US3653958A - Method of decreasing wax impregnation time by porous paper products - Google Patents

Method of decreasing wax impregnation time by porous paper products Download PDF

Info

Publication number
US3653958A
US3653958A US810120A US3653958DA US3653958A US 3653958 A US3653958 A US 3653958A US 810120 A US810120 A US 810120A US 3653958D A US3653958D A US 3653958DA US 3653958 A US3653958 A US 3653958A
Authority
US
United States
Prior art keywords
wax
ester
melting point
porous paper
impregnation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US810120A
Inventor
Edward M Kohn
Alexander D Recchuite
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunoco Inc
Original Assignee
Sun Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Oil Co filed Critical Sun Oil Co
Application granted granted Critical
Publication of US3653958A publication Critical patent/US3653958A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/60Waxes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/14Carboxylic acids; Derivatives thereof

Definitions

  • ABSTRACT The rate at which a porous paper product absorbs molten paraffin waxes with a melting point less than 136 F. (AMP) is substantially increased by the addition of a small amount of an 2204612 6/1940 Musherm ""106/245 X ester or mixture of esters of a fatty acid and a polyhydric al- 2,483,259 9/1949 Badner et aL. 106/245 cohO] to the wax before application 3,061,456 10/1962 Davis et a1.
  • the present invention provides a method for increasing the rate at which low melting point paraffin waxes will be absorbed by a porous paper product. This method produces an impregnated paper product in a substantially reduced amount of time thereby increasing the rate of product output of existing equipment.
  • Porous paper products such as paperboard, corrugated paperboard, paper cupstock, are impregnated with paraffin waxes and the resulting wax-impregnated products are used for many purposes.
  • paraffin waxes paraffin waxes
  • the system makes the product at the highest rate possible consistent with satisfactory product quality on existing equipment. This invention helps meet this requirement.
  • the present invention provides a process by which the rate of absorption of molten paraffin waxes with a melting point less than 136 F. (AMP) by porous paper products is substantially increased over a wide range of impregnation temperatures.
  • the increased paraffin wax impregnation rate is obtained by the addition of a small quantity of an ester or mixture of esters of a C -C fatty acid with a polyhydric alcohol having two to five carbon atoms and two to three hydroxyl groups to the wax and thereafter applying the mixture to the porous paper product.
  • the graph in the drawing plots wax impregnation time of porous paper products versus application temperature. This graph shows the effectiveness of the ester additive on the low melting wax impregnation time of porous paper products over a wide temperature range.
  • Line 1 shows that the impregnation time of just wax is substantially independent of application temperature over a wide range, that is, between T p and T T is the boiling point of the wax.
  • T is the temperature at which impregnation rate starts being related to the application temperature.
  • T is between T and T The latter is the melting point of the wax.
  • T and T impregnation time of just wax is dependent on application temperature whereas between T and T impregnation time of just wax is substantially independent of application temperature.
  • Line 2 shows that the ester additive in the wax reduces the impregnation time over a wide temperature range.
  • the dashed portion of line 2 indicates the anticipated rate improvement between the temperature range T and T DESCRIPTION
  • paraffin wax with a melting point less than 136 F. which is applied to the porous paper product, has incorporated into it a small amount of an ester or mixture of esters from a fatty acid and a polyhydric alcohol.
  • the ester, used in this invention can be a reaction product between a fatty acid having eight to 30 carbon atoms and a polyhdric alcohol containing two to five carbon atoms and two to three hydroxyl groups.
  • Fatty acids refer to aliphatic monocarboxylic acids, both saturated and unsaturated, such as caprylic, n-nonadecylic, melissic, obtusilic, oleic, hiragonic, moroctic, stearolic, etc., but such acids as palmitic, stearic, oleic and linoleic are commercially available and therefore their esters are preferred in practicing the invention.
  • Ethylene glycol, propylene glycol and glycerol are the preferred polyhydric alcohols; however, others such as l,4-butanediol; l,5-pentanediol; 1,2,4-butanetriol; pentanetriols; etc. can be used to prepare the ester additive.
  • a more specific group of the esters previously discussed are the glycerides, the manufacture of which is discussed in Kirk and Othmer, ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY, Copyright 1965, 2nd Edition, Volume 8.
  • a mixture of mono-, diand triglycerides is formed from the glycerol esterification of fatty acids.
  • the maximum concentration of the monoglyceride in the mixture after removal of the reactants and by-products but without further processing is about 60 percent by weight.
  • a monoglyceride fraction with a monoester concentration of about percent by weight can be obtained by molecular distillation. While a glyceride with a monoester content of about 90 percent by weight is used to illustrate the invention, lower monoester contents will work almost as well.
  • the level of purity depends, in part, on whether the wax-coated article is intended to be used in contact with food.
  • the fatty acid group of the glyceride for example, be derived from an edible fat, since it will be harmless in case any of the monoglyceride seeps into the food product.
  • An example of such monoglyceride is glycerol monooleate.
  • the glycerol monooleate or other ester as above specified is incorporated in the wax by mixing a small amount of it with molten wax. While the proportion of ester incorporated in the wax can range from about 0.005 to about 1.0 percent by weight, generally the range will be from about 0.01 to 0.50 percent by weight.
  • porous paper products can be impregnated with wax.
  • paperboard corrugated paperboard, kraft, sulfite and paper cupstock. The latter is used in the examples herein to demonstrate the principle of our invention.
  • Paraffin waxes are available with a wide range of physical properties, for example, melting point may be as low as F. or as high as F. (AMP). However, for reasons discussed hereinafter only paraffin waxes with melting points less than 136 F. (AMP) can be used in this process. The preferred melting point range of the wax is 100 to l35 F. (AMP).
  • the ester additive effect on wax impregnation rate by porous paper products depends on the type of wax and the melting point of the wax. Surprisingly the ester does not decrease wax impregnation time for all petroleum waxes. The ester does not affect the impregnation time of microcrystalline waxes. However, the ester affects waxes with a melting point less than 136 F. (AMP), for example a wax with a melting point of 127 F. (AMP), over a wide application temperature range.
  • AMP 136 F.
  • AMP wax with a melting point of 127 F.
  • the relative solubility of the ester in various waxes may explain why the ester works only with selected waxes.
  • the solubility of the ester in the wax is low over the entire temperature range considered practical for impregnation.
  • the ester, having a low solubility in the wax has a strong wetting influence on the porous paper when the wax-ester combination is applied to the paper product.
  • the ester is highly soluble in the wax, such as the high melting point waxes used herein, it has no wetting influence on the porous paper products.
  • Table I lists some of the physical properties of the waxes which were used for illustrative purposes in the runs shown in Table II. A microcrystalline wax was included for comparative purposes.
  • paraffin wax was placed in a beaker and heated till its temperature was about F. above its melting point.
  • the ester in the desired amount, was added to the melted wax.
  • One cubic centimeter of 'a suitable dye was added to every 1,000 of solution. The dye aided in the visual observations.
  • the ester used is glycerol monooleate.
  • This monooleate had a minimum monoester content of 90.0 percent, saponification value of 155-165, iodine value 65-70, a maximum glycerol content of 1.5 percent (as oleic), a specific gravity of 0.95-0.96 at 40 C. and a melting point of 29 to 35 C.
  • the wax-ester-dye mixture was placed in a penetrometer. This instrument measures the time required for molten wax at a fixed temperature to impregnate a sample of paper product. About 700 cc. of wax are contained in a trough with a circular orifice on the upper surface. The cupstock was placed over the orifice and held there by a glass plate and clamp. The glass plate allows the operator to observe the test area of the cupstock.
  • the wax was brought into contact with the cupstock by tilting the trough down. This action activated a timer. When the operator saw that the cupstock was impregnated completely he tilted the trough up automatically stopping the timer.
  • Table 11 below lists the penetration data obtained with the penetrometer for the waxes mentioned in Table 1 when said waxes were mixed with the additive.
  • Additive is defined in Examples.
  • the application temperature of Run 1 is in that temperature range where decreases in the temperature increase impregnation time. 1n the accompanying drawing the application temperature of Run 1 is within T to T range. Runs 2, etc., are in that range where changes in application temperature does not change impregnation time. In the heretofore mentioned drawing the application temperatures of Runs 2, etc. are within the T to T range.
  • Run 2 with a low melting point wax shows that at a 150 F. application temperature and with no additive the average impregnation time is 17.2 seconds. However with the 0.05 weight percent ester the average impregnation time is 15.5
  • Runs 3, 4 and 5 with the same low melting point wax, show that as the application temperature increases the ester always causes a decrease in the average impregnation time.
  • Run 6, with a higher melting point wax (136 F., AMP). shows that the ester additive has no effect on the average impregnation time.
  • a similar lack of ester effect on impregnation time is shown in Run 9 with a microcrystalline wax.
  • the average impregnation times shown in Table 11 are the arithmetic average of nine trials.
  • Runs 2, 3, 4 and 5 with no additive show impregnation times of 17.2, 16.4, 17.0 and 17.9 seconds respectively.
  • Statistical analysis indicates that these lmpregnatlon times are equivalent.
  • Statistical analysis also indicates that the impregnation rate differences for Runs 2, 3, 4 and 5 with and without additives are significant. The same statistical analysis indicates that the ester in the wax has no effect on impregnation rates in Runs 6, 7, 8 and 9.
  • paraffin wax contains a mixture of esters having about 90 percent by weight of a monoester.
  • paraffin wax contains a mixture of esters having about 90 percent by weight of a monoester.

Abstract

The rate at which a porous paper product absorbs molten paraffin waxes with a melting point less than 136* F. (AMP) is substantially increased by the addition of a small amount of an ester or mixture of esters of a fatty acid and a polyhydric alcohol to the wax before application.

Description

United States Patent Kohn et a1. 1
1 51 Apr. 4, 1972 [54] METHOD OF DECREASING WAX IMPREGNATION TIME BY POROUS PAPER PRODUCTS [72] Inventors: Edward M. Kohn; Alexander D. Recchuite, both of Philadelphia, Pa.
[73] Assignee: Sun Oil Company, Philadelphia, Pa.
[22} Filed: Mar. 25, 1969 [21] Appl. No.: 810,120
[56] References Cited UNITED STATES PATENTS Schwartz et a1 ..ll7/158 X 3,194,677 7/1965 3,231,462 1/1966 Oswald et al... ..117/158 X 3,271,177 9/1966 Rumberger.... ..117/158 X 3,305,392 2/1967 Britt ..117/158 X 3,312,564 4/1967 Barbour... 17/158 X 3,332,798 7/1967 Kautsley 17/158 X 728,234 5/1903 Hoyt ..117/168 X 2,322,198 6/1943 Parsons... 117/168 UX 3,033,708 5/1962 McKee ..117/168 X 3,186,869 6/1965 Friedman. 17/168 X 3,229,010 l/1966 Carter 117/168 UX 3,433,665 3/1969 Harvey et a1. ..117/168 X Primary Examiner-William D, Martin Assistant Examiner-M. R. Lusignan Attorney-George L. Church, Donald R. Johnson and Wilmer E. Corgudale, Jr.
[5 7] ABSTRACT The rate at which a porous paper product absorbs molten paraffin waxes with a melting point less than 136 F. (AMP) is substantially increased by the addition of a small amount of an 2204612 6/1940 Musherm ""106/245 X ester or mixture of esters of a fatty acid and a polyhydric al- 2,483,259 9/1949 Badner et aL. 106/245 cohO] to the wax before application 3,061,456 10/1962 Davis et a1. ....1 17/158 X 3,177,091 4/1965 Case et a1 ..117/158 X 8 Claims, 1 Drawing Figure FOR LOW MELTING POINT WAXES l l I 1 I l WITHOUT ADDITIVE 1 WAX 1 WITH ADDITIVE 1 IMPREGNATION 1 TIME OF POROUS I I PAPER PRODUCTS, I SECONDS I T 1 1 I l O l l I O TMP Tx TBP lG-APPLICATION TEMPERATURE-J TEMPERATURE,F
Patented April 4, 1972 3,653,958
FOR LON MELTING POINT WAXES I I I I WITHOUT ADDITIVE I A 1 WITH ADDITIVE I IMPREGNATION I -w. I I TIME OFPOROUS I I I l I PAPER PRODUCTS, 1 g I SECONDS l T i I I I l I o I I I o- TMP Tx TBP k-APPLICATION TEMPERATURE l TEMPERATURE,F
INVENTORS EDWARD M. KOHN ALEXANDER D. RECCHUITE BY MEIMWIQ ATTORNEY METHOD OF DECREASING WAX IMPREGNATION TIME BY POROUS PAPER PRODUCTS BACKGROUND OF THE INVENTION The present invention provides a method for increasing the rate at which low melting point paraffin waxes will be absorbed by a porous paper product. This method produces an impregnated paper product in a substantially reduced amount of time thereby increasing the rate of product output of existing equipment.
Porous paper products, such as paperboard, corrugated paperboard, paper cupstock, are impregnated with paraffin waxes and the resulting wax-impregnated products are used for many purposes. In the manufacture of these wax-impregnated products it is necessary, because of competitive economic alternatives, that the system makes the product at the highest rate possible consistent with satisfactory product quality on existing equipment. This invention helps meet this requirement.
SUMMARY OF THE INVENTION The present invention provides a process by which the rate of absorption of molten paraffin waxes with a melting point less than 136 F. (AMP) by porous paper products is substantially increased over a wide range of impregnation temperatures. According to the invention, the increased paraffin wax impregnation rate is obtained by the addition of a small quantity of an ester or mixture of esters of a C -C fatty acid with a polyhydric alcohol having two to five carbon atoms and two to three hydroxyl groups to the wax and thereafter applying the mixture to the porous paper product.
BRIEF DESCRIPTION OF THE DRAWING The graph in the drawing plots wax impregnation time of porous paper products versus application temperature. This graph shows the effectiveness of the ester additive on the low melting wax impregnation time of porous paper products over a wide temperature range. Line 1 shows that the impregnation time of just wax is substantially independent of application temperature over a wide range, that is, between T p and T T is the boiling point of the wax. T is the temperature at which impregnation rate starts being related to the application temperature. T is between T and T The latter is the melting point of the wax. Thus between T and T impregnation time of just wax is dependent on application temperature whereas between T and T impregnation time of just wax is substantially independent of application temperature. Line 2 shows that the ester additive in the wax reduces the impregnation time over a wide temperature range. The dashed portion of line 2 indicates the anticipated rate improvement between the temperature range T and T DESCRIPTION In practicing the invention paraffin wax with a melting point less than 136 F., which is applied to the porous paper product, has incorporated into it a small amount of an ester or mixture of esters from a fatty acid and a polyhydric alcohol. The ester, used in this invention, can be a reaction product between a fatty acid having eight to 30 carbon atoms and a polyhdric alcohol containing two to five carbon atoms and two to three hydroxyl groups. Fatty acids refer to aliphatic monocarboxylic acids, both saturated and unsaturated, such as caprylic, n-nonadecylic, melissic, obtusilic, oleic, hiragonic, moroctic, stearolic, etc., but such acids as palmitic, stearic, oleic and linoleic are commercially available and therefore their esters are preferred in practicing the invention. Ethylene glycol, propylene glycol and glycerol are the preferred polyhydric alcohols; however, others such as l,4-butanediol; l,5-pentanediol; 1,2,4-butanetriol; pentanetriols; etc. can be used to prepare the ester additive.
A more specific group of the esters previously discussed are the glycerides, the manufacture of which is discussed in Kirk and Othmer, ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY, Copyright 1965, 2nd Edition, Volume 8. A mixture of mono-, diand triglycerides is formed from the glycerol esterification of fatty acids. The maximum concentration of the monoglyceride in the mixture after removal of the reactants and by-products but without further processing is about 60 percent by weight. A monoglyceride fraction with a monoester concentration of about percent by weight can be obtained by molecular distillation. While a glyceride with a monoester content of about 90 percent by weight is used to illustrate the invention, lower monoester contents will work almost as well. The level of purity depends, in part, on whether the wax-coated article is intended to be used in contact with food.
When this invention is used to prepare a wax-impregnated paper product that will be in contact with food it is distinctly preferable that the fatty acid group of the glyceride, for example, be derived from an edible fat, since it will be harmless in case any of the monoglyceride seeps into the food product. An example of such monoglyceride is glycerol monooleate.
The glycerol monooleate or other ester as above specified is incorporated in the wax by mixing a small amount of it with molten wax. While the proportion of ester incorporated in the wax can range from about 0.005 to about 1.0 percent by weight, generally the range will be from about 0.01 to 0.50 percent by weight.
Many kinds of porous paper products can be impregnated with wax. Among these are paperboard, corrugated paperboard, kraft, sulfite and paper cupstock. The latter is used in the examples herein to demonstrate the principle of our invention.
Paraffin waxes are available with a wide range of physical properties, for example, melting point may be as low as F. or as high as F. (AMP). However, for reasons discussed hereinafter only paraffin waxes with melting points less than 136 F. (AMP) can be used in this process. The preferred melting point range of the wax is 100 to l35 F. (AMP).
The ester additive effect on wax impregnation rate by porous paper products depends on the type of wax and the melting point of the wax. Surprisingly the ester does not decrease wax impregnation time for all petroleum waxes. The ester does not affect the impregnation time of microcrystalline waxes. However, the ester affects waxes with a melting point less than 136 F. (AMP), for example a wax with a melting point of 127 F. (AMP), over a wide application temperature range.
The relative solubility of the ester in various waxes may explain why the ester works only with selected waxes. With low melting point waxes, the solubility of the ester in the wax is low over the entire temperature range considered practical for impregnation. Thus the ester, havinga low solubility in the wax, has a strong wetting influence on the porous paper when the wax-ester combination is applied to the paper product. On the other hand if the ester is highly soluble in the wax, such as the high melting point waxes used herein, it has no wetting influence on the porous paper products.
EXAMPLES Table I below lists some of the physical properties of the waxes which were used for illustrative purposes in the runs shown in Table II. A microcrystalline wax was included for comparative purposes.
Physical Properties Melting poinl,
"F. (AMP') 127 136 156 178 Viscosity. SUS at AMP is the American Melting Point which is 3 F. higher than the ASTM melting p011.
The paraffin wax was placed in a beaker and heated till its temperature was about F. above its melting point. The ester, in the desired amount, was added to the melted wax. One cubic centimeter of 'a suitable dye was added to every 1,000 of solution. The dye aided in the visual observations.
The ester used is glycerol monooleate. This monooleate had a minimum monoester content of 90.0 percent, saponification value of 155-165, iodine value 65-70, a maximum glycerol content of 1.5 percent (as oleic), a specific gravity of 0.95-0.96 at 40 C. and a melting point of 29 to 35 C.
The wax-ester-dye mixture was placed in a penetrometer. This instrument measures the time required for molten wax at a fixed temperature to impregnate a sample of paper product. About 700 cc. of wax are contained in a trough with a circular orifice on the upper surface. The cupstock was placed over the orifice and held there by a glass plate and clamp. The glass plate allows the operator to observe the test area of the cupstock.
The wax was brought into contact with the cupstock by tilting the trough down. This action activated a timer. When the operator saw that the cupstock was impregnated completely he tilted the trough up automatically stopping the timer.
Table 11 below lists the penetration data obtained with the penetrometer for the waxes mentioned in Table 1 when said waxes were mixed with the additive.
weight of additive 1 Percent weight of additive: Additive is defined in Examples.
The application temperature of Run 1 is in that temperature range where decreases in the temperature increase impregnation time. 1n the accompanying drawing the application temperature of Run 1 is within T to T range. Runs 2, etc., are in that range where changes in application temperature does not change impregnation time. In the heretofore mentioned drawing the application temperatures of Runs 2, etc. are within the T to T range.
Run 2 with a low melting point wax shows that at a 150 F. application temperature and with no additive the average impregnation time is 17.2 seconds. However with the 0.05 weight percent ester the average impregnation time is 15.5
seconds for a decrease in impregnation time of about 10 percent. Runs 3, 4 and 5, with the same low melting point wax, show that as the application temperature increases the ester always causes a decrease in the average impregnation time. Yet Run 6, with a higher melting point wax (136 F., AMP). shows that the ester additive has no effect on the average impregnation time. Runs 7 and 8, with an even higher melting point wax (156 F., AMP), shows the same lack of effect on impregnation time by the ester. A similar lack of ester effect on impregnation time is shown in Run 9 with a microcrystalline wax.
The average impregnation times shown in Table 11 are the arithmetic average of nine trials.
Runs 2, 3, 4 and 5 with no additive show impregnation times of 17.2, 16.4, 17.0 and 17.9 seconds respectively. Statistical analysis indicates that these lmpregnatlon times are equivalent. Statistical analysis also indicates that the impregnation rate differences for Runs 2, 3, 4 and 5 with and without additives are significant. The same statistical analysis indicates that the ester in the wax has no effect on impregnation rates in Runs 6, 7, 8 and 9.
While in these examples the outside of the cupstock was treated, the invention is equally applicable to treatment of the inside of the cupstock.
Substantially equivalent results, as in the above specific examples are obtained when (1) other low melting point 136" F., AMP) waxes are used and/or (2) other esters as herein specified are used including 'mono-, diand tri-esters of other C C fatty acids with C -C polyhydric alcohols having two to three hydroxyl groups or mixtures of such esters and/or (3) other porous paper products as herein specified are used.
The invention claimed is:
1. 1n the impregnation of porous paper with a molten paraffin wax having a melting point below 136 F. (AMP), the improvement which comprises utilizing as the impregnating composition said paraffin wax having incorporated therein from 0.01 to 1.0 percent by weight of an additive which is an ester or mixture of esters of a C -C fatty acid with a polyhydric alcohol having two to five carbon atoms and two to three hydroxyl groups, wherein said ester is a monoester or at least 60 percent by weight of said mixture of esters are monoesters, and impregnating the paper with said composition.
2. Method according to claim 1 wherein the paraffin wax melts between F. and F. (AMP).
3. Method according to claim 1 wherein the alcohol has two to three carbon atoms.
4. Method according to claim 1 wherein the paraffin wax contains a mixture of esters having about 90 percent by weight of a monoester.
5. Method according to claim 1 wherein the ester or mixture of esters is present in the wax in the amount of about 0.01 to 0.5 percent by weight.
6. Method according to claim 2 wherein the alcohol has two to three carbon atoms.
7. Method according to claim 6 wherein the paraffin wax contains a mixture of esters having about 90 percent by weight of a monoester.
8. Method according to claim 7 wherein the mixture of esters is present in the wax in the amount of 0.01 to 0.5 percent by weight.

Claims (7)

  1. 2. Method according to claim 1 wherein the paraffin wax melts between 100* F. and 135* F. (AMP).
  2. 3. Method according to claim 1 wherein the alcohol has two to three carbon atoms.
  3. 4. Method according to claim 1 wherein the paraffin wax contains a mixture of esters having about 90 percent by weight of a monoester.
  4. 5. Method according to claim 1 wherein the ester or mixture of esters is present in the wax in the amount of about 0.01 to 0.5 percent by weight.
  5. 6. Method according to claim 2 wherein the alcohol has two to three carbon atoms.
  6. 7. Method according to claim 6 wherein the paraffin wax contains a mixture of esters having about 90 percent by weight of a monoester.
  7. 8. Method according to claim 7 wherein the mixture of esters is present in the wax in the amount of 0.01 to 0.5 percent by weight.
US810120A 1969-03-25 1969-03-25 Method of decreasing wax impregnation time by porous paper products Expired - Lifetime US3653958A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81012069A 1969-03-25 1969-03-25

Publications (1)

Publication Number Publication Date
US3653958A true US3653958A (en) 1972-04-04

Family

ID=25203047

Family Applications (1)

Application Number Title Priority Date Filing Date
US810120A Expired - Lifetime US3653958A (en) 1969-03-25 1969-03-25 Method of decreasing wax impregnation time by porous paper products

Country Status (1)

Country Link
US (1) US3653958A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791856A (en) * 1971-07-15 1974-02-12 Sun Research Development Method of preparing polymer coated-wax impregnated cellulosic stock
US3962509A (en) * 1974-05-31 1976-06-08 Continental Oil Company Waterproof paperboard and method for producing same
US4443503A (en) * 1979-12-19 1984-04-17 Dai Nippon Toryo Co., Ltd. Anti-corrosive coating composition and process for formation of anti-corrosive coatings
US5384199A (en) * 1993-03-22 1995-01-24 Frye Copystystems, Inc. Carbon paper and method for making same
US5539035A (en) * 1994-10-12 1996-07-23 The Mead Corporation Recyclable wax-coated containers
WO1999030839A1 (en) * 1997-12-16 1999-06-24 International Paper Company Foamable insulating barrier coating
WO2000047818A1 (en) * 1999-02-13 2000-08-17 Cognis Deutschland Gmbh Use of emulsions as impregnating agents and reviving agents

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US728234A (en) * 1902-03-19 1903-05-19 Charles C Hoyt Paraffin fabric.
US1730563A (en) * 1929-10-08 Sealed container and cap therefor
US2204612A (en) * 1936-06-10 1940-06-18 Musher Foundation Inc Sized paper
US2322198A (en) * 1941-03-15 1943-06-15 Ind Patents Corp Coating composition
US2483259A (en) * 1946-12-06 1949-09-27 Johnson & Son Inc S C Lusterless wax emulsions and method of preparation
US3033708A (en) * 1958-10-01 1962-05-08 Paper Chemistry Inst Process of impregnating an assembled corrugated container board
US3061456A (en) * 1959-05-28 1962-10-30 Continental Oil Co Wax coating on printed paperboard
US3177091A (en) * 1961-01-09 1965-04-06 Sinclair Research Inc Handling wax-coated articles
US3186869A (en) * 1961-02-23 1965-06-01 Friedman Jack Coated film for laundry package
US3194677A (en) * 1962-03-20 1965-07-13 Royal Mcbee Corp Process for forming non-transparent heat and/or pressure transparentizable films
US3229010A (en) * 1963-03-07 1966-01-11 Maryland Cup Corp Method of providing a preformed closure member for a container
US3231462A (en) * 1961-05-03 1966-01-25 Sun Oil Co Wax-coated paper
US3271177A (en) * 1965-04-30 1966-09-06 Kvp Sutherland Paper Co Wax compositions and coated articles
US3305392A (en) * 1965-05-27 1967-02-21 Scott Paper Co Modified fibrous web and process of manufacture
US3312564A (en) * 1965-02-02 1967-04-04 Oxford Paper Co Transfer sheet, process of making and using
US3332798A (en) * 1963-01-03 1967-07-25 Chevron Res Method of coating paper products with cellulose-wax compositions
US3433665A (en) * 1964-11-23 1969-03-18 Sun Oil Co Method of coating fibrous materials with wax

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1730563A (en) * 1929-10-08 Sealed container and cap therefor
US728234A (en) * 1902-03-19 1903-05-19 Charles C Hoyt Paraffin fabric.
US2204612A (en) * 1936-06-10 1940-06-18 Musher Foundation Inc Sized paper
US2322198A (en) * 1941-03-15 1943-06-15 Ind Patents Corp Coating composition
US2483259A (en) * 1946-12-06 1949-09-27 Johnson & Son Inc S C Lusterless wax emulsions and method of preparation
US3033708A (en) * 1958-10-01 1962-05-08 Paper Chemistry Inst Process of impregnating an assembled corrugated container board
US3061456A (en) * 1959-05-28 1962-10-30 Continental Oil Co Wax coating on printed paperboard
US3177091A (en) * 1961-01-09 1965-04-06 Sinclair Research Inc Handling wax-coated articles
US3186869A (en) * 1961-02-23 1965-06-01 Friedman Jack Coated film for laundry package
US3231462A (en) * 1961-05-03 1966-01-25 Sun Oil Co Wax-coated paper
US3194677A (en) * 1962-03-20 1965-07-13 Royal Mcbee Corp Process for forming non-transparent heat and/or pressure transparentizable films
US3332798A (en) * 1963-01-03 1967-07-25 Chevron Res Method of coating paper products with cellulose-wax compositions
US3229010A (en) * 1963-03-07 1966-01-11 Maryland Cup Corp Method of providing a preformed closure member for a container
US3433665A (en) * 1964-11-23 1969-03-18 Sun Oil Co Method of coating fibrous materials with wax
US3312564A (en) * 1965-02-02 1967-04-04 Oxford Paper Co Transfer sheet, process of making and using
US3271177A (en) * 1965-04-30 1966-09-06 Kvp Sutherland Paper Co Wax compositions and coated articles
US3305392A (en) * 1965-05-27 1967-02-21 Scott Paper Co Modified fibrous web and process of manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791856A (en) * 1971-07-15 1974-02-12 Sun Research Development Method of preparing polymer coated-wax impregnated cellulosic stock
US3962509A (en) * 1974-05-31 1976-06-08 Continental Oil Company Waterproof paperboard and method for producing same
US4443503A (en) * 1979-12-19 1984-04-17 Dai Nippon Toryo Co., Ltd. Anti-corrosive coating composition and process for formation of anti-corrosive coatings
US5384199A (en) * 1993-03-22 1995-01-24 Frye Copystystems, Inc. Carbon paper and method for making same
US5539035A (en) * 1994-10-12 1996-07-23 The Mead Corporation Recyclable wax-coated containers
WO1999030839A1 (en) * 1997-12-16 1999-06-24 International Paper Company Foamable insulating barrier coating
WO2000047818A1 (en) * 1999-02-13 2000-08-17 Cognis Deutschland Gmbh Use of emulsions as impregnating agents and reviving agents
AU750934B2 (en) * 1999-02-13 2002-08-01 Cognis Deutschland Gmbh & Co. Kg Use of emulsions as impregnating agents and reviving agents
AU750934C (en) * 1999-02-13 2003-03-27 Cognis Deutschland Gmbh & Co. Kg Use of emulsions as impregnating agents and reviving agents
US7622021B1 (en) 1999-02-13 2009-11-24 Cognis Ip Management Gmbh Process for paper substrates using an emulsion and products produced thereby

Similar Documents

Publication Publication Date Title
US3653958A (en) Method of decreasing wax impregnation time by porous paper products
US2753309A (en) Defoaming agents
US2856310A (en) Stable ketene dimer-emulsifier mixtures and their preparation
US4024072A (en) Water-dispersible defoamer composition
US3207716A (en) Strippable coating comprising ethylenevinyl acetate copolymers and release agent
CA2194074A1 (en) Coating for paperboard
US5429718A (en) Polyglycerol antifoam agents in paper processing
US2843551A (en) Defoaming composition
US3751373A (en) Petroleum sulfonic acid foam control composition and its use
GB1005543A (en) Process for removing higher-melting fatty materials from glyceride oils
US3632426A (en) Method of increasing wax absorption rates of porous paper products
US2868734A (en) Liquid defoaming composition
US3919111A (en) Agents and method for foam control
US3247142A (en) Hot melt compositions comprising polyethylene, hydrocarbon resin and acetylated monoglyceride
US4221600A (en) Liquid defoaming composition
US2843497A (en) Wax coatings containing synergistic antioxidants
US2027390A (en) Oil-and water-proof product
US3962509A (en) Waterproof paperboard and method for producing same
US8343634B2 (en) Triglyceride compositions useful for preparing composite panels and applications thereof
AT396477B (en) EDIBLE LUBRICANT WITH THE ADDITION OF LUBRICANT-IMPROVING ESTERS FROM FATTY ACIDS AND HIGHER ALCOHOLS
US2974106A (en) Emulsifier-wax compositions
US2101089A (en) Latex stabilization
WO2004007831A1 (en) Formulation of a highly viscous mineral oil for the production of filters for tobacco
US2292323A (en) Wax coating composition
US2325085A (en) Antioxidizing paraffin composition