to form an elongated crumpled strip or rope of material for dunnage;
FIG. 2 is a side elevational view of the FIG. 1 mechanism;
'FIG. 3 is an enlarged top plan view of a section of the dunnage strip as formed by the mechanism of FIGS. 1 and 2;
FIG. 4 is an enlarged sectional view of the dunnage strip taken generally along the plane of line 4-4 of FIG. 3, looking in the direction of the arrows;
FIG. 5 is a generally diagrammatic perspective illustration of a dunnage producing mechanism illustrating a preferred embodiment thereof, and one utilizing miter bevel gears for drawing the sheet material through crumpler means, to form the resultant relatively narrow strip or rope of material into coiled or spiral form;
FIG. 6 is atop plan, diagrammatic illustration of the mechanism illustrated in FIG. 5;
FIG. 7 is a reduced size, fragmentary, perspective view of the mechanism illustrated in FIGS. 5 and 6, and illustrating a kinker mechanism coacting therewith, for preventing the strip of dunnage from being coiled into symmetrical or regular helical form, so as to reduce the density of the dunnage;
FIG. 8 is an elevational view of a section of the dunnage formed by the mechanism of FIGS. 5 through 7;
FIG. 9 is a sectional view taken along the plane of line 9-9 of FIG. 8;
FIG. 9A is a fragmentary, enlarged elevational view of a section of the dunnage of FIG. 8 showing the generally corrugated configuration thereof;
FIG. 10 is a fragmentary elevational, generally diagrammatic view illustrating a mechanism adapted for use with the dunnage mechanism of FIGS. 5 and 6 for producing predetermined weights of a quantity or slug (as they will be hereinafter called) of the dunnage material;
FIG. 11 is a diagrammatic, sectional view of a shipping container with an'article packed therein with a quantity of the dunnage material illustrated in FIG. 8;
FIG. 12 is a fragmentary elevational view generally similar to FIG. 1 but illustrating another embodiment of the invention, and one utilizing spur gear means for drawing the sheetlike material through the crumpler mechanism, to produce a strip or rope of coined or intermittently compressed dunnage;
FIG. 13 is a fragmentary side elevational view of the FIG. 12 mechanism;
FIG. 14 is an enlarged top plan view of a section of the dunnage produced by the mechanism of FIGS. 12 and 13;
FIG. 15 is a side elevational view of the dunnage of FIG. 14;
FIG. 16 is a top plan view of a piece of dunnage produced in a dunnage mechanism generally similar to that of FIGS. 12 and 13 but wherein helical gears are utilized instead of spur gears, for drawing the sheetlike material through the crumpler and to coin the strip of dunnage;
FIG. 17 is a fragmentary, enlarged diagrammatic illustration of another embodiment of dunnage producing mechanism utilizing a belt operating on a spirallike rod or mandrel, for forming a strip or rope of sheetlike material, which has been previously formed into strip or rope form by a crumpler or folder means, into a coiled strip or rope of dunnage;
FIG. 18 is a reduced size, top plan view of the mechanism illustrated in FIG. 17;
FIG. 19 is a side elevational view of the FIG. 18 mechanism;
FIG. 20 is an enlarged, perspective fragmentary view of a piece of the sheetlike material as folded into striplike or ropelike form by the crumpler or folder means of the FIG. 17 mechanism;
FIG. 21 is an enlarged, fragmentary, illustration ofa section of the coiled dunnage as formed by the spiral mandrel and coacting belt ofthe FIG. 17 mechanism;
FIG. 22 is a reduced size, generally diagrammatic illustration of the belt utilized in the FIGS. 17-19 mechanism and illustrating the full twist formed in the belt for effective coaction with the spiral mandrel for producing the coiled configuration of dunnage;
FIG. 23 is a partially broken front elevation ofa further embodiment of dunnage producing mechanism and one utilizing a plurality of webs of sheetlike material for forming a resilient tubularlike dunnage product oflow density;
FIG. 24 is a partially broken side elevational view of the FIG. 23 embodiment;
FIG. 25 is an elevational view of a section of dunnage produced by the dunnage producing mechanism of for instance FIGS. 5-7, and wherein the formed coils are not as tight as those of the FIG. 8 dunnage, and the strip or rope of paper material is not compressed to the extent of that of the FIG. 8 dunnage;
FIG. 26 is a sectional view taken generally along the plane ofline 26-26 of FIG. 25;
FIG. 27 is an elevational view of a section of tubularlike dunnage produced by the mechanism of FIGS. 23 and 24;
FIG. 28 is a sectional view taken generally along the plane ofline 28-28 of FIG. 27;
FIG. 29 is an elevational view ofa modified form of tubularlikc dunnage, which is coined only on one lengthwise edge thereof instead of on both lengthwise edges as in the FIG. 27 embodiment;
FIG. 30 is a sectional view taken generally along the plane ofline 3030 of FIG. 29; and
FIG. 31 is a diagrammatic top plan view of the geared cutter mechanism of the FIGS. 23 and 24 machine, illustrating the cutting geometrics thereof.
Referring now again to the drawings, FIG. 1 illustrates a roll 10 of sheetlike material 14 supported on trunnions 1011 with a crumpler means 12 being preferably disposed in generally vertical downwardly spaced relation to the roll 10, and through which the sheetlike material 14 is adapted to move to form such sheetlike material into a relative narrow continuous strip or rope 16. A suitable sheetlike material has been found to be Kraft paper having a density of 47.5 pounds per cubic foot. It will be understood however that other types of papers and other sheetlike materials would also be satisfactory.
The crumpler mechanism 12, in the embodiment illustrated, comprises a funnellike device having a widened mouth portion 18 and a relatively narrow discharge end portion 20, thereby causing a gathering of the sheetlike material 14 as it comes off the roll and formation of such material into a relatively narrow strip or rope as it exits from the discharge end 20.
Means 22 may be provided for pulling the sheetlike material through the crumpler I2, and in the embodiment illustrated such means comprises a pair of rotatable rolls 24, 24a (such as rubber rollers) which may be drivingly connected to one another by means of gearing 26 at the ends thereof, and with one of said rolls (e.g., 24) being operatively coupled to a preferably variable speed, power unit 28, such as an electric motor, for rotating the rolls.
It will be seen that upon energization of the motor 28, the rolls 24, 24a are driven to cause drawing of the sheet material through the crumpler 12. The outer surfaces of the rolls 24, 24a may be serrated, especially if they are formed ofa material of low coefficient of friction, so as to increase the frictional coaction with the strip emitting from the discharge end of the crumpler. A braking device comprising in the embodiment illustrated a strip of material 29 anchored as at 29a and coacting in frictional engagement with roll 10, may be provided to prevent overrunning of the roll. As will be seen weight 30 attached to strip 29, maintains the frictional coaction between the roll 10 and strip 29. As can be best seen in FIG. 2 as the relatively narrow rope or strip 16 of material passes through or is drawn between the rolls 24, 24a, such rope or strip is preferably reduced in thickness and may increase slightly in width. However, it will be understood that the strip of material after it passes between the rolls 24, 240 still has resiliency thereto due to the multitude of crumpled folds of material, (FIG. 4) and thus is not in a totally flattened and nonresilient condition. Preferably the spacing between rolls 24, 24a is adjustable so that the degree of flattening of the strip 16 can be varied. As can be seen from FIGS. 3 and 4, the finished generally flattened strip of dunnage material is of generally irregular configuration and is formed of plies or folds of the sheet material 14 as it is crumpled together by the crumpler mechanism 12.
A cutter mechanism 31 of any suitable type may be provided for cutting the strip of dunnage material after it is formed by crumpler l2 and rolls 24, 240, into suitable length sections for use as dunnage. Such cutter mechanism may comprise a conventional pivotal knife which may be either manually or power operated, and preferably is under the selective control of the operator. The dunnage strip sections may be of any desired length, and may be fed from the dunnage producing mechanism directly into the shipping container or the like in which articles are being packed, or such dunnage strip may be cut into predetermined length sections, and then placed in the shipping container in mass.
Referring now to FIGS. 5 and 6 which illustrate a preferred embodiment of the dunnage producing mechanism, such mechanism may comprise a support 34 for mounting a roll 10 of the sheetlike material 14, with such support 34 being preferably adjustable with respect to the platform 36, upon which the support may be mounted and preferably being adapted to accommodate a variety of roll widths. The crumpler means 38 of the FIG. 5 mechanism may comprise a funnellike arrangement somewhat similar to that in the first embodiment having a widened mouth and a relatively narrow discharge nozzle portion 39 and with such sheetlike material being adapted to be pulled through such crumpler means by coacting bevel gear mechanism 40 which may be rotatively mounted on platform 36. In the embodiment illustrated, the bevel gear mechanism is miter gearing and the axis ofthe nozzle 39 is disposed at an angle of approximately 37 degrees with respect to the horizontal. One of the bevel gears (e.g., 40a) may be drivingly coupled to a geared speed reducer 42 as by means of belt and pulley mechanism 44, which in turn may be coupled to a power means, such as a preferably variable speed electric motor 46. The other miter gear 40b is adapted to coact in meshing relation with gear 40a. Gears 40a, 4011 are preferably adjustably mounted so that the degree of meshing can be selectively varied, and as by means of nuts 48 coacting in threaded relation with threaded portions of associated shafts 50 rotatably mounting the respective gear 40a or 40b. In other words, each gear is preferably adjustable in an axial direction, so as to vary the meshing relation between gears 40a, 40b.
The sheetlike material 14 is adapted to be pulled from the roll 10 thereof through the crumpler 38 by the coacting gears 40a, 40b, and as it passes between the rotating gears, the strip is coined or formed by the teeth of the gears as diagrammatically illustrated at 52 in FIG. 8. Moreover passage of the strip of material between the bevel gears causes the strip to be coiled as it passes through the gears so that it takes the form of spiral springlike loops 54 which loops have considerable resiliency and thus afford an extremely effective type of packing for use in shipping containers and the like.
The crumpler means 38 is preferably adjustably mounted for generally horizontal movement with respect to the gear mechanism so that the discharge end of the nozzle can be moved toward and away from the meshing gears for varying the overshoot of the strip or rope of crumpled sheet material emitting from the nozzle. Speaking generally, the closer the nozzle is moved in a forward direction toward the center of engagement of the miter gears, the greater the overshoot" of the crumpled strip with respect to the gears, and the less of the material of the crumpled rope or strip that actually passes between the teeth of the coacting gears (some of the material passing downwardly exteriorly of the teeth of the gears). Accordingly, the greater the overshoot," the looser the coils of the spiral-like dunnage product. Moreover, varying the nozzle diameter will also vary the dunnage product, with a larger diameter nozzle generally producing a dunnage product having looser coils or, in other words,-dunnage having less coils per unit length as compared to a smaller diameter nozzle. Nozzle diameters of between inch to inch in increments of one-sixteenth inch have been tried and found to operate satisfactorily using 6-inch wide, 30-pound Kraft paper, with miter gears possessing a pitch diameter of 1.5 inches.
Varying the meshing relation between the gears from, for instance, a tight meshing relation to a loose meshing relation also will vary the dunnage product, with a tight gear mesh producing a dunnage product having tighter coils than a dunnage product produced on a loose gear mesh. It will be understood, of course, that in any event there has to be sufficient play between the gears to prevent binding of the latter as the rope of crumpled sheet material passes between the teeth thereof. Gear teeth overlap of approximately one thirtysecond of an inch may be considered a generally loose gear mesh, while a tooth overlap of approximately three thirtyscconds of an inch may be considered a generally tight gear mesh, utilizing the stock sheet material and miter gears aforementioned. FIGS. 25 and 26 illustrate a less dense dunnage product produced with looser coils than that of the FIG. 8 dunnage, and with a loose mesh relation of the gears, and relatively great overshoot for the mechanism as above described.
Since the strip 55 ofmaterial exits in coil or spiral form as it passes between the gears, a shielding means 56 is preferably provided in partially encircling relation to the underside of the gears and through which the coiled strip of material passes, so as to prevent the spiral strip from passing back upwardly into the rotating gears after exiting therefrom. It will be seen that if a coiled strip coming between the gears attempts to move upwardly it will engage the downwardly sloping surface of the half conicallike shield 56, and be urged downwardly away from the gears, thus preventing movement of the coiled strip back into the coacting gears.
Disposed below the shield means 56 may be a cutter mechanism 58 of any suitabletype, for cutting the strip of coiled dunnage into lengths, if desired, for use as dunnage.
The strip of material being emitted from between the miter gears 40a, 4012, if it is in symmetrical or regular helical form so that it is collapsible and expansible much like a spring, will not provide optimum dunnage, as if the strip of material is instead in irregular coil or spiral form. In order to prevent symmetrical collapsing of the spiral dunnage, there is preferably a kink or spiral malformation 60 (FIG. 8) formed in the strip at random locations along its length, so that upon collapsing of the section of dunnage formed from such strip material, the dunnage will not completely collapse into symmetrical coiled form, but instead will still be disposed in irregular or tangled form. A mass of the dunnage material in irregular or tangled condition is illustrated in FIG. 11 in a shipping container 62 and surrounding an article A and it will be understood that while certain of the coils or spirals 54 may collapse into symmetrical coiled form during retraction or compression of the dunnage section, that the malformed portion 60 which may extend in generally vertical planes as opposed to the generally obliquely horizontal planes of extension of the spirals, prevent complete symmetrical collapsing into coiled form, and result in offsetting of the spiral sections from axial alignment with one another during axial compression of the dunnage strip, resulting in a tangled and highly resilient mass of dunnage. Thus it will be seen that the dunnage strip sections do not completely collapse but form an irregular configuration for giving less density and greater resiliency to the dunnage mass.
Now, in order to insure that the corrugated or ribbed strip material being emitted from between the gears in coiled form will not be formed into regular coils or spirals but will be provided with the aforementioned kinks or malformed portions 60, a means may be provided for interrupting the regular coil or spiral formation of the dunnage strip produced from its passage through the bevel gears, and causing the strip of material to be kinked or reversed in its spiral formation, thus interrupting the regular coil configuration being formed by the gears. It will be understood that as the strip of material is emitted in generally spiral form from between the gears 40a, 40b, the lower end of the spiral strip is moving in a generally rotary path about the lengthwise axis of the spiral. Accordingly, in order to interrupt the formation of a regular spiral or helical configuration, a resistance to this rotary movement of the lower portion of the spiral strip results in the formation of the malformed or kinked portions 60 of the dunnage strip.
This means for applying a resistance or interruption of the regular spiral production of the strip in the embodiment illus trated in FIG. 7, comprises a cylindrical-like housing 66 open at the top thereof and encompassing the shielding means 56 and which has an openable bottom wall 660 pivoted-as at 67 to the housing so that as the strip of material coils down from the gears, the frictional engagement thereof with bottom wall 660 will cause a reversal of the regular coiling formed by the gears, thus making the malformed portions 60 in the spiral strip. The bottom wall may be counterbalanced as at 70, so that upon relatively slight predetermined pressure due to engagement of the spiral dunnage with the door, the door will tip downwardly about its pivot and permit the coiled material to be emitted from the housing 56. Housing 56 is preferably readily detachable from coaction with the dunnage mechanism for ease in assembling and removal.
A work bench 74 (FIG. 5) may serve as the kink producing means instead of housing 56, since engagement of the lower rotating end of the spiral strip with the top surface of the work bench will produce a resistance or drag on the spiraling movement of the strip resulting in malformed or kink portions 60. Also stuffing or handling of the dunnage into a container for packing while the machine is running will also produce the kinked or malformed portions of the dunnage product.
It will be understood that the number of coils or spirals in a predetermined length section of the coiled dunnage before kinking and reversal thereof is not necessarily uniform, since it depends on how much resistance is provided to the turning or rotation of the lower end of the strip, as it passes down between the bevel gears. Other factors appear to be the width of the strip or rope of material as it comes from the crumpler mechanism and the size of the bevel gears, so that there are certain variables which can enter into the formation of the dunnage to affect its ultimate coil configuration. Miter gears with 1.5 inches to 2 inches pitch diameter and having respectively 18 and 20 teeth have been used to produce highly effective dunnage. As can be seen in FIG. 11 when the dunnage is compressed it does not collapse into regular coil form due to the fact that the coils are not all symmetrically formed into a symmetrical helix, but due to the irregular configuration of the dunnage sections due to the malformed portions or sections 60, the dunnage resists collapsing and becomes a resilient mass when packed in a container, which gives good cushioning to articles packed in the dunnage.
From FIG. 9 it can be seen from the cross section of the dunnage strip that the latter is formed of layers or folds of the sheetlike material or paper as compressed between the teeth of the gears, with the teeth having coined the dunnage strip into generally wave-like or corrugated form in a direction generally crosswise of the strip, and as shown in FIG. 9A.
FIGS. 25 and 26 illustrate a coiled form of dunnage produced with relatively loose coils, by having a relatively loose mesh relation between the coining gears and by having a relatively great overshoot of the crumpled rope or strip from the crumpler, into the gears. In other words, the exit end of the nozzle 39 is relatively close to the center of the engagement between the gears (say for instance, one-eighth inch back from the center of engagement) and the gear teeth have an overlap of approximately one thirty-second of an inch for a loose mesh relation. Such a dunnage product 75 is of low density, with the intermediate layers 75a of material being loosely formed in the interior of the outer layer, giving the product low density and high resiliency. The increased overshoot" produces an enlarged end portion 77 (in a direction transverse of the product) which tapers or converges toward the other end. Enlarged or unsqueezed portion 77 is formed due to the fact that with a relatively great overshoot and a loose mesh relation, the forward edge of the rope or strip from the crumpler passes outside or forwardly of the gear teeth and thus is not coined or squeezed, while the tapered portion passes between the teeth and is coined or squeezed. However, the loose mesh of the gears coins the rope or strip materially less than that ofthe FIG. 8 dunnage product.
FIG. 10 discloses a mechanism for weighing out a predetermined weight or slug (as it is hereinafter referred to) of the dunnage material, as produced by the dunnage mechanism of FIGS. 5 and 6. This mechanism would be usually used where repetitive packaging requires the same amount of dunnage. Such mechanism may comprise a metering housing 78 open at the top thereof, and which encloses the gears 40a, 40b and the aforementioned shield 56, and into which the dunnage strip as it comes down from between the gears, is adapted to drop. The bottom wall 78a of the housing may be pivoted to the housing for opening and closing movements and may have a counterweight mechanism 80 thereon so that after a predetermined weight ofthe strip dunnage has gathered in the housing, the bottom wall is forced open and the slug of dunnage material passes downwardly onto a supporting surface or work table 82. The bottom wall then recloses due to the removal of the weight of the dunnage therefrom, and the strip may be cut by means ofthe associated cutter means 58. Meanwhile, another slug of dunnage is being formed in the housing. Kinking or malformation of the dunnage occurs in housing 78 in the manner aforedescribed.
The interior of the housing is preferably completely smooth so that the slug of dunnage has nothing to catch on in the housing 78, so that when the bottom door pivots downwardly the slug of dunnage readily falls downwardly out of the housing. The counterbalance may comprise a hollow tube 80a having ball weights (not shown) rollingly mounted therein to increase the sensitivity of the Wall 7811 and provide for quick dumping and more accurate weighing. In the closed condition of wall 78a, the weighted end of tube 80a may be disposed slightly below the horizontal, with a stop being provided to limit the upward pivotal movement of the counterweight and associated downward pivotal movement of the door 78a.
Referring to FIG. 12 and 13 there is shown a dunnage mechanism which is generally similar to that of the type illustrated in FIGS. 1 and 2, except that the mechanism for pulling the strip of crumpled sheetlike material through the crumpler comprises meshing gears 84, which in the embodiment illustrated are spur gears. These spur gears are rotatively mounted with respect to supporting means 86 and may be power driven as means of a preferably variable speed electric motor 88. The dunnage strip passes through the spur gears and is coined by the teeth of the gears, and the strip comes out as an elongated generally linear strip of material. Such dunnage material due in part to its corrugated configuration 90 (FIGS. 14 and 15) does possess considerable cushioning effect, and may be cut into suitable sections for providing dunnage for use in packing, and as shown for instance in FIG. 11. It will be understood, of course, that the dunnage strip can be fed in one continuous strip into a packing or shipping carton without cutting it into predetermined length sections.
The dunnage section illustrated in FIG. 16 is similar to the dunnage of FIG. 14, except that the gears which coin the strip of sheetlike material and pull it through the crumpler are helical gears, thereby giving the strip 92 of dunnage a corrugated configuration at oblique angles with respect to the lengthwise axis of the strip. Here again such dunnage possesses considerable cushioning effect. However, it does not possess the cushioning effect possessed by the spirally formed dunnage produced by the FIGS. 5 to 7 mechanism.
Referring now to FIG. 17 there is shown another embodiment ofa dunnage producing mechanism. In this embodiment the crumpler mechanism takes the form of a framework 96 which has a plurality of converging slats 96a, 96b mounted in a fabricated support 98, with the slats being offset with respect to one another at their distal ends and in generally horizontal directions, and being generally aligned at their proximate ends 100, so as the sheetlike material 14 coming from the vertically oriented rotatable roll 102 (FIG. 19) is pulled through the slat framework, the sheetlike material is automatically folded or creased into a generally flat elongated relatively narrow strip 104 of material, such as shown for instance in FIG. 20. In this connection it will be seen that the sheetlike material 14 coming from the roll 102 first passes around the exterior of generally vertical rib 106 and then passes behind generally vertically arcuate rib 108 prior to passing through vertical slot 110 (FIG. 17) in the support 98 and into coaction with creasing slats 96a, 96b. Rib 108 tensions the web 14 of paper into a generally vertically concave configuration which aids in the folding thereof into strip form 104 by crumpler mechanism 96. A friction braking mechanism 112 anchored as at 1120 and l12b maintains a tension on the material of roll 102 and prevents overrunning thereof.
The relatively narrow strip of sheetlike material 104 is then passed between a pair of coacting rollers 114, 11411 which are geared together, as at 115, and with one (e.g., 114) of the rollers being power driven, so as to actually pull the strip through the crumpler or folding mechanism 96. The strip may then pass over a rotatable roller 116, and is fed onto the underside ofa belt 118 which coacts with a spiral or helical mandrel 120, to draw the strip of material around the helix in compressed relation, thus forming the linear strip 104 of material into a permanent helical or spiral form, which helical form, as shown in FIG. 21, has a considerable amount of resiliency both axially and transversely thereof.
The belt 118 winds around the helical mandrel 120, as at 124 (FIG. 17) and which is set at approximately a 45 angle in a horizontal plane, with respect to the axis of the roller 116, and then passes around a large crown-faced pulley or drum 126 which is power driven as by means of an electric motor 128 and coacting geared speed reduction unit 130. The belt 118 then extends forwardly to pass around crown-faced pulley 132 and then beneath the pulley 132 to coact with roller 116 in drawing the strip 104 of material coming from crumpler 96, around the spiral mandrel 120. Roller 116 and pulley 132 may be geared together as at 133.
A chain and sprocket drive mechanism 134 may be used to drive a pulley 136 which is connected as by means of a belt 138 to pulley 140 (FIG. 18) coupled to one (e.g., 114) of the drawing rollers which are geared together as aforementioned. Coacting with the belt 118 there may be an idler arm and roller means 142 which places a predetermined tension on the belt to maintain the belt in tensioned relationship as it passes around the pulleys 126 and 132. As can be best seen in FIG. 22, the belt 118 is formed with a full 360 degree twist, for enabling the belt to coact with the spiral mandrel 120, in a manner to permit the belt to travel flat without twist as it moves from the top of 126 to top of 132. A preferably rotatable guide means 144 coacting with the outer edge of the belt 118 may also be provided for guiding the movement of the belt. The coiled dunnage as it exits from the outer end of mandrel 120 is rotating about its lengthwise axis, and curls about takeoff and guide rod 148 which is sloped downwardly to direct the endless coil of dunnage along the takeoff rod to a receptacle 150 or the like.
A cutter mechanism 152 may be provided, which in the embodiment illustrated comprises a shearslike means 154 through which the strip of coiled dunnage must pass, in order to coact with the takeoff rod 148. One of the blades of the shear mechanism may be coupled to a fluid powered motor unit 156 which may be of the double-acting cylinder type, and which may be selectively controlled by an operator to cut the strip of dunnage as it is emitting from the mandrel 120 and coacting belt 118. Operation of the cutter mechanism will cut the coiled strip of dunnage into selected lengths for use as loose packing material. The operator may preset the machine to automatically cut off desired lengths. It will be understood that the distal end of the coiled dunnage comming off the .takeoff rod 148 should be free, so as to prevent uncoiling forces from being applied thereto.
Referring now to FIGS. 23 and24, there is shown another embodiment of dunnage-producing mechanism which is adapted in the embodiment illustrated, to utilize a plurality of webs of a sheetlike material and to combine and form such plurality of webs into an integral,resi1ient, tubularlike construction of cushioning dunnage. It will be understood that only one web of stock material could also be used to form a tubularlike dunnage product.
Such mechanism as illustrated may comprise a base support 160 having rack structure 162 mounted thereon, which rack structure is adapted to support a plurality of spaced rolls 164, 164a of the sheet or weblike material. As illustrated, the lower roll 164 is preferably of a lesser width material as compared to the upper roll 164a.
The rolls 164, 164a are rotatably mounted on rack structure 162, and suitable braking mechanism (not shown) is preferably provided coacting with the rolls to prevent overrunning of the latter. The web of sheet material from the respective roll is adapted to be drawn downwardly into the crumpler mechanism 169 where it is formed into a generally loose tubularlike configuration after which it is passed through gear means 170 which stitches or coins together at least the free lengthwise 171, 17111 of the tubular-shaped sheet stock emitting from the crumpler 169, to thus maintain the multiweb dunnage product in integral assembled tubularlike condition.
The crumpler 169 in the embodiment illustrated comprises a funnellike portion 172 which gathers in the plurality of webs coming from the rolls 164, 164a, and a lower, sleeve portion 174 which forms such gathered webs of material into a generally tubular configuration, and guides the latter into the gear means 170. The sleeve portion 174 has cutaway portions 174a at its lower end for providing clearance for the stitcher or coining gear means 170 (FIG. 24) which are adapted to draw the multiweb tubular assembly down through the crumpler, and to stitch theopposite sides thereof. As can be best seen in FIG. 24, the gears are so positioned with respect to the sleeve portion 174 that they will engage just opposite edges of the multiweb assembly as it passes from the sleeve portion into the teeth or bite ofthe gear means.
In the embodiment illustrated, two sets of coacting spur gears 170 are illustrated, with one gear of each set being power driven as by means of the motor 178 and associated belt drive 180 coacting with a pulley 182 fixed to a shaft 184 to which one (186) of the gears of each set of gear means 170 if keyed or otherwise secured. The gears of each set are preferably adjustable with respect to one another so as to provide for varying the mesh clearance.
Extending upwardly from the crumpler 169 and more particularly the funnel portion 172 of the crumpler 169, may be a bar support 188 to which is preferably adjustably secured as at 189, a gathering ring 190, oriented in overlying generally centered relationship to the funnel portion 172, for the purpose of gathering and guiding the webs from the upper stock roll 164a and the lower stock roll 164, and guiding them into the funnel portion 172. The web from the lower roll 164 passes interiorly of ring 190 while the web from upper roll 164a passes exteriorly of the ring. Extending upwardly from the distal side of the gathering ring 190 may be a belly pusher rod 192 (FIG. 24) which is adapted to engage the front face of the web of material from the upper stock roll 164a, and helps to guide the web into the funnel portion in the tubular forming operation. Rod 192 preferably has a rounded upper end 194 for preventing tearing of the web of stock material by the rod during engagement thereof with the web. As can be best seen in FIG. 24, the web of material from the upper stock roll is adapted to pass rearwardly of the rod 192 and down into the funnel to be formed into generally tubular condition, after which the opposite lengthwise edges of the formed sleeve of material from both the upper and lower stock rolls are stitched by the gear means 170.
Disposed above the guide ring may be a forming ring 198, also projecting outwardly from support 188 into overlying relationship with respect to the funnel portion 172, and as can be seen in FIG. 24 generally centered thereabove. Forming ring 198 is adapted to engage the front surface of the web or lower stock roll 164 and to aid in forming it into generally tubular shape for entry into the crumpler. Extending downwardly through the crumpler mechanism may be a guide rod 200 which likewise may be supported on support 188, and which passes down through the guide ring 190, through the crumpler 169, to terminate approximately at the support 160. Such guide rod aids in guiding the plurality of webs from the upper and lower stock rolls into a tubularlike dunnage product and in stabilizing and centering the tubular stock material as it passes through the gear means 170.
The tubularlike dunnage product 203 emitting from between the gear means passes downwardly through an opening 202 (FIG. 23) in the support 160, and between a cutter mechanism 204 which may be selectively operated to cut the dunnage product into selected lengths.
Referring now to FIGS. 27 and 28 it will be seen that the dunnage product is of generally irregular tubular configuration comprising an outer layer or envelope 206 formed from the web of material from upper roll 164a, and generally loosely interleaved inner filler layers 208 formed primarily from the lower roll 164, all of which is stitched along opposing lengthwise sides 210 of the product by the gear means 170. Such a dunnage product has low density and high resilience, and results in a dunnageproduct possessing good cushioning properties.
FIGS. 29 and 30 disclose a dunnage product 212 produced by a machine generally similar to that of FIGS. 23 and 24, except utilizing only one set of gear means so that the tubularlike dunnage is stitched or coined along only the open edges (as at 214) with the opposite side edge not being coined. This product likewise comprises an outer envelope 216 and loosely interleaved inner layers 218, and giving good cushioning properties.
It has been found that the outer envelope of the tubularlike dunnage product may be expeditiously formed of a relatively high strength sheet material, such as for instance Kraft paper, while the inner filler layers provided by roll 164 may be formed of a cheaper and less high strength material, such as for instance newsprint paper. Also, a dunnage product formed from an outer envelope of a softer sheet material, such as for instance Kraft dry waxed paper, with the inner filler material formed from the stiffer standard Kraft thirty pound paper, has been found to provide an expeditious cushioning dunnage product having dust free and soft exterior characteristics, while still possessing internal stiffness for relatively high resiliency.
The aforementioned cutter mechanism 204 may comprise shear blades 220 including arm portions 221 (FIG. 31) which are pivoted to one another as at 222 and are pivotally mounted as at 223, to a respective gear 224, 226 disposed in meshing relation, and with a handle mechanism 228 (FIG. 24) being provided for rotating gear 224, thereby causing rotation of gear 226 and opening and closing movements of the shear blades. As can be seen from FIG. 31, upon rotation of the handle of the cutter mechanism so as to cause rotary movement of the meshed gears in the direction of the full line arrows, the pivotal axes 223 of the arm portions 221 of the cutter to the respective gear moves for instance from position 1 to position 2 wherein the blades 220 are spaced apart as illustrated by the dashed lines, then to position 3 wherein the blades commence to close as shown by the dotted lines, then to position 4 wherein the blades are closed a greater amount as illustrated by the dot-dashed lines, with the blades being extended for- 11 wardly to their forwardmost position, then back to position 1 wherein the blades are retracted and close, to cause cutting of the dunnage. Accordingly, the dunnage is cut as the blades are being retracted and severing of the tubular like dunnage product is accomplished without tearing thereof.
From the foregoing discussion and accompanying drawings, it will be seen that the invention provides a novel cushioning dunnage product which may be readily formed from a roll of sheet like material into an elongated, relatively narrow strip or rope which is formed into helicallike coiled configuration to give substantial resiliency to the dunnage product, thus improving the cushioning characteristics thereof in its use as loose packing material. The dunnage product may include spaced, malformed noncoiled portions disposed along the lengthwise extent of the product to prevent the product from collapsing under compression. Moreover, the invention provides a novel lightweight dunnage product of tubular like form, which may be produced by forming a web of sheet like material, such as paper, into tubular like configuration and crumpling the formed web, and then stitching it lengthwise thereof, to maintain the tubular like configuration of product. The dunnage product has increased resiliency over paper dunnage heretofore known and is formed from sheetlike material such as ordinary kraft paper which may be stored in compact roll form prior to its formation into suitable dunnage, and which may be fed directly from a dunnage producing mechanism into containers at the location of use. The dunnage products are produced by methods which materially simplify the production of the dunnage resulting in economies in such production.
The terms and expressions which have been used are used as terms of description and not of limitation and there is no intention in the use of such terms and expressions of excluding any equivalents of any of the features shown or described, or portions thereof, and it is recognized that various modifications are possible within the scope of the terms and expressions utilized to describe the invention.
What is claimed is:
l. Dunnage for packing comprising, an elongated relatively narrow compressed strip of crumpled sheet-paper material formed into generally helicallike coil configuration in a direction lengthwise thereof, opposite faces of said strip being coined into spaced corrugations extending generally tranversely of said strip faces.
2. A dunnage product in accordance with claim 1 wherein the dunnage product comprises portions of said helicallike coiled configuration alternated with noncoiled portions.
3. A dunnage product in accordance with claim 2 wherein each of said noncoiled portions comprises a strip section extending generally linearly in the lengthwise direction of said dunnage product, each of said coiled portions comprising a plurality of helicallike coils, each of said linear sections being disposed intermediate lengthwise spaced of said coiled portions, each of said linear sections being coined into corrugations extending generally transversely thereof, said noncoiled portions of the dunnage product being adapted to cause the dunnage to be resistant to lengthwise axial collapsing and insuring that the dunnage material when packed into a container becomes a tangled resilient mass, possessing good cushioning characteristics.
4. A dunnage product in accordance with claim 3 wherein the product is of a relatively low density and wherein one lengthwise edge thereof is comprised of relatively loosely crumpled material forming an enlarged edge portion extending for the full length of said product, said strip tapering in a direction transversely thereof toward the opposite edge portion which is relatively highly compressed and of a smaller cross sectional area as compared to the cross sectional area of the first mentioned edge portion.

Claims (4)

1. Dunnage for packing comprising, an elongated relatively narrow compressed strip of crumpled sheet-paper material formed into generally helicallike coil configuration in a direction lengthwise thereof, opposite faces of said strip being coined into spaced corrugations extending generally tranversely of said strip faces.
2. A dunnage product in accordance with claim 1 wherein the dunnage product comprises portions of said helicallike coiled configuration alternated with noncoiled portions.
3. A dunnage product in accordance with claim 2 wherein each of said noncoiled portions comprises a strip section extending generally linearly in the lengthwise direction of said dunnage product, each of said coiled portions comprising a plurality of helicallike coils, each of said linear sections being disposed intermediate lengthwise spaced of said coiled portions, each of said linear sections being coined into corrugations extending generally transversely thereof, said noncoiled portions of the dunnage product being adapted to cause the dunnage to be resistant to lengthwise axial collapsing and insuring that the dunnage material when packed into a container becomes a tanGled resilient mass, possessing good cushioning characteristics.
4. A dunnage product in accordance with claim 3 wherein the product is of a relatively low density and wherein one lengthwise edge thereof is comprised of relatively loosely crumpled material forming an enlarged edge portion extending for the full length of said product, said strip tapering in a direction transversely thereof toward the opposite edge portion which is relatively highly compressed and of a smaller cross sectional area as compared to the cross sectional area of the first mentioned edge portion.
US3650877D 1969-10-06 1969-10-06 Cushioning dunnage product Expired - Lifetime US3650877A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86385669A 1969-10-06 1969-10-06

Publications (1)

Publication Number Publication Date
US3650877A true US3650877A (en) 1972-03-21

Family

ID=25341943

Family Applications (1)

Application Number Title Priority Date Filing Date
US3650877D Expired - Lifetime US3650877A (en) 1969-10-06 1969-10-06 Cushioning dunnage product

Country Status (1)

Country Link
US (1) US3650877A (en)

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126501A (en) * 1977-03-16 1978-11-21 Lionel Croll Archery target and method of making same
US4199627A (en) * 1975-07-07 1980-04-22 Highland Manufacturing & Sales Co. Decorative grass
US4244585A (en) * 1979-10-05 1981-01-13 Lionel Croll Archery target
US4884999A (en) * 1988-01-04 1989-12-05 Ranpak Corp. Dunnage converter for producing narrow width cushioning pad product, conversion kit thereof, and method
US4997091A (en) * 1989-08-17 1991-03-05 Mccrea James S Package containing biodegradable dunnage material
US5088972A (en) * 1989-11-02 1992-02-18 Eco-Pack Industries, Inc. Folding and crimping apparatus
US5123889A (en) * 1990-10-05 1992-06-23 Ranpak Corporation Downsized cushioning dunnage conversion machine and cutting assemblies for use on such a machine
US5151312A (en) * 1990-10-18 1992-09-29 Boeri John L Hollow, non-nestable packing peanuts of recycled newspaper
WO1992017372A1 (en) * 1991-04-05 1992-10-15 Patriot Packaging Corporation Improved dunnage, method and apparatus for making, and package using same
US5188581A (en) * 1988-01-04 1993-02-23 Ranpak Corp. Method for producing a narrow width cushioning paper product
US5230943A (en) * 1991-11-29 1993-07-27 Pulptech Corporation Free-flowing dunnage of molded pulp
US5257492A (en) * 1991-04-05 1993-11-02 Patriot Packaging Corporation Dunnage, method and apparatus for making, and package using same
US5322477A (en) * 1990-10-05 1994-06-21 Ranpak Corp. Downsized cushioning dunnage conversion machine and packaging systems employing the same
US5383837A (en) * 1991-04-05 1995-01-24 Patriot Packaging Corporation Method and apparatus for making improved dunnage
US5439730A (en) * 1992-09-11 1995-08-08 Productive Solutions, Inc. Flowable loose packing dunnage
US5552003A (en) * 1994-10-04 1996-09-03 Hoover; Gregory A. Method for producing inflated dunnage
US5568867A (en) * 1992-10-05 1996-10-29 Ranpak Corp. Paper cushioning product
US5593376A (en) * 1994-07-22 1997-01-14 Ranpak Corp. Cushioning conversion machine and method
US5595811A (en) * 1992-01-31 1997-01-21 Stout, Jr.; William A. Packaging material
US5607383A (en) * 1994-07-22 1997-03-04 Ranpak Corp. Modular cushioning conversion machine
US5637071A (en) * 1993-08-19 1997-06-10 Ranpak Corp. Dispensing table for a cushioning conversion machine
US5643167A (en) * 1994-04-01 1997-07-01 Ranpak Corp. Cushioning conversion machine for converting sheet-like material into a cushioning product
US5656008A (en) * 1992-03-31 1997-08-12 Ranpak Corp. Method and apparatus for making an improved resilient packing product
US5674172A (en) * 1994-07-22 1997-10-07 Ranpak Corp. Cushioning conversion machine having a single feed/cut handle
US5698293A (en) * 1993-02-11 1997-12-16 Devipack Oy Formed piece particularly for use as packing material method and apparatus for its manufacture and use
US5709642A (en) * 1994-07-22 1998-01-20 Ranpak Corp. Cushioning conversion machine and method
US5712020A (en) * 1990-06-14 1998-01-27 Ranpak Corp. Resilient packing product and method and apparatus for making the same
US5803893A (en) * 1994-07-22 1998-09-08 Ranpak Corp. Cushioning conversion machine and method
US5840004A (en) * 1994-07-22 1998-11-24 Ranpak Corp. Cushioning conversion machine and method
US5855091A (en) * 1993-11-03 1999-01-05 Ranpak Corp. Method of using a paper packing product to store/ship plants with exposed roots
EP0888878A2 (en) * 1997-06-30 1999-01-07 Ranpak Corp. Cushioning conversion machine/method and packaging system
US5864484A (en) * 1994-07-22 1999-01-26 Ranpak Corp. Cushioning conversion machine
US5871429A (en) * 1994-07-22 1999-02-16 Ranpak Corp. Cushioning conversion machine including a probe for sensing packaging requirements
US5900119A (en) * 1996-10-09 1999-05-04 E-Tech Products, Inc. Method of forming improved loose fill packing material from recycled paper
US5908375A (en) * 1994-07-22 1999-06-01 Ranpak Corp. Manual feed cushioning machine and method
US5910079A (en) * 1992-12-14 1999-06-08 Strapack Corporation Method and apparatus for manufacturing paper cushioning members
US5992637A (en) * 1997-07-14 1999-11-30 Southpac Trust International, Inc. Packaging material
US6071574A (en) * 1997-07-11 2000-06-06 Southpac Trust International, Inc. Folded corrugated material and method for producing same
US6076764A (en) * 1998-10-30 2000-06-20 F.T. Acquisitions, L.P. Combination paper roll core and paper tube plug
US6080097A (en) * 1995-06-07 2000-06-27 Ranpak Corp. Cushioning conversion machine with single feed/cut motor
US6090033A (en) * 1997-09-02 2000-07-18 Ranpak Corp. Cushioning conversion machine for producing U-shape pads
US6106452A (en) * 1994-04-22 2000-08-22 Naturembal S.A. Machines and methods for making cushioning dunnage products by crumping paper
US6132842A (en) * 1994-04-01 2000-10-17 Ranpak Corp. Cushioning product
US6135939A (en) * 1994-07-22 2000-10-24 Ranpak Corp. Cushioning conversion machine and method
US6176818B1 (en) 1995-06-07 2001-01-23 Ranpak Corp. Cushioning conversion machine cushioning conversion method and method of assembling a cushioning conversion machine
US6179765B1 (en) 1998-10-30 2001-01-30 Ft Acquisition, L.P. Paper dispensing system and method
US6183586B1 (en) * 1996-06-18 2001-02-06 Peter Heidelberger Process and apparatus for the production of a padding material and padding material produced with this process and apparatus
US6190299B1 (en) 1995-03-24 2001-02-20 Ranpak Corporation Cushion producing machine
US6199349B1 (en) 1999-05-20 2001-03-13 Automated Packaging Systems, Inc. Dunnage material and process
US6221000B1 (en) 1997-07-11 2001-04-24 Southpac Trust Int'l, Inc. Folded corrugated material
US6258447B1 (en) 1998-03-18 2001-07-10 Southpac Trust Int'l, Inc. Decorative shredded material
US6311596B1 (en) 1990-10-05 2001-11-06 Ranpak Corp. Cutting assembly for a cushioning conversion machine
FR2808722A1 (en) * 2000-05-09 2001-11-16 Naturembal Sa Cutting tool for cutting material in strip form, is made of two cutting blades slightly offset one with the other, fitted to blade holders driven by an electric motor via gearing and operates with a sawing operation
US6341475B2 (en) * 1999-10-21 2002-01-29 Southpac Trust International, Inc. Inflatable shipping device
US6402675B2 (en) 1997-07-11 2002-06-11 Southpac Trust International, Inc. System for producing corrugated decorative grass
US20020109255A1 (en) * 1997-07-14 2002-08-15 Weder Donald E. Method for making printed and/or embossed decorative grass
US6436324B1 (en) 1997-06-19 2002-08-20 Southpac Trust International, Inc. Method for making curled decorative grass
US20030024624A1 (en) * 1997-02-07 2003-02-06 Weder Donald E. Decorative elements provided with a circular or crimped configuration at point of sale or point of use
US6524230B1 (en) 1994-07-22 2003-02-25 Ranpak Corp. Packing material product and method and apparatus for making, monitoring and controlling the same
US6527147B2 (en) * 2000-12-12 2003-03-04 Automated Packaging Systems, Inc. Apparatus and process for dispensing dunnage
US6534148B1 (en) 1995-04-19 2003-03-18 Naturembal S.A. Machine for making cushioning dunnage product, stock material for feeding such machine and method
US20030073558A1 (en) * 2001-10-15 2003-04-17 Bill Chesterson Machine and method for converting paper stock into dunnage
US6561964B1 (en) 1994-07-22 2003-05-13 Ranpak Corp. Cushioning conversion machine and method
US20030111761A1 (en) * 1998-04-10 2003-06-19 Weder Donald E. Method for making printed and/or embossed decorative grass
US20030198781A1 (en) * 1998-03-18 2003-10-23 Weder Donald E. Decorative creped shredded material
US6685615B2 (en) 2001-02-08 2004-02-03 Southpac Trust International, Inc. Corrugated decorative grass formed of paper and polymeric film and method for producing same
US20040050743A1 (en) * 2002-09-17 2004-03-18 Jean-Marc Slovencik Cushioning product and method and apparatus for making same
US20040052988A1 (en) * 2002-09-17 2004-03-18 Jean-Marc Slovencik Cushioning product and method and apparatus for making same
US20040175519A1 (en) * 2002-10-01 2004-09-09 Weder Donald E. Self erecting pot
US20050059539A1 (en) * 1997-06-19 2005-03-17 Weder Donald E. Method and apparatus for making curled decorative grass
US6948296B1 (en) 1999-05-20 2005-09-27 Automated Packaging Systems, Inc. Dunnage material and process
US20050266189A1 (en) * 2004-06-01 2005-12-01 Automated Packaging Systems, Inc. Web and method for making fluid filled units
GB2415425A (en) * 2004-06-25 2005-12-28 Jean Card And Gift Co Ltd Spiral cushioning member for packaging
US6989075B1 (en) 2000-11-03 2006-01-24 The Procter & Gamble Company Tension activatable substrate
US20060027311A1 (en) * 1997-02-07 2006-02-09 The Family Trust U/T/A Decorative elements provided with a curled or crimped configuration at point of sale or point of use
US20060026931A1 (en) * 2003-12-15 2006-02-09 Weder Donald E Apparatus for forming and securing a decorative cover about a flower pot
US20060042191A1 (en) * 2004-06-01 2006-03-02 Bernard Lerner Web and method for making fluid filled units
US20060086064A1 (en) * 2004-06-01 2006-04-27 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US20060110553A1 (en) * 2003-04-08 2006-05-25 Hershey Lerner Web for fluid filled unit formation
US20060262997A1 (en) * 2003-04-08 2006-11-23 Hershey Lerner Fluid filled units
US20060281621A1 (en) * 1997-06-19 2006-12-14 Weder Donald E Method and apparatus for making curled decorative grass
US20070269618A1 (en) * 1997-07-14 2007-11-22 Weder Donald E Method for making contoured decorative grass
US20080014389A1 (en) * 2006-07-11 2008-01-17 Rick Wehrmann Apparatus and method for making fluid filled units
WO2008030743A1 (en) * 2006-09-08 2008-03-13 Storopack, Inc. Cushioning product, machine and method
US20080098699A1 (en) * 2004-11-05 2008-05-01 Ranpak Corp. Automated Dunnage Filling System and Method
US20080108454A1 (en) * 2006-11-06 2008-05-08 Kohnen Michael P Golf ball containing photoluminescent material and a light source
WO2008033515A3 (en) * 2006-09-14 2008-09-25 Pregis Corp System and method for crumpling paper substrates
US20090075800A1 (en) * 2007-08-31 2009-03-19 Pregis Innovative Packaging, Inc. Sheet-Fed Dunnage Apparatus
US20090275457A1 (en) * 2002-11-05 2009-11-05 Ranpak Corp. System and method for making a coiled strip of dunnage
US20090278276A1 (en) * 1998-04-10 2009-11-12 Weder Donald E Method for making contoured decorative grass
US7651455B2 (en) 2004-03-26 2010-01-26 Free Flow Packaging International, Inc. Method for making paper dunnage
US20100221466A1 (en) * 2009-02-27 2010-09-02 Automated Packaging Systems Web and Method for Making Fluid Filled Units
US20100323153A1 (en) * 2009-06-22 2010-12-23 Mary Huskey Packaging material
USD630945S1 (en) 2009-02-27 2011-01-18 Automated Packaging Systems, Inc. Inflatable packing material
US20110045217A1 (en) * 2000-06-09 2011-02-24 Ranpak Corp. Dunnage conversion machine with translating grippers, and method and product
US20110089598A1 (en) * 2003-02-27 2011-04-21 Weder Donald E Method for making contoured decorative grass
US20110113735A1 (en) * 1997-06-19 2011-05-19 Weder Donald E Method for making distorted fragments
US20120201936A1 (en) * 2011-02-09 2012-08-09 Elizabeth Winograd Microwave Popcorn Packaging with a Clear Bag and an Interior Anti-Scorch Surface
US20120240526A1 (en) * 2001-08-21 2012-09-27 Weder Donald E Container assemblies having collapsible and erectable containers containing a packaging material and methods of production and use thereof
US8354150B2 (en) 2007-10-31 2013-01-15 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US8641591B2 (en) 2010-08-26 2014-02-04 Pregis Innovative Packaging, Inc. Center-fed dunnage system
US9266300B2 (en) 2011-07-07 2016-02-23 Automated Packaging Systems, Inc. Air cushion inflation machine
US20160082685A1 (en) * 2014-09-19 2016-03-24 Simon CS Chan Apparatus, systems and methods for configuring/ feeding sheet stock material for a dunnage system and for generating upright edge dunnage strips
US20160207274A1 (en) * 2013-09-23 2016-07-21 Sprick Gmbh Bielefelder Papier-Und Wellpappenweke & Co. Perforation Tool for a Device for the Production by Machine of a Filling Material Product and a Device for the Production by Machine of a Filling Material Product
WO2016198944A1 (en) * 2015-06-12 2016-12-15 Papernuts, Corp Apparatus for producing dunnage
US9840056B2 (en) 2010-12-23 2017-12-12 Pregis Innovative Packaging Llc Center-fed dunnage system feed and cutter
US9844911B2 (en) 2013-11-21 2017-12-19 Automated Packaging Systems, Inc. Air cushion inflation machine
WO2018055084A1 (en) 2016-09-23 2018-03-29 Karl Lindner Method and device for producing packing chips, and packing chips produced thereby
WO2019099601A1 (en) * 2017-11-20 2019-05-23 Ecopack Group, Llc Machine to produce twisted paper for loose fill packaging
US10457090B2 (en) 2015-02-03 2019-10-29 Ted Tepe Expandable package filler or ornament
US10647460B2 (en) 2013-03-15 2020-05-12 Automated Packaging Systems, Llc On-demand inflatable packaging
US11007746B2 (en) 2017-05-11 2021-05-18 Pregis Innovative Packaging Llc Dunnage supply intake
US11077637B2 (en) 2016-09-30 2021-08-03 Pregis Innovative Packaging Llc Connective protective packaging
US11161668B1 (en) 2020-07-22 2021-11-02 Terry Hermanson Packing material and method of manufacturing the packing material
WO2022215013A1 (en) * 2021-04-07 2022-10-13 Aviplast Plastic Industries Ltd A mesh structure and method of forming the mesh structure
US11679919B2 (en) 2021-05-06 2023-06-20 Terry Hermanson Method of packing an object in a shipping box
US11738533B2 (en) * 2009-08-28 2023-08-29 Pregis Innovative Packaging Llc Dunnage system with variable accumulator
US11926119B2 (en) 2017-05-11 2024-03-12 Pregis Innovative Packaging Llc Dunnage apparatus carton filler
US11958265B2 (en) 2023-04-10 2024-04-16 Pregis Innovative Packaging Llc Center-fed dunnage system feed and cutter

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1324066A (en) * 1919-12-09 Excelsiob
US2040745A (en) * 1931-08-05 1936-05-12 Joyce Warren Machine for manufacturing paper excelsior
US2045498A (en) * 1933-02-01 1936-06-23 Chicopee Mfg Corp Method of conditioning regenerated cellulose for use in the arts
US2499463A (en) * 1946-02-12 1950-03-07 Paper Strap Inc Paper strap
US2729267A (en) * 1952-07-16 1956-01-03 Hoffmaster Company Inc Machine and method for making edge embossed paper article and product thereof
US2882802A (en) * 1956-10-29 1959-04-21 Fox Paper Company Crumpling device
US2896692A (en) * 1954-11-22 1959-07-28 Fiammiferi Ed Affini Spa Fab Method of making cushioning paper
US3063885A (en) * 1958-02-17 1962-11-13 Thomas P Kieffer Packing pad
US3238852A (en) * 1954-10-05 1966-03-08 Olin Mathieson Method and apparatus for making filters
US3377224A (en) * 1966-03-11 1968-04-09 Kimberly Clark Co Method of embossing differentially creped tissue paper

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1324066A (en) * 1919-12-09 Excelsiob
US2040745A (en) * 1931-08-05 1936-05-12 Joyce Warren Machine for manufacturing paper excelsior
US2045498A (en) * 1933-02-01 1936-06-23 Chicopee Mfg Corp Method of conditioning regenerated cellulose for use in the arts
US2499463A (en) * 1946-02-12 1950-03-07 Paper Strap Inc Paper strap
US2729267A (en) * 1952-07-16 1956-01-03 Hoffmaster Company Inc Machine and method for making edge embossed paper article and product thereof
US3238852A (en) * 1954-10-05 1966-03-08 Olin Mathieson Method and apparatus for making filters
US2896692A (en) * 1954-11-22 1959-07-28 Fiammiferi Ed Affini Spa Fab Method of making cushioning paper
US2882802A (en) * 1956-10-29 1959-04-21 Fox Paper Company Crumpling device
US3063885A (en) * 1958-02-17 1962-11-13 Thomas P Kieffer Packing pad
US3377224A (en) * 1966-03-11 1968-04-09 Kimberly Clark Co Method of embossing differentially creped tissue paper

Cited By (245)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199627A (en) * 1975-07-07 1980-04-22 Highland Manufacturing & Sales Co. Decorative grass
US4126501A (en) * 1977-03-16 1978-11-21 Lionel Croll Archery target and method of making same
US4244585A (en) * 1979-10-05 1981-01-13 Lionel Croll Archery target
US5188581A (en) * 1988-01-04 1993-02-23 Ranpak Corp. Method for producing a narrow width cushioning paper product
US4884999A (en) * 1988-01-04 1989-12-05 Ranpak Corp. Dunnage converter for producing narrow width cushioning pad product, conversion kit thereof, and method
US4997091A (en) * 1989-08-17 1991-03-05 Mccrea James S Package containing biodegradable dunnage material
US5173352A (en) * 1989-11-02 1992-12-22 Ranpak Corporation Resilient packing product and method and apparatus for making the same
US5134013A (en) * 1989-11-02 1992-07-28 Eco-Pack Industries, Inc. Folding and crimping apparatus
US5088972A (en) * 1989-11-02 1992-02-18 Eco-Pack Industries, Inc. Folding and crimping apparatus
US5712020A (en) * 1990-06-14 1998-01-27 Ranpak Corp. Resilient packing product and method and apparatus for making the same
US6311596B1 (en) 1990-10-05 2001-11-06 Ranpak Corp. Cutting assembly for a cushioning conversion machine
US5322477A (en) * 1990-10-05 1994-06-21 Ranpak Corp. Downsized cushioning dunnage conversion machine and packaging systems employing the same
US5123889A (en) * 1990-10-05 1992-06-23 Ranpak Corporation Downsized cushioning dunnage conversion machine and cutting assemblies for use on such a machine
US5468208A (en) * 1990-10-05 1995-11-21 Ranpak Corp. Downsized cushioning dunnage conversion machine and packaging systems employing the same
US5151312A (en) * 1990-10-18 1992-09-29 Boeri John L Hollow, non-nestable packing peanuts of recycled newspaper
AU662335B2 (en) * 1991-04-05 1995-08-31 Patriot Packaging Corporation Improved dunnage, method and apparatus for making, and package using same
US5383837A (en) * 1991-04-05 1995-01-24 Patriot Packaging Corporation Method and apparatus for making improved dunnage
US5181614A (en) * 1991-04-05 1993-01-26 Ridley Watts Coil dunnage and package using same
US5468525A (en) * 1991-04-05 1995-11-21 Patriot Packaging Corporation Spiral coils suitable for cushioning use
US5257492A (en) * 1991-04-05 1993-11-02 Patriot Packaging Corporation Dunnage, method and apparatus for making, and package using same
WO1992017372A1 (en) * 1991-04-05 1992-10-15 Patriot Packaging Corporation Improved dunnage, method and apparatus for making, and package using same
US5328568A (en) * 1991-11-29 1994-07-12 Pulptech Corporation Method and apparatus for manufacture of free-flowing dunnage of molded pulp
US5230943A (en) * 1991-11-29 1993-07-27 Pulptech Corporation Free-flowing dunnage of molded pulp
US5595811A (en) * 1992-01-31 1997-01-21 Stout, Jr.; William A. Packaging material
US5656008A (en) * 1992-03-31 1997-08-12 Ranpak Corp. Method and apparatus for making an improved resilient packing product
US5871432A (en) * 1992-03-31 1999-02-16 Ranpak Corp. Method and apparatus for making an improved resilient packing product
US5921907A (en) * 1992-03-31 1999-07-13 Ranpak Corp. Method and apparatus for making an improved resilient packing product
US5439730A (en) * 1992-09-11 1995-08-08 Productive Solutions, Inc. Flowable loose packing dunnage
US5568867A (en) * 1992-10-05 1996-10-29 Ranpak Corp. Paper cushioning product
US5910079A (en) * 1992-12-14 1999-06-08 Strapack Corporation Method and apparatus for manufacturing paper cushioning members
US5698293A (en) * 1993-02-11 1997-12-16 Devipack Oy Formed piece particularly for use as packing material method and apparatus for its manufacture and use
US5637071A (en) * 1993-08-19 1997-06-10 Ranpak Corp. Dispensing table for a cushioning conversion machine
US5855091A (en) * 1993-11-03 1999-01-05 Ranpak Corp. Method of using a paper packing product to store/ship plants with exposed roots
US5643167A (en) * 1994-04-01 1997-07-01 Ranpak Corp. Cushioning conversion machine for converting sheet-like material into a cushioning product
US5947886A (en) * 1994-04-01 1999-09-07 Ranpak Corp. Cushioning conversion machine for converting sheet-like stock material into a cushioning product
US6132842A (en) * 1994-04-01 2000-10-17 Ranpak Corp. Cushioning product
US5738621A (en) * 1994-04-01 1998-04-14 Ranpak Corp Cushioning conversion machine and method for a cushioning product having a tab portion
US5785639A (en) * 1994-04-01 1998-07-28 Ranpak Corp. Cushioning conversion machine for making a cushioning product having a shell and stuffing formed from separate plies
US5791483A (en) * 1994-04-01 1998-08-11 Ranpak Corp. Cushioning product
US5924971A (en) * 1994-04-01 1999-07-20 Ranpak Corp. Cushioning conversion machine for converting sheet-like stock material into a cushioning product
US6254945B1 (en) 1994-04-01 2001-07-03 Ranpak Corp. Cushioning product
US6106452A (en) * 1994-04-22 2000-08-22 Naturembal S.A. Machines and methods for making cushioning dunnage products by crumping paper
US7195585B2 (en) 1994-07-22 2007-03-27 Ranpak Corporation Cushioning conversion machine and method with stock usage monitoring
US7260922B2 (en) 1994-07-22 2007-08-28 Ranpak Corp. Packing material product and method and apparatus for making, monitoring and controlling the same
US5897478A (en) * 1994-07-22 1999-04-27 Ranpak Corp. Cushioning conversion machine and method using encoded stock material
US6432032B2 (en) 1994-07-22 2002-08-13 Ranpack Corp. Cushioning conversion machine
US5908375A (en) * 1994-07-22 1999-06-01 Ranpak Corp. Manual feed cushioning machine and method
US8272195B2 (en) 1994-07-22 2012-09-25 Ranpak Corp. Dunnage system with void volume probe
US5607383A (en) * 1994-07-22 1997-03-04 Ranpak Corp. Modular cushioning conversion machine
US5803893A (en) * 1994-07-22 1998-09-08 Ranpak Corp. Cushioning conversion machine and method
US5709642A (en) * 1994-07-22 1998-01-20 Ranpak Corp. Cushioning conversion machine and method
US6524230B1 (en) 1994-07-22 2003-02-25 Ranpak Corp. Packing material product and method and apparatus for making, monitoring and controlling the same
US5997461A (en) * 1994-07-22 1999-12-07 Ranpak Corp. Cushioning conversion machine and method
US6561964B1 (en) 1994-07-22 2003-05-13 Ranpak Corp. Cushioning conversion machine and method
US6055795A (en) * 1994-07-22 2000-05-02 Ranpak Corp. Cushioning conversion machine
US5674172A (en) * 1994-07-22 1997-10-07 Ranpak Corp. Cushioning conversion machine having a single feed/cut handle
US20040259708A1 (en) * 1994-07-22 2004-12-23 Harding Joseph J. Packing material product and method and apparatus for making, monitoring and controlling the same
US6135939A (en) * 1994-07-22 2000-10-24 Ranpak Corp. Cushioning conversion machine and method
US5871429A (en) * 1994-07-22 1999-02-16 Ranpak Corp. Cushioning conversion machine including a probe for sensing packaging requirements
US5593376A (en) * 1994-07-22 1997-01-14 Ranpak Corp. Cushioning conversion machine and method
US5840004A (en) * 1994-07-22 1998-11-24 Ranpak Corp. Cushioning conversion machine and method
US5864484A (en) * 1994-07-22 1999-01-26 Ranpak Corp. Cushioning conversion machine
US6203481B1 (en) 1994-07-22 2001-03-20 Ranpak Corp. Cushioning conversion machine
US20070283670A1 (en) * 1994-07-22 2007-12-13 Ranpak Corp. Dunnage system with void volume probe
US6179762B1 (en) 1994-07-22 2001-01-30 Ranpak Corp. Cushioning conversion machine
USRE36501E (en) * 1994-10-04 2000-01-18 Hoover; Gregory A. Method for producing inflated dunnage
US5552003A (en) * 1994-10-04 1996-09-03 Hoover; Gregory A. Method for producing inflated dunnage
US6190299B1 (en) 1995-03-24 2001-02-20 Ranpak Corporation Cushion producing machine
US6534148B1 (en) 1995-04-19 2003-03-18 Naturembal S.A. Machine for making cushioning dunnage product, stock material for feeding such machine and method
US6080097A (en) * 1995-06-07 2000-06-27 Ranpak Corp. Cushioning conversion machine with single feed/cut motor
US6176818B1 (en) 1995-06-07 2001-01-23 Ranpak Corp. Cushioning conversion machine cushioning conversion method and method of assembling a cushioning conversion machine
US6183586B1 (en) * 1996-06-18 2001-02-06 Peter Heidelberger Process and apparatus for the production of a padding material and padding material produced with this process and apparatus
US5900119A (en) * 1996-10-09 1999-05-04 E-Tech Products, Inc. Method of forming improved loose fill packing material from recycled paper
US20030024624A1 (en) * 1997-02-07 2003-02-06 Weder Donald E. Decorative elements provided with a circular or crimped configuration at point of sale or point of use
US20080054521A1 (en) * 1997-02-07 2008-03-06 Weder Donald E Decorative Elements Provided with a Circular or Crimped Configuration at Point of Sale or Point of Use
US20050211363A1 (en) * 1997-02-07 2005-09-29 Weder Donald E Decorative elements provided with a circular or crimped configuration at point of sale or point of use
US20080053591A1 (en) * 1997-02-07 2008-03-06 Weder Donald E Decorative Elements Provided with a Circular or Crimped Configuration at Point of Sale or Point of Use
US20110088836A1 (en) * 1997-02-07 2011-04-21 Weder Donald E Decorative elements provided with a circular or crimped configuration at point of sale or point of use
US20060027311A1 (en) * 1997-02-07 2006-02-09 The Family Trust U/T/A Decorative elements provided with a curled or crimped configuration at point of sale or point of use
US20060144502A1 (en) * 1997-02-07 2006-07-06 Weder Donald E Decorative elements provided with a circular or crimped configuration at point of sale or point of use
US20110143904A1 (en) * 1997-02-07 2011-06-16 Weder Donald E Decorative elements provided with a circular or crimped configuration at point of sale or point of use
US20090025862A1 (en) * 1997-02-07 2009-01-29 Weder Donald E Decorative elements provided with a circular or crimped configuration at point of sale or point of use
US20110113735A1 (en) * 1997-06-19 2011-05-19 Weder Donald E Method for making distorted fragments
US20050059539A1 (en) * 1997-06-19 2005-03-17 Weder Donald E. Method and apparatus for making curled decorative grass
US20060281621A1 (en) * 1997-06-19 2006-12-14 Weder Donald E Method and apparatus for making curled decorative grass
US20110219922A1 (en) * 1997-06-19 2011-09-15 Weder Donald E Method and apparatus for making curled decorative grass
US20080054512A1 (en) * 1997-06-19 2008-03-06 Weder Donald E Method and apparatus for making curled decorative grass
US20050003164A1 (en) * 1997-06-19 2005-01-06 Weder Donald E. Method and apparatus for making curled decorative grass
US7503887B2 (en) 1997-06-19 2009-03-17 Wanda M. Weder Method and apparatus for making curled decorative grass
US20090075799A1 (en) * 1997-06-19 2009-03-19 Weder Donald E Method and apparatus for making curled decorative grass
US6436324B1 (en) 1997-06-19 2002-08-20 Southpac Trust International, Inc. Method for making curled decorative grass
US20090156382A1 (en) * 1997-06-19 2009-06-18 Weder Donald E Method and apparatus for making curled decorative grass
US20100285944A1 (en) * 1997-06-19 2010-11-11 Weder Donald E Method and apparatus for making curled decorative grass
US6669620B2 (en) 1997-06-19 2003-12-30 Southpac Trust International, Inc. Method and apparatus for making curled decorative grass
EP0888878B1 (en) * 1997-06-30 2005-09-07 Ranpak Corp. Cushioning conversion machine and packaging system including such a machine
EP0888878A2 (en) * 1997-06-30 1999-01-07 Ranpak Corp. Cushioning conversion machine/method and packaging system
US6190783B1 (en) 1997-07-11 2001-02-20 Southpac Int'l, Inc. Folded corrugated decorative grass formed of laminates and combinations of material
US6638584B1 (en) 1997-07-11 2003-10-28 Southpac Trust International, Inc. Folded corrugated decorative grass formed of paper and metallized film
US6277472B1 (en) 1997-07-11 2001-08-21 Donald E. Weder Folded corrugated decorative grass and method for producing same
US6221000B1 (en) 1997-07-11 2001-04-24 Southpac Trust Int'l, Inc. Folded corrugated material
US6402675B2 (en) 1997-07-11 2002-06-11 Southpac Trust International, Inc. System for producing corrugated decorative grass
US6071574A (en) * 1997-07-11 2000-06-06 Southpac Trust International, Inc. Folded corrugated material and method for producing same
US6989178B2 (en) 1997-07-11 2006-01-24 Wanda M. Weder and William F. Straeler, not individually but solely as Trustees of The Family Trust U/T/A dated Dec. 8, 1995 Folded corrugated material and method for producing same
US20050196553A1 (en) * 1997-07-11 2005-09-08 Weder Donald E. Method for producing corrugated decorative grass
US6365241B2 (en) 1997-07-11 2002-04-02 Southpac Trust International, Inc. Folded corrugated decorative grass formed of paper and polymeric film
US20030052435A1 (en) * 1997-07-14 2003-03-20 Weder Donald E. Method for making printed and/or embossed decorative grass
US6740274B2 (en) 1997-07-14 2004-05-25 Southpac Trust International, Inc. Method for making printed and/or embossed decorative grass
US20100319506A1 (en) * 1997-07-14 2010-12-23 Weder Donald E Method for making contoured decorative grass
US20100108557A1 (en) * 1997-07-14 2010-05-06 Weder Donald E Packaging material
US20080107839A1 (en) * 1997-07-14 2008-05-08 Weder Donald E Method for making contoured decorative grass
US5992637A (en) * 1997-07-14 1999-11-30 Southpac Trust International, Inc. Packaging material
US20020109255A1 (en) * 1997-07-14 2002-08-15 Weder Donald E. Method for making printed and/or embossed decorative grass
US20070269618A1 (en) * 1997-07-14 2007-11-22 Weder Donald E Method for making contoured decorative grass
US20110091664A1 (en) * 1997-07-14 2011-04-21 Weder Donald E Method for making contoured decorative grass
US20110186474A1 (en) * 1997-07-14 2011-08-04 Weder Donald E Packaging material
US20090038452A1 (en) * 1997-07-14 2009-02-12 Weder Donald E Method for making contoured decorative grass
US20100108563A1 (en) * 1997-07-14 2010-05-06 Weder Donald E Packaging material
US20110108454A1 (en) * 1997-07-14 2011-05-12 Weder Donald E Packaging material
US6090033A (en) * 1997-09-02 2000-07-18 Ranpak Corp. Cushioning conversion machine for producing U-shape pads
US20100326879A1 (en) * 1998-03-18 2010-12-30 Weder Donald E Decorative shredded material
US20030198781A1 (en) * 1998-03-18 2003-10-23 Weder Donald E. Decorative creped shredded material
US6258447B1 (en) 1998-03-18 2001-07-10 Southpac Trust Int'l, Inc. Decorative shredded material
US20080063801A1 (en) * 1998-03-18 2008-03-13 Weder Donald E Decorative shredded material
US20050214513A1 (en) * 1998-03-18 2005-09-29 Weder Donald E Decorative shredded material
US20050255293A1 (en) * 1998-03-18 2005-11-17 Weder Donald E Decorative creped shredded material
US20030111761A1 (en) * 1998-04-10 2003-06-19 Weder Donald E. Method for making printed and/or embossed decorative grass
US20090278276A1 (en) * 1998-04-10 2009-11-12 Weder Donald E Method for making contoured decorative grass
US6824719B2 (en) 1998-04-10 2004-11-30 The Family Trust U/T/A 12/8/1995 Method for making printed and/or embossed decorative grass
US6264129B1 (en) 1998-10-30 2001-07-24 Free-Flow Packaging International, Inc. Mandrel mount
US6076764A (en) * 1998-10-30 2000-06-20 F.T. Acquisitions, L.P. Combination paper roll core and paper tube plug
US6179765B1 (en) 1998-10-30 2001-01-30 Ft Acquisition, L.P. Paper dispensing system and method
US6273360B1 (en) 1998-10-30 2001-08-14 Free-Flow Packaging International, Inc. Combination paper roll core and paper tube plug
US6199349B1 (en) 1999-05-20 2001-03-13 Automated Packaging Systems, Inc. Dunnage material and process
US6948296B1 (en) 1999-05-20 2005-09-27 Automated Packaging Systems, Inc. Dunnage material and process
US6341475B2 (en) * 1999-10-21 2002-01-29 Southpac Trust International, Inc. Inflatable shipping device
FR2808722A1 (en) * 2000-05-09 2001-11-16 Naturembal Sa Cutting tool for cutting material in strip form, is made of two cutting blades slightly offset one with the other, fitted to blade holders driven by an electric motor via gearing and operates with a sawing operation
US20110045217A1 (en) * 2000-06-09 2011-02-24 Ranpak Corp. Dunnage conversion machine with translating grippers, and method and product
US8999490B2 (en) * 2000-06-09 2015-04-07 Ranpak Corp. Dunnage product with crumpled multi-lobed undulating body
US6989075B1 (en) 2000-11-03 2006-01-24 The Procter & Gamble Company Tension activatable substrate
US6672037B2 (en) 2000-12-12 2004-01-06 Automated Packaging Systems, Inc. Apparatus and process for dispensing dunnage
US6527147B2 (en) * 2000-12-12 2003-03-04 Automated Packaging Systems, Inc. Apparatus and process for dispensing dunnage
US6685615B2 (en) 2001-02-08 2004-02-03 Southpac Trust International, Inc. Corrugated decorative grass formed of paper and polymeric film and method for producing same
US20120240526A1 (en) * 2001-08-21 2012-09-27 Weder Donald E Container assemblies having collapsible and erectable containers containing a packaging material and methods of production and use thereof
US9211974B2 (en) * 2001-08-21 2015-12-15 Wanda M. Weder & William F. Straeter Container assemblies having collapsible and erectable containers containing a packaging material and methods of production and use thereof
US20030073558A1 (en) * 2001-10-15 2003-04-17 Bill Chesterson Machine and method for converting paper stock into dunnage
US20040050743A1 (en) * 2002-09-17 2004-03-18 Jean-Marc Slovencik Cushioning product and method and apparatus for making same
US20080051277A1 (en) * 2002-09-17 2008-02-28 Storopack Hans Reichenecker Gmbh Cushioning product and method and apparatus for making same
US20080058191A1 (en) * 2002-09-17 2008-03-06 Storopack Hans Reichenecker Gmbh Cushioning product and method and apparatus for making same
US7972258B2 (en) 2002-09-17 2011-07-05 Storopack Hans Reichenecker Gmbh Cushioning product and method and apparatus for making same
WO2004026570A1 (en) * 2002-09-17 2004-04-01 Storopack Hans Reichenecker Gmbh Cushioning product and method and apparatus for making same
US20040052988A1 (en) * 2002-09-17 2004-03-18 Jean-Marc Slovencik Cushioning product and method and apparatus for making same
US8491453B2 (en) 2002-09-17 2013-07-23 Storopack Hans Reichenecker Gmbh Cushioning product and method and apparatus for making same
US20070122575A1 (en) * 2002-09-17 2007-05-31 Storopack Hans Reichenecker Gmbh Cushioning product and method and apparatus for making same
US8114490B2 (en) 2002-09-17 2012-02-14 Storopack Hans Reichenecker Gmbh Cushioning product and method and apparatus for making same
US20040175519A1 (en) * 2002-10-01 2004-09-09 Weder Donald E. Self erecting pot
US7803100B2 (en) * 2002-11-05 2010-09-28 Ranpak Corp. System and method for making a coiled strip of dunnage
US20090275457A1 (en) * 2002-11-05 2009-11-05 Ranpak Corp. System and method for making a coiled strip of dunnage
US20110180953A1 (en) * 2003-02-27 2011-07-28 Weder Donald E Method for making contoured decorative grass
US20110089598A1 (en) * 2003-02-27 2011-04-21 Weder Donald E Method for making contoured decorative grass
US7718028B2 (en) 2003-04-08 2010-05-18 Automated Packaging Systems, Inc. Fluid filled unit formation process
US20060262997A1 (en) * 2003-04-08 2006-11-23 Hershey Lerner Fluid filled units
US8038348B2 (en) 2003-04-08 2011-10-18 Automated Packaging, Systems, Inc. Fluid filled units
US20060110553A1 (en) * 2003-04-08 2006-05-25 Hershey Lerner Web for fluid filled unit formation
US20090186175A1 (en) * 2003-04-08 2009-07-23 Automated Packaging Systems, Inc. Web for fluid filled unit formation
US20060266461A1 (en) * 2003-04-08 2006-11-30 Hershey Lerner Fluid filled unit formation process
US7767288B2 (en) 2003-04-08 2010-08-03 Automated Packaging Systems, Inc. Web for fluid filled unit formation
US7550191B2 (en) 2003-04-08 2009-06-23 Automated Packaging Systems, Inc. Web for fluid filled unit formation
US20060026931A1 (en) * 2003-12-15 2006-02-09 Weder Donald E Apparatus for forming and securing a decorative cover about a flower pot
US7651455B2 (en) 2004-03-26 2010-01-26 Free Flow Packaging International, Inc. Method for making paper dunnage
US7571584B2 (en) 2004-06-01 2009-08-11 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US8357439B2 (en) 2004-06-01 2013-01-22 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US20070054075A1 (en) * 2004-06-01 2007-03-08 Rick Wehrmann Web and method for making fluid filled units
US10391733B2 (en) 2004-06-01 2019-08-27 Automated Packaging Systems, Inc. Method for making fluid filled units
US20060042191A1 (en) * 2004-06-01 2006-03-02 Bernard Lerner Web and method for making fluid filled units
US20060086064A1 (en) * 2004-06-01 2006-04-27 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US20050266189A1 (en) * 2004-06-01 2005-12-01 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US10730260B2 (en) 2004-06-01 2020-08-04 Automated Packaging Systems, Llc Web and method for making fluid filled units
US7897220B2 (en) 2004-06-01 2011-03-01 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US7897219B2 (en) 2004-06-01 2011-03-01 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US8425994B2 (en) 2004-06-01 2013-04-23 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US7757459B2 (en) 2004-06-01 2010-07-20 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US20110165352A1 (en) * 2004-06-01 2011-07-07 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US20070054074A1 (en) * 2004-06-01 2007-03-08 Rick Wehrmann Web and method for making fluid filled units
US20110151159A1 (en) * 2004-06-01 2011-06-23 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US20050287367A1 (en) * 2004-06-25 2005-12-29 Jean Card And Gift Co., Ltd. Cushioning packing spiral
GB2415425A (en) * 2004-06-25 2005-12-28 Jean Card And Gift Co Ltd Spiral cushioning member for packaging
US9321234B2 (en) 2004-11-05 2016-04-26 Ranpak Corp. Automated dunnage filling system and method
US7788884B2 (en) * 2004-11-05 2010-09-07 Ranpak Corp. Automated dunnage filling system and method
US20100293898A1 (en) * 2004-11-05 2010-11-25 Ranpak Corp. Automated dunnage filling system and method
US20080098699A1 (en) * 2004-11-05 2008-05-01 Ranpak Corp. Automated Dunnage Filling System and Method
US7513090B2 (en) 2006-07-11 2009-04-07 Automated Packaging Systems, Inc. Apparatus and method for making fluid filled units
US20100192526A1 (en) * 2006-07-11 2010-08-05 Automated Packaging Systems, Inc. Apparatus and method for making fluid filled units
US20090158691A1 (en) * 2006-07-11 2009-06-25 Automated Packaging Systems, Inc. Apparatus and method for making fluid filled units
US7694495B2 (en) 2006-07-11 2010-04-13 Automated Packaging Systems, Inc. Apparatus and method for making fluid filled units
US7975457B2 (en) 2006-07-11 2011-07-12 Automated Packaging Systems, Inc. Apparatus for making fluid filled units
US20080014389A1 (en) * 2006-07-11 2008-01-17 Rick Wehrmann Apparatus and method for making fluid filled units
US20080076653A1 (en) * 2006-09-08 2008-03-27 Shaw Kenneth L Cushioning product, machine and method
WO2008030743A1 (en) * 2006-09-08 2008-03-13 Storopack, Inc. Cushioning product, machine and method
WO2008033515A3 (en) * 2006-09-14 2008-09-25 Pregis Corp System and method for crumpling paper substrates
US20080108454A1 (en) * 2006-11-06 2008-05-08 Kohnen Michael P Golf ball containing photoluminescent material and a light source
US8900111B2 (en) * 2007-08-31 2014-12-02 Pregis Innovative Packaging, Inc. Sheet-fed dunnage apparatus
US20090075800A1 (en) * 2007-08-31 2009-03-19 Pregis Innovative Packaging, Inc. Sheet-Fed Dunnage Apparatus
US9283729B2 (en) 2007-10-31 2016-03-15 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US9550339B2 (en) 2007-10-31 2017-01-24 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US8354150B2 (en) 2007-10-31 2013-01-15 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US10618243B2 (en) 2007-10-31 2020-04-14 Automated Packaging Systems, Llc Web and method for making fluid filled units
US9205622B2 (en) 2009-02-27 2015-12-08 Automated Packaging Systems, Inc. Web and method for making fluid filled units
USD630945S1 (en) 2009-02-27 2011-01-18 Automated Packaging Systems, Inc. Inflatable packing material
US20100221466A1 (en) * 2009-02-27 2010-09-02 Automated Packaging Systems Web and Method for Making Fluid Filled Units
USD646972S1 (en) 2009-02-27 2011-10-18 Automated Packaging Systems, Inc. Inflatable packing material
US9598216B2 (en) 2009-02-27 2017-03-21 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US20100323153A1 (en) * 2009-06-22 2010-12-23 Mary Huskey Packaging material
US11738533B2 (en) * 2009-08-28 2023-08-29 Pregis Innovative Packaging Llc Dunnage system with variable accumulator
US10300672B2 (en) 2010-08-26 2019-05-28 Pregis Innovative Packaging Llc Center-fed dunnage system
US8641591B2 (en) 2010-08-26 2014-02-04 Pregis Innovative Packaging, Inc. Center-fed dunnage system
US10792882B2 (en) 2010-12-23 2020-10-06 Pregis Innovative Packaging Llc Center-fed dunnage system feed and cutter
US9840056B2 (en) 2010-12-23 2017-12-12 Pregis Innovative Packaging Llc Center-fed dunnage system feed and cutter
US11623423B2 (en) 2010-12-23 2023-04-11 Pregis Innovative Packaging Llc Center-fed dunnage system feed and cutter
US20120201936A1 (en) * 2011-02-09 2012-08-09 Elizabeth Winograd Microwave Popcorn Packaging with a Clear Bag and an Interior Anti-Scorch Surface
US9266300B2 (en) 2011-07-07 2016-02-23 Automated Packaging Systems, Inc. Air cushion inflation machine
US10377098B2 (en) 2011-07-07 2019-08-13 Automated Packaging Systems, Inc. Air cushion inflation machine
US11572225B2 (en) 2013-03-15 2023-02-07 Automated Packaging Systems, Llc On-demand inflatable packaging
US10647460B2 (en) 2013-03-15 2020-05-12 Automated Packaging Systems, Llc On-demand inflatable packaging
US20160207274A1 (en) * 2013-09-23 2016-07-21 Sprick Gmbh Bielefelder Papier-Und Wellpappenweke & Co. Perforation Tool for a Device for the Production by Machine of a Filling Material Product and a Device for the Production by Machine of a Filling Material Product
US10814578B2 (en) * 2013-09-23 2020-10-27 Sprick Gmbh Bielefelder Papier-Und Wellpappenwerke & Co. Perforation tool for a device for the production by machine of a filling material product and a device for the production by machine of a filling material product
US9844911B2 (en) 2013-11-21 2017-12-19 Automated Packaging Systems, Inc. Air cushion inflation machine
US20160082685A1 (en) * 2014-09-19 2016-03-24 Simon CS Chan Apparatus, systems and methods for configuring/ feeding sheet stock material for a dunnage system and for generating upright edge dunnage strips
US10457090B2 (en) 2015-02-03 2019-10-29 Ted Tepe Expandable package filler or ornament
WO2016198944A1 (en) * 2015-06-12 2016-12-15 Papernuts, Corp Apparatus for producing dunnage
WO2018055084A1 (en) 2016-09-23 2018-03-29 Karl Lindner Method and device for producing packing chips, and packing chips produced thereby
DE202017006738U1 (en) 2016-09-23 2018-04-03 Karl Lindner Bulk material, formed by resilient packaging chips and apparatus for producing the packaging chips
US11077637B2 (en) 2016-09-30 2021-08-03 Pregis Innovative Packaging Llc Connective protective packaging
US11511509B2 (en) 2016-09-30 2022-11-29 Pregis Innovative Packaging Llc Connective protective packaging
US11007746B2 (en) 2017-05-11 2021-05-18 Pregis Innovative Packaging Llc Dunnage supply intake
US11926119B2 (en) 2017-05-11 2024-03-12 Pregis Innovative Packaging Llc Dunnage apparatus carton filler
US10828859B2 (en) 2017-11-20 2020-11-10 Ecopack Group, Llc Machine to produce twisted paper for loose fill packaging
WO2019099601A1 (en) * 2017-11-20 2019-05-23 Ecopack Group, Llc Machine to produce twisted paper for loose fill packaging
US11161668B1 (en) 2020-07-22 2021-11-02 Terry Hermanson Packing material and method of manufacturing the packing material
US11390443B2 (en) 2020-07-22 2022-07-19 Terry Hermanson Packing material and method of manufacturing the packing material
US11390444B2 (en) 2020-07-22 2022-07-19 Terry Hermanson Packing material and method of manufacturing the packing material
US11358775B2 (en) * 2020-07-22 2022-06-14 Terry Hermanson Packing material and method of manufacturing the packing material
US11167907B1 (en) 2020-07-22 2021-11-09 Terry Hermanson Packing material and method of manufacturing the packing material
WO2022215013A1 (en) * 2021-04-07 2022-10-13 Aviplast Plastic Industries Ltd A mesh structure and method of forming the mesh structure
US11679919B2 (en) 2021-05-06 2023-06-20 Terry Hermanson Method of packing an object in a shipping box
US11958265B2 (en) 2023-04-10 2024-04-16 Pregis Innovative Packaging Llc Center-fed dunnage system feed and cutter

Similar Documents

Publication Publication Date Title
US3650877A (en) Cushioning dunnage product
US3613522A (en) Method of producing cushioning dunnage
US3509797A (en) Mechanism for producing cushioning dunnage
US3655500A (en) A resilient cushioning dunnage product for use in packaging and packing
US3603216A (en) Method for producing cushioning dunnage
US3509798A (en) Mechanism and method for producing cushioning dunnage
US11352190B2 (en) Dunnage conversion machine, helically-crumpled dunnage product and method
US4750896A (en) Method and mechanism for producing cushioning dunnage product
JP4607422B2 (en) Dunnage converter with translating gripper and method and product
US9427930B2 (en) Crumpling mechanism for creating dunnage
US3799039A (en) Cushioning dunnage mechanism and method
US8550971B2 (en) Systems for producing cushioning material
US2566190A (en) Method and apparatus for making tampons
US2499463A (en) Paper strap
US5383837A (en) Method and apparatus for making improved dunnage
US11364701B2 (en) Crumpling mechanism for creating dunnage
AU2003257004A1 (en) Compact apparatus and system for creating and dispensing cushioning dunnage
WO2007083507A1 (en) Process and apparatus for producing yarn and gland packing
US6699167B2 (en) Cushioning conversion machine and method
JP7461522B2 (en) dunnage converter
CA3055611C (en) Dunnage conversion machine, method, and product with a polygonal cross-section
US2157765A (en) Method of baling
JPH0755125B2 (en) Clogged product, clogged product method and device
AU2020254391B2 (en) Dunnage conversion machine, method, and product with a polygonal cross-section
US3924522A (en) Commodity packaging