US3672103A - Modular utility vault - Google Patents

Modular utility vault Download PDF

Info

Publication number
US3672103A
US3672103A US3672103DA US3672103A US 3672103 A US3672103 A US 3672103A US 3672103D A US3672103D A US 3672103DA US 3672103 A US3672103 A US 3672103A
Authority
US
United States
Prior art keywords
vault
cover
ribs
shelves
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Robert A Kost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
City of Fort Collins
Original Assignee
City of Fort Collins
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by City of Fort Collins filed Critical City of Fort Collins
Application granted granted Critical
Publication of US3672103A publication Critical patent/US3672103A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water
    • H02G9/10Installations of electric cables or lines in or on the ground or water in cable chambers, e.g. in manhole or in handhole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B7/00Enclosed substations, e.g. compact substations
    • H02B7/06Distribution substations, e.g. for urban network
    • H02B7/08Underground substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6851With casing, support, protector or static constructional installations
    • Y10T137/6966Static constructional installations
    • Y10T137/6991Ground supporting enclosure

Definitions

  • ABSTRACT A modular construction for underground utility vault.
  • Semicylindrical end sections are molded in the form of a relatively thin shell from fiberglass or other moldable material of similar physical characteristics.
  • the shells are formed with a series of radially offset circumferentially extending ribs which provide increased rigidity to the shell and also form shelves for supporting elements such as transformers, connection points, etc. within the vault.
  • the end section is one form of structural module which may, in some installations, be combined with a second modular element in the form of a flat side panel having a cross-sectional configuration matching that of the end section.
  • Two end sections may be secured to each other to form a cylindrical vault or, alternatively, two end sections may be assembled with one or more pairs of side panels attached to and mounted between the opposed end sections.
  • a cover element of laminated molded sheet material closes the opening at the upper end of the completed vault and is provided with internal stiffening ribs.
  • a lock and retainer-hinge assembly is employed to releasably lock the cover in position and enables the cover, when unlocked, to either be swung upwardly as on a hinged mounting or removed entirely.
  • a vault constructed in accordance with the present invention is assembled from standardized units formed of relatively thin, and hence lightweight, molded plastic material.
  • the material employed is fiberglass, although there are many other commercially available plastic materials having physical characteristics quite similar to those of fiberglass.
  • the structural characteristics of fiberglass are such that individual modular elements having adequate structural rigidity can be formed in reasonably thinwalled sections so that the individual modular elements can easily be handled manually.
  • the fiberglass shells can be readily pierced by a conventional drill or hole saw to provide cable entrances and exits at desired locations and also to enable elements of the distribution system to be mounted upon and attached to the fiberglass shell.
  • One form of modular unit consists of a semi-cylindrical shell or end section which is of generally uniform wall thickness and formed with a plurality of radially offset ribs.
  • the ribs enhance the structural rigidity of the shell and further provide shelves at the interior of the vault to support various elements of the distribution system.
  • Two end sections may be bolted together to form a cylindrical vault, or pairs of generally flat side panels having a cross-sectional shape matching that of the end sections can be attached between two end sections to form a vault of larger dimensions.
  • a cover of a laminated fiberglass sheet construction is employed to close the upper end of the vault and is provided with a series of integral internal ribs for structural strength.
  • the top of the cover is provided with a recess into which passes a padlock hasp secured to the top of the shell wall at one side of the shell. At the opposite side of the pass inwardly through openings in the cover to provide a retainer-hinge assembly.
  • FIG. 1 is an exploded perspective view showing various elements of a modular utility vault embodying the present invention
  • FIG. 2 is a vertical cross-sectional view of a typical vault installation embodying the present invention
  • FIG. 3 is a side elevational view of a modified form of installation, with certain parts broken away and shown in section;
  • FIG. 4 is a top plan view of the installation of FIG. 1 with the cover removed;
  • FIG. 5 is a top plan view of the cover of the installation of FIG. 3;
  • FIG. 6 is a detail cross-sectional view showing details of the cover lock.
  • FIG. 7 is a detail cross-sectional view of the cover retainerhinge.
  • FIG. 1 there are disclosed various modular units employed in the practice of the present invention. These units include a generally semi-cylindrical end section designated generally 10, a side panel 12 and a cover 14. Depending upon the requirements of the particular installation, an installation may consist simply of two end sections 10 secured to each other to form a generally cylindrical vault, in which case a circular cover such as 14 would be employed. In other cases, where a larger vault is required, the end sections 10 may be spaced from each other by one or more pairs of side sections 12 as in the embodiment of FIGS. 3 and 4, in which case a modified form of cover 16 such as that disclosed in FIG. 5 would be employed.
  • a modified form of cover 16 such as that disclosed in FIG. 5 would be employed.
  • End sections 10 and side panels 12 are molded from synthetic plastic materials, such as fiberglass. Desirable characteristics of the actual material employed are that it be electrically non conductive, that it be resistant to corrosion, non-electrolytic, and that is possesses reasonable capabilities for being cut or machined. In addition, the physical characteristics of the material should be such that in its molded form it poxesses a relatively high strength-to-weight ratio. F iberglass has been found to adequately satisfy all of these conditions and is a preferred material for the present invention, however, many of the synthetic thermoplastic materials presently commercially available will be found to be adequate for the present purposes.
  • end sections 10 are of one-piece molded construction in the form of a relatively thin, generally semi-cylindrical shell.
  • the shell is formed with three radially olfset ribs 18, 20, and 22.
  • the three ribs are of identical configuration, each having an inwardly inclined lower wall 180, 20a, 22a respectively.
  • the ribs extend circumferentially of end section 10, and the upper walls 18b, 20b and 2212 all lie in general planes which extend radially of the axis of the semi-cylindrical shell which defines the end section 10.
  • an outwardly projecting radial flange 24 is integrally formed, and radially outwardly projecting side flanges extend along the axial edges of the shell.
  • Flanges 26 are formed with a series of bolt receiving openings 28 which enable two end sections 10 to be fixedly secured to each other with the flanges 26 of the respective end vault, one or more bolts, mounted in the top of the shell wall flange 36 extending along its lower edge, and with vertically extending outwardly projecting side flanges 38 along each vertical edge, the side flanges being provided with bolt receiving openings 40 as was the case with the flanges 26 of end section 10.
  • Ribs 18, 20 and 22 and flanges 24 and 26 serve to increase the structural rigidity of the semi-cylindrical end sections, thus enabling the shell, which is of uniform thickness throughout, to achieve adequate structural rigidity with a relatively thin wall thickness, hence resulting in a completed shell of light weight.
  • the material employed is fiberglass
  • a shell of adequate strength having overall dimensions of approximately six feet in length and three feet in diameter can be constructed with a wall thickness of between three-eighths and one-half inch. A shell of these dimensions is light enough to be easily handled by one man.
  • FIG. 2 there is shown, in vertical cross section, a typical installation wherein two end sections 12 are secured to each other to form a cylindrical underground vault.
  • ribs 18, 20 and 22 not only function as stiffeners for the shell structure, but also provide internal shelves for mounting and supporting equipment within the interior of the vault.
  • the upper walls 22b of the lowermost rib 22 serve as a support for a support frame 42 upon which is in turn supported an electrical transformer 44.
  • Support frame 42 may be of any suitable construction.
  • FIG. 2 it takes the form of a simple X-shaped frame constructed from U-shaped channel members. An X frame of this type may also be employed in rigidifying the assembled structure by resisting horizontal forces directed inwardly of the shell structure.
  • the transformer is held in position by means of a U-shaped metal bracket 46 bolted to the transformer casing as at 48 and to the wall of one of the end sections as by bolts 50.
  • the properties of the fiberglass shell are such that it can be easily pierced by a drill or hole saw so that structural elements such as bracket 46 can be located to suit the convenience of the particular installation in the field and holes through the wall of the shell, such as 50 for the passage of electric power cables such as 52 into and out of the shell, can easily be made at the desired location.
  • an electric junction point 54 is supported upon the upper wall or shell of rib 20, and held in position by bolts 56 passing through the shell wall.
  • Cover 14 is preferably of two-piece construction and includes an upper lid 58 and a lower member 60 which is preferably formed with one or more diametrically extending ribs 62.
  • the upper edges of rib 62 are flush with the upper edge of an upstanding peripheral flange 64 formed as an integral part of member 60, and the flat bottom surface of lid 58 is permanently bonded to the upper edges of flange 64 and rib 62.
  • the purpose of ribs 62 is to rigidify the cover. As indicated in FIG. 2, the top edge of end section shells 10 are buried flush with the surface of the ground so that cover 14 is likewise flush with the ground surface. Cover 14 thus must possess sufficient rigidity to enable persons to walk across the top of the cover.
  • Cover 14 is releasably locked in its assembled position by a lock structure designated generally 68 and a retainer-hinge arrangement designated generally 70. Details of lock assembly 68 and retainer-hinge assembly 70 are best seen in FIGS. 6 and 7.
  • the lock assembly includes a U- shaped hasp 72 which is fixedly mounted on upper wall 18b of rib 18 by a pair of nuts threadably received on each of the two legs of hasp 72 above and below wall 18b.
  • Cover lid 58 is formed with an indented recess 76 and, when the cover is in position, hasp 72 projects upwardly into recess 76 through suitably located openings 78 and 80 in lower member 60 and in the bottom of recess 76 respectively.
  • Peripheral flange 64 of lower member 60 is formed with a recess 82 complimentary in shape to recess 76.
  • Recess 76 is dimensioned to receive a conventional padlock 84 which is passed through hasp 72 to lock to cover in position.
  • the cover is retained on the seat defined by upper wall 18b at its opposite side by a bolt 84 (FIG. 7) fixedly mounted to the upper portion of a shell 10 above upper wall 18b as by a nut.
  • a bore 88 through peripheral flange 64, having a diameter somewhat larger than that of bolt 84 receives the bolt when the cover is assembled.
  • the enlarged bore 88 permits the cover to be swung upwardly, as if bolt 84 were a hinge to permit a cursory inspection of the interior of the vault. If it is desired to completely remove the cover, the elevated cover is simply pulled free from bolt 84 and removed.
  • junction point can be located at any desired point around the periphery of the vault and it is a simple matter to install additional junction points or other units as required.
  • a modified form of vault which includes a pair of end sections 10 and a pair of side panels 12 installed between the two end sections to result in an elongated oval type vault, as compared to the cylindrical construction of the FIG. 2 embodiment.
  • the side flanges 38 of side panels 12 are bolted to the corresponding flanges 26 of the respective end sections, the ribs 30, 32 and 34 of the side panels forming continuations of the corresponding ribs 18, 20 and 22 of the end sections.
  • FIG. 3 necessarily employs a different cover configuration which, because of its enlarged area is provided with a somewhat more extensive system of internal ribs 90.
  • the cover 16 is similar to cover 14.
  • two or more retainer-hinges 700 are employed at spaced points along one of the two side panels 12 in combination with a single lock assembly 680.
  • Lock assembly 680 and the individual retainer-hinge assemblies 70a are of the same construction respectively as the lock assembly 68 and the retainer-hinge 70 of the FIG. 2 embodiment.
  • FIG. 3 In an arrangement such as the FIG. 3 embodiment, where one or more pairs of side panels 12 are employed, it may be desirable to provide some transverse bracing between the opposed side panels. This may be accomplished by employing a platform-like member 92 as a support member for mounting on the lowermost of the three shelves, supplemented, if necessary, by an I-I-shaped bracing member 94 at the intermediate shelf.
  • the inward pressure exerted by the soil against the vault walls depends, to a large extent, on the characteristics of the soil and in many installations, transverse cross-bracing of the type provided by platform 92 or brace 94 is not necessary.
  • a platform-like member 92 as a support member for mounting on the lowermost of the three shelves, supplemented, if necessary, by an I-I-shaped bracing member 94 at the intermediate shelf.
  • the inward pressure exerted by the soil against the vault walls depends, to a large extent, on the characteristics of the soil and in many installations, transverse cross-bracing
  • the cylindrical configuration of the completed vault is quite stiff against radially directed forces, but transverse bracing may be required in those installations where flat side panels 12 are employed. It is only necessary that the vault function to, in effect, maintain an underground chamber, and hence a slight deflection of the vault walls is usually acceptable.
  • the resulting vault shape of FIGS. 3 and 4 is particularly advantageous for installations that are to enclose both a transformer and switching units or junction points.
  • the transformer may be centrally located on platform 92 with the neutral junction units placed on the available shelf just above the transfonner in a central position below hasp 72.
  • the pair of high-voltage junction units are then placed on the same shelf individually near respective opposite ends of the vault.
  • the three different electrical circuits thus are well separated, while, at the same time, the junction units of each are readily available near the top of the vault so that an operator can actuate any or all of them from an external, safe position.
  • the invention contemplates use of the modular approach for the formation of vaults having overall shapes, in plan view, different from that illustrated thus, the cylindrical end shells may be modified so that polygonal forms result, and various other combinations may be constructed, including those that are rectangular or L-shaped. Generally speaking, however, it is preferred to utilize curved surfaces as much as possible in order to gain structural strength.
  • the bottom of the vault is left open to permit free drainage of any surface water which may find its way into the interior of the vault. If, however, it is desired to seal the bottom of the vault, this may be done simply by bond ing a cover of appropriate shape in position at the vault bottom.
  • a cover of appropriate shape in position at the vault bottom.
  • a utility vault comprising a pair of like semicircular sections of a molded plastic material having a high strength-toweight ratio, such as fiberglass, each of said sections comprising an axially elongate generally semicylindrical shell of relatively thin uniform wall thickness, a plurality of radially ofiset circumferentially inwardly extending ribs integrally formed in each of said shells, the ribs on the respective shells being axially aligned with each other to extend continuously around the periphery of the tubular vault, each rib having a flat substantially horizontal first wall extending radially inwardly from the semicylindrical shell wall and a frusto-conical second wall integral with and inclined outwardly from the radially inner edge of said first wall to the sembcylindrical shell wall, the first walls of said ribs being disposed on the upper side of said ribs when said tubular vault is in an upright position, to define a plurality of peripherally extending shelves in the interior of the vault, the
  • a vault as defined in claim 1 wherein said securing means includes a pair of like side panels secured to and extending between said semi-circular sections, each of said side panels having a generally flat configuration and having a plurality of offset ribs thereon identically matching the interior and exterior configuration of said ribs on said semi-circular sections and defining a continuation of said interior shelves and said exterior channels.
  • a utility vault as defined in claim 1 including means for locking said cover closure in place to enclose the upper end of the vault, means defining a lock receiving recess in said cover closure having a hasp receiving opening therein, said means for locking including a hasp fixedly secured to said uppermost one of said shelves and projecting upwardly therefrom through said opening, and detachable hinge means on the side of said vault opposite said locking means comprising pin means fixedly secured to at least one of said shells above said uppermost shelf and projecting radially inwardly, and opening means defined in said vertically extending rib section of said cover closure for receiving said pin means to detachably and hingeably couple said cover closure to said shells.
  • a cover for said vault comprising: a generally flat horizontal lid member shaped in conformity with said uppermost part of said vault, a generally flat lower horizontal member spaced below said lid member, each of said members being of fiberglass or the like, a peripheral flange and a plurality of vertical ribs integrally bonding said members to each other, means defining a releasable lock between said walls and said cover, a pin projecting horizontally inwardly of said vault above said seat, and means for defining an opening in said peripheral flange loosely receiving said pin to positively retain said cover on said seat in cooperation with said lock and to accommodate hinging and removal of said cover when said lock is released.

Abstract

A modular construction for underground utility vault. Semicylindrical end sections are molded in the form of a relatively thin shell from fiberglass or other moldable material of similar physical characteristics. The shells are formed with a series of radially offset circumferentially extending ribs which provide increased rigidity to the shell and also form shelves for supporting elements such as transformers, connection points, etc. within the vault. The end section is one form of structural module which may, in some installations, be combined with a second modular element in the form of a flat side panel having a cross-sectional configuration matching that of the end section. Two end sections may be secured to each other to form a cylindrical vault or, alternatively, two end sections may be assembled with one or more pairs of side panels attached to and mounted between the opposed end sections. A cover element of laminated molded sheet material closes the opening at the upper end of the completed vault and is provided with internal stiffening ribs. A lock and retainer-hinge assembly is employed to releasably lock the cover in position and enables the cover, when unlocked, to either be swung upwardly as on a hinged mounting or removed entirely.

Description

United States Patent Kost 1451 June 27, 1972 [72] inventor:
' 137/363, 174/37 [51] Int. Cl. ..E02d 29/14, i-l02g 9/10 [58] Field 0! Search ..52/19, 20, 169, 245; 174/37;
1,363,439 5/1964 France ..52/245 9,418 1/1896 Great Britain... 31,365 1 1/1920 Norway ..52/20 Primary Examiner-Frank L. Abbott Assistant Examiner-Leslie A. Braun Attorney-Ralph F. Crandell and John G. Batchelder [5 7] ABSTRACT A modular construction for underground utility vault. Semicylindrical end sections are molded in the form of a relatively thin shell from fiberglass or other moldable material of similar physical characteristics. The shells are formed with a series of radially offset circumferentially extending ribs which provide increased rigidity to the shell and also form shelves for supporting elements such as transformers, connection points, etc. within the vault. The end section is one form of structural module which may, in some installations, be combined with a second modular element in the form of a flat side panel having a cross-sectional configuration matching that of the end section. Two end sections may be secured to each other to form a cylindrical vault or, alternatively, two end sections may be assembled with one or more pairs of side panels attached to and mounted between the opposed end sections. A cover element of laminated molded sheet material closes the opening at the upper end of the completed vault and is provided with internal stiffening ribs. A lock and retainer-hinge assembly is employed to releasably lock the cover in position and enables the cover, when unlocked, to either be swung upwardly as on a hinged mounting or removed entirely.
6 Claims, 7 Drawing Figures [56] References Cited UNITED STATES PATENTS 1,473,001 11/1923 White ..70/159 3,390,224 6/1968 Wyatt.... ..52/20 3,508,363 4/1970 Criveilo etal. ..292/256 3,519,726 7/1970 Ewing ..174/37 574,834 1/1897 Tobin.... ....137/364 599,441 2/1898 Dorr ..94/34 1,165,804 12/1915 Quigley ..94/34 1,265,767 5/1918 Fouts ..94/34 2,163,221 6/1939 Slocum .;.....94/34 FOREIGN PATENTS 0R APPLICATIONS 616,608 3/1961 Canada ..52/169 sa as I Ill!" ."1 56 HF; g i 1 I 44 P'ATENTE'nJum 1972 v 3. 572, 1 03 SHEET 10E 3 Robert A. K051 Artorneys PAIENTEDJum m2 3. 6 72.103
SHEET 3 or 3 Inventor Robert A. Kosr a y 37% q W Ahorneys MODULAR UTILITY VAULT BACKGROUND OF THE INVENTION In recent years, there has been a substantially increased use of underground or buried systems for supplying electricity and telephone connections particularly in residential areas. Underground systems of this type require the use of junction points or connection boxes where various branch lines are brought together and/or connected into the main distribution system. To achieve full realization of all of the advantages of an underground system, many forms of underground vaults have been employed. In their most usual form, such vaults are constructed either from poured concrete or from metal, usually in the form of galvanized corrugated sheet metal.
The obvious disadvantage of a vault of metallic construction employed underground is that sooner or later the metal will rust and corrode. Further, when a metal vault is employed in an underground electrical or telephone distribution system, care must be taken to make sure that the vault wall is electrically insulated from the current-carrying portions of the distribution system.
While concrete vaults avoid the rust and corrosion problems of steel vaults, they suffer a serious drawback from the standpoint of weight and non-machinability. The weight of a concrete vault, even when broken down into several sections, is usually such as to require the use of power-driven hoisting equipment during its installation. Further, when it is desired to bring additional lines into a concrete vault, the only way this can be accomplished is by knocking a hole through the side of the vault, which can be extremely difficult and complicated by existing equipment already mounted in the vault.
While a concrete vault does'not rust or corrode, metal parts which come in contact with the concrete are, by their very contact, extremely susceptible to rust and corrosion, as well as to electrolytic action.
SUMMARY OF THE INVENTION The present invention is designed to overcome the problems outlined above in connection with the use of steel or concrete vault structures. A vault constructed in accordance with the present invention is assembled from standardized units formed of relatively thin, and hence lightweight, molded plastic material. Preferably the material employed is fiberglass, although there are many other commercially available plastic materials having physical characteristics quite similar to those of fiberglass. In addition to being resistant to rust, corrosion and chemical and electrolytic reactions with metal parts in contact with the fiberglass, the structural characteristics of fiberglass are such that individual modular elements having adequate structural rigidity can be formed in reasonably thinwalled sections so that the individual modular elements can easily be handled manually. Further, the fiberglass shells can be readily pierced by a conventional drill or hole saw to provide cable entrances and exits at desired locations and also to enable elements of the distribution system to be mounted upon and attached to the fiberglass shell.
One form of modular unit consists of a semi-cylindrical shell or end section which is of generally uniform wall thickness and formed with a plurality of radially offset ribs. The ribs enhance the structural rigidity of the shell and further provide shelves at the interior of the vault to support various elements of the distribution system. Two end sections may be bolted together to form a cylindrical vault, or pairs of generally flat side panels having a cross-sectional shape matching that of the end sections can be attached between two end sections to form a vault of larger dimensions. A cover of a laminated fiberglass sheet construction is employed to close the upper end of the vault and is provided with a series of integral internal ribs for structural strength. The top of the cover is provided with a recess into which passes a padlock hasp secured to the top of the shell wall at one side of the shell. At the opposite side of the pass inwardly through openings in the cover to provide a retainer-hinge assembly. The various elements are described in grater detail below.
IN THE DRAWINGS FIG. 1 is an exploded perspective view showing various elements of a modular utility vault embodying the present invention;
FIG. 2 is a vertical cross-sectional view of a typical vault installation embodying the present invention;
FIG. 3 is a side elevational view of a modified form of installation, with certain parts broken away and shown in section;
FIG. 4 is a top plan view of the installation of FIG. 1 with the cover removed;
FIG. 5 is a top plan view of the cover of the installation of FIG. 3;
FIG. 6 is a detail cross-sectional view showing details of the cover lock; and
FIG. 7 is a detail cross-sectional view of the cover retainerhinge.
Referring first to FIG. 1, there are disclosed various modular units employed in the practice of the present invention. These units include a generally semi-cylindrical end section designated generally 10, a side panel 12 and a cover 14. Depending upon the requirements of the particular installation, an installation may consist simply of two end sections 10 secured to each other to form a generally cylindrical vault, in which case a circular cover such as 14 would be employed. In other cases, where a larger vault is required, the end sections 10 may be spaced from each other by one or more pairs of side sections 12 as in the embodiment of FIGS. 3 and 4, in which case a modified form of cover 16 such as that disclosed in FIG. 5 would be employed.
End sections 10 and side panels 12 are molded from synthetic plastic materials, such as fiberglass. Desirable characteristics of the actual material employed are that it be electrically non conductive, that it be resistant to corrosion, non-electrolytic, and that is possesses reasonable capabilities for being cut or machined. In addition, the physical characteristics of the material should be such that in its molded form it poxesses a relatively high strength-to-weight ratio. F iberglass has been found to adequately satisfy all of these conditions and is a preferred material for the present invention, however, many of the synthetic thermoplastic materials presently commercially available will be found to be adequate for the present purposes.
Referring now particularly to FIGS. 1 and 2, end sections 10 are of one-piece molded construction in the form of a relatively thin, generally semi-cylindrical shell. Inthe particular embodiment disclosed, the shell is formed with three radially olfset ribs 18, 20, and 22. As best seen in the cross-sectional view of FIG. 2, the three ribs are of identical configuration, each having an inwardly inclined lower wall 180, 20a, 22a respectively. The ribs extend circumferentially of end section 10, and the upper walls 18b, 20b and 2212 all lie in general planes which extend radially of the axis of the semi-cylindrical shell which defines the end section 10.
At the lower end of each end section I0, an outwardly projecting radial flange 24 is integrally formed, and radially outwardly projecting side flanges extend along the axial edges of the shell. Flanges 26 are formed with a series of bolt receiving openings 28 which enable two end sections 10 to be fixedly secured to each other with the flanges 26 of the respective end vault, one or more bolts, mounted in the top of the shell wall flange 36 extending along its lower edge, and with vertically extending outwardly projecting side flanges 38 along each vertical edge, the side flanges being provided with bolt receiving openings 40 as was the case with the flanges 26 of end section 10.
Ribs 18, 20 and 22 and flanges 24 and 26 serve to increase the structural rigidity of the semi-cylindrical end sections, thus enabling the shell, which is of uniform thickness throughout, to achieve adequate structural rigidity with a relatively thin wall thickness, hence resulting in a completed shell of light weight. Where the material employed is fiberglass, a shell of adequate strength having overall dimensions of approximately six feet in length and three feet in diameter can be constructed with a wall thickness of between three-eighths and one-half inch. A shell of these dimensions is light enough to be easily handled by one man.
Referring now to FIG. 2, there is shown, in vertical cross section, a typical installation wherein two end sections 12 are secured to each other to form a cylindrical underground vault.
As is apparent from FIG. 2, ribs 18, 20 and 22 not only function as stiffeners for the shell structure, but also provide internal shelves for mounting and supporting equipment within the interior of the vault. In the installation of FIG. 2, the upper walls 22b of the lowermost rib 22 serve as a support for a support frame 42 upon which is in turn supported an electrical transformer 44. Support frame 42 may be of any suitable construction. In FIG. 2 it takes the form of a simple X-shaped frame constructed from U-shaped channel members. An X frame of this type may also be employed in rigidifying the assembled structure by resisting horizontal forces directed inwardly of the shell structure. The transformer is held in position by means of a U-shaped metal bracket 46 bolted to the transformer casing as at 48 and to the wall of one of the end sections as by bolts 50. The properties of the fiberglass shell are such that it can be easily pierced by a drill or hole saw so that structural elements such as bracket 46 can be located to suit the convenience of the particular installation in the field and holes through the wall of the shell, such as 50 for the passage of electric power cables such as 52 into and out of the shell, can easily be made at the desired location.
In the installation of FIG. 2, an electric junction point 54 is supported upon the upper wall or shell of rib 20, and held in position by bolts 56 passing through the shell wall.
The upper wall of rib 18 is employed as a closure cover seat to support cover 14. Cover 14 is preferably of two-piece construction and includes an upper lid 58 and a lower member 60 which is preferably formed with one or more diametrically extending ribs 62. The upper edges of rib 62 are flush with the upper edge of an upstanding peripheral flange 64 formed as an integral part of member 60, and the flat bottom surface of lid 58 is permanently bonded to the upper edges of flange 64 and rib 62. The purpose of ribs 62 is to rigidify the cover. As indicated in FIG. 2, the top edge of end section shells 10 are buried flush with the surface of the ground so that cover 14 is likewise flush with the ground surface. Cover 14 thus must possess sufficient rigidity to enable persons to walk across the top of the cover.
Cover 14 is releasably locked in its assembled position by a lock structure designated generally 68 and a retainer-hinge arrangement designated generally 70. Details of lock assembly 68 and retainer-hinge assembly 70 are best seen in FIGS. 6 and 7.
Referring first to FIG. 6, the lock assembly includes a U- shaped hasp 72 which is fixedly mounted on upper wall 18b of rib 18 by a pair of nuts threadably received on each of the two legs of hasp 72 above and below wall 18b. Cover lid 58 is formed with an indented recess 76 and, when the cover is in position, hasp 72 projects upwardly into recess 76 through suitably located openings 78 and 80 in lower member 60 and in the bottom of recess 76 respectively. Peripheral flange 64 of lower member 60 is formed with a recess 82 complimentary in shape to recess 76. Recess 76 is dimensioned to receive a conventional padlock 84 which is passed through hasp 72 to lock to cover in position.
The cover is retained on the seat defined by upper wall 18b at its opposite side by a bolt 84 (FIG. 7) fixedly mounted to the upper portion of a shell 10 above upper wall 18b as by a nut. A bore 88 through peripheral flange 64, having a diameter somewhat larger than that of bolt 84 receives the bolt when the cover is assembled.
When the padlock at the diametrically opposite side of cover 14 from opening 88 is unlocked and disengaged, the enlarged bore 88 permits the cover to be swung upwardly, as if bolt 84 were a hinge to permit a cursory inspection of the interior of the vault. If it is desired to completely remove the cover, the elevated cover is simply pulled free from bolt 84 and removed.
It will be noted that the mounting of the junction point upon the shelf defined by rib 20 near the top of the vault makes the connections of the junction point readily accessible, once cover 14 has been removed. This is of extreme convenience in the event it is necessary to disconnect or break the circuit at the junction point since the junction point can easily be reached from the exterior of the vault. Because the fiberglass shell can be readily drilled, the junction point can be located at any desired point around the periphery of the vault and it is a simple matter to install additional junction points or other units as required.
In FIGS. 3 through 5, a modified form of vault is disclosed which includes a pair of end sections 10 and a pair of side panels 12 installed between the two end sections to result in an elongated oval type vault, as compared to the cylindrical construction of the FIG. 2 embodiment. The side flanges 38 of side panels 12 are bolted to the corresponding flanges 26 of the respective end sections, the ribs 30, 32 and 34 of the side panels forming continuations of the corresponding ribs 18, 20 and 22 of the end sections.
The embodiment of FIG. 3 necessarily employs a different cover configuration which, because of its enlarged area is provided with a somewhat more extensive system of internal ribs 90. Apart from its overall shape and arrangement of internal ribs, the cover 16 is similar to cover 14. Because of its shape, two or more retainer-hinges 700 are employed at spaced points along one of the two side panels 12 in combination with a single lock assembly 680. Lock assembly 680 and the individual retainer-hinge assemblies 70a are of the same construction respectively as the lock assembly 68 and the retainer-hinge 70 of the FIG. 2 embodiment.
In an arrangement such as the FIG. 3 embodiment, where one or more pairs of side panels 12 are employed, it may be desirable to provide some transverse bracing between the opposed side panels. This may be accomplished by employing a platform-like member 92 as a support member for mounting on the lowermost of the three shelves, supplemented, if necessary, by an I-I-shaped bracing member 94 at the intermediate shelf. The inward pressure exerted by the soil against the vault walls depends, to a large extent, on the characteristics of the soil and in many installations, transverse cross-bracing of the type provided by platform 92 or brace 94 is not necessary. In the cylindrical embodiment of FIG. 2, the cylindrical configuration of the completed vault is quite stiff against radially directed forces, but transverse bracing may be required in those installations where flat side panels 12 are employed. It is only necessary that the vault function to, in effect, maintain an underground chamber, and hence a slight deflection of the vault walls is usually acceptable.
The resulting vault shape of FIGS. 3 and 4 is particularly advantageous for installations that are to enclose both a transformer and switching units or junction points. In a 220-1 l0 volt system, for example, the transformer may be centrally located on platform 92 with the neutral junction units placed on the available shelf just above the transfonner in a central position below hasp 72. The pair of high-voltage junction units are then placed on the same shelf individually near respective opposite ends of the vault. The three different electrical circuits thus are well separated, while, at the same time, the junction units of each are readily available near the top of the vault so that an operator can actuate any or all of them from an external, safe position.
The invention contemplates use of the modular approach for the formation of vaults having overall shapes, in plan view, different from that illustrated thus, the cylindrical end shells may be modified so that polygonal forms result, and various other combinations may be constructed, including those that are rectangular or L-shaped. Generally speaking, however, it is preferred to utilize curved surfaces as much as possible in order to gain structural strength.
In normal circumstances, the bottom of the vault is left open to permit free drainage of any surface water which may find its way into the interior of the vault. If, however, it is desired to seal the bottom of the vault, this may be done simply by bond ing a cover of appropriate shape in position at the vault bottom. In view of the fact that the openings through which the various cables pass through the vault walls are not usually provided with weather-tight fittings and the fact that no watertight seal is provided between the cover and vault walls, the usual practice is to leave the vault bottom open.
Having described two exemplary embodiments of the invention, I claim:
1. A utility vault comprising a pair of like semicircular sections of a molded plastic material having a high strength-toweight ratio, such as fiberglass, each of said sections comprising an axially elongate generally semicylindrical shell of relatively thin uniform wall thickness, a plurality of radially ofiset circumferentially inwardly extending ribs integrally formed in each of said shells, the ribs on the respective shells being axially aligned with each other to extend continuously around the periphery of the tubular vault, each rib having a flat substantially horizontal first wall extending radially inwardly from the semicylindrical shell wall and a frusto-conical second wall integral with and inclined outwardly from the radially inner edge of said first wall to the sembcylindrical shell wall, the first walls of said ribs being disposed on the upper side of said ribs when said tubular vault is in an upright position, to define a plurality of peripherally extending shelves in the interior of the vault, the uppermost one of said shelves being located in adjacent spaced relationship to the upper end of the vault to constitute a closure seat, said ribs further defining frusto-conical channels in the exterior walls of said shell with the upper wall of said channels being substantially horizontal, means on the vertical edges of each of said sections for securing said sections together to form a tubular vault, and a cover closure comprising an upper and a lower member of sheet plastic material having a high strength-to-weight ratio, such as fiberglass, said lower layer being interconnected to said upper layer and having vertically extending rib sections having a depth substantially equal to the vertical spacing between said upper end of said vault and said uppermost one of said shelves.
2. A vault as defined in claim 1 wherein said securing means includes a pair of like side panels secured to and extending between said semi-circular sections, each of said side panels having a generally flat configuration and having a plurality of offset ribs thereon identically matching the interior and exterior configuration of said ribs on said semi-circular sections and defining a continuation of said interior shelves and said exterior channels.
3. A vault as defined in claim 1 wherein said ribs define at least two shelves in addition to said uppermost one of said shelves, one of said two shelves being located adjacent said uppermost one of said shelves and the other of said two shelves being located adjacent the lower end of said shell.
4. A utility vault as defined in claim 1, wherein said closure cover comprises a generally flat upper lid member, shaped to overlie and project outwardly beyond the upper rim of saidtubular vault and said lower lid member is integrally bonded to the lower side of said upper lid member and said rib sections comprise uniformly spaced vertical inner and outer ribs extending substantially around the peripheral area of said lower lid member, with uniformly spaced vertical ribs extending transversely of said lower member between opposite locations on said inner rib.
5. A utility vault as defined in claim 1 including means for locking said cover closure in place to enclose the upper end of the vault, means defining a lock receiving recess in said cover closure having a hasp receiving opening therein, said means for locking including a hasp fixedly secured to said uppermost one of said shelves and projecting upwardly therefrom through said opening, and detachable hinge means on the side of said vault opposite said locking means comprising pin means fixedly secured to at least one of said shells above said uppermost shelf and projecting radially inwardly, and opening means defined in said vertically extending rib section of said cover closure for receiving said pin means to detachably and hingeably couple said cover closure to said shells.
6. In a utility vault designed to be buried in the ground with its uppermost part substantially flush with the ground surface, means on the uppermost part of said vault defining an upwardfacing closure seat, a cover for said vault comprising: a generally flat horizontal lid member shaped in conformity with said uppermost part of said vault, a generally flat lower horizontal member spaced below said lid member, each of said members being of fiberglass or the like, a peripheral flange and a plurality of vertical ribs integrally bonding said members to each other, means defining a releasable lock between said walls and said cover, a pin projecting horizontally inwardly of said vault above said seat, and means for defining an opening in said peripheral flange loosely receiving said pin to positively retain said cover on said seat in cooperation with said lock and to accommodate hinging and removal of said cover when said lock is released.
l i i

Claims (6)

1. A utility vault comprising a pair of like semicircular sections of a molded plastic material having a high strength-toweight ratio, such as fiberglass, each of said sections comprising an axially elongate generally semicylindrical shell of relatively thin uniform wall thickness, a plurality of radially offset circumferentially inwardly extending ribs integrally formed in each of said shells, the ribs on the respective shells being axially aligned with each other to extend continuously around the periphery of the tubular vault, each rib having a flat substantially horizontal first wall extending radially inwardly from the semicylindrical shell wall and a frusto-conical second wall integral with and inclined outwardly from the radially inner edge of said first wall to the semi-cylindrical shell wall, the first walls of said ribs being disposed on the upper side of said ribs when said tubular vault is in an upright position, to define a plurality of peripherally extending shelves in the interior of the vault, the uppermost one of said shelves being located in adjacent spaced relationship to the upper end of the vault to constitute a closure seat, said ribs further defining frustoconical channels in the exterior walls of said shell with the upper wall of said channels being substantially horizontal, means on the vertical edges of each of said sections for securing said sections together to form a tubular vault, and a cover closure comprising an upper and a lower member of sheet plastic material having a high strength-to-weight ratio, such as fiberglass, said lower layer being interconnected to said upper layer and having vertically extending rib sections having a depth substantially equal to the vertical spacing between said upper end of said vault and said uppermost one of said shelves.
2. A vault as defined in claim 1 wherein said securing means includes a pair of like side panels secured to and extending between said semi-circular sections, each of said side panels having a generally flat configuration and having a plurality of offset ribs thereon identically matching the interior and exterior configuration of said ribs on said semi-circular sections and defining a continuation of said interior shelves and said exterior channels.
3. A vault as defined in claim 1 wherein said ribs define at least two shelves in addition to said uppermost one of said shelves, one of said two shelves being located adjacent said uppermost one of said shelves and the other of said two shelves being located adjacent the lower end of said shell.
4. A utility vault as defined in claim 1, wherein said closure cover comprises a generally flat upper lid member, shaped to overlie and project outwardly beyond the upper rim of said tubular vault and said lower lid member is integrally bonded to the lower side of said upper lid member and said rib sections comprise uniformly spaced vertical inner and outer ribs extending substantially around the peripheral area of said lower lid member, with uniformly spaced vertical ribs extending transversely of said lower member between opposite locations on said inner rib.
5. A utility vault as defined in claim 1 including means for locking said cover closure in place to enclose the upper end of the vault, means defining a lock receiving recess in said cover closure having a hasp receiving opening therein, said means for locking including a hasp fixedly secured to said uppermost one of said shelves and projecting upwardly therefrom through said opening, and detachable hinge means on the side of said vault opposite said locking means comprising pin means fixedly secured to at least one of said shells above said uppermost shelf and projecting radially inwardly, and opening means defined in said vertically extending rib section of said cover closure for receiving said pin means to detachably and hingeably couple said cover closure to said shells.
6. In a utility vault designed to be buried in tHe ground with its uppermost part substantially flush with the ground surface, means on the uppermost part of said vault defining an upward-facing closure seat, a cover for said vault comprising: a generally flat horizontal lid member shaped in conformity with said uppermost part of said vault, a generally flat lower horizontal member spaced below said lid member, each of said members being of fiberglass or the like, a peripheral flange and a plurality of vertical ribs integrally bonding said members to each other, means defining a releasable lock between said walls and said cover, a pin projecting horizontally inwardly of said vault above said seat, and means for defining an opening in said peripheral flange loosely receiving said pin to positively retain said cover on said seat in cooperation with said lock and to accommodate hinging and removal of said cover when said lock is released.
US3672103D 1969-12-31 1969-12-31 Modular utility vault Expired - Lifetime US3672103A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88961569A 1969-12-31 1969-12-31

Publications (1)

Publication Number Publication Date
US3672103A true US3672103A (en) 1972-06-27

Family

ID=25395444

Family Applications (1)

Application Number Title Priority Date Filing Date
US3672103D Expired - Lifetime US3672103A (en) 1969-12-31 1969-12-31 Modular utility vault

Country Status (1)

Country Link
US (1) US3672103A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728464A (en) * 1972-04-17 1973-04-17 R Griffing Underground transformer enclosure, and method of installing the same
US3930372A (en) * 1973-11-28 1976-01-06 Johns-Manville Corporation Method and arrangement for controlling the position of an underground manhole assembly
US3938285A (en) * 1973-01-10 1976-02-17 Owens-Corning Fiberglas Corporation Manhole and method of manufacture
US3968601A (en) * 1973-06-25 1976-07-13 Brown Clayton S Handhole to receive and locate connections of underground secondary electrical power cable terminations
US3974599A (en) * 1971-12-08 1976-08-17 Indian Head Inc. Underground reinforced plastic enclosure
US4014475A (en) * 1976-01-30 1977-03-29 Environment/One Corporation Combined manway and collection tank for sewage grinder
US4089139A (en) * 1976-08-24 1978-05-16 Armco Steel Corporation Segmented cylindrical reinforced plastic manhole structure
USRE29636E (en) * 1975-01-06 1978-05-23 Owens-Corning Fiberglas Corporation Manhole and method of manufacture
US4158102A (en) * 1978-03-27 1979-06-12 Bright William L Enclosure for equipment
US4242847A (en) * 1978-12-27 1981-01-06 Universal Sanitary Equipment Manufacturing Co., Inc. Modular lift station construction
US4345998A (en) * 1979-07-05 1982-08-24 Graffis Kelly R Plastic catch basin
US4416836A (en) * 1981-12-03 1983-11-22 Kennecott Corp. Induced draft cooling tower
US4541209A (en) * 1983-08-15 1985-09-17 Jack E. Hoag Vault mount for electrical apparatus
US4632041A (en) * 1983-10-20 1986-12-30 Aktiebolaget Bofors Blasting chamber
US4662777A (en) * 1983-11-26 1987-05-05 Newton John R Composite article
US4709723A (en) * 1986-07-17 1987-12-01 Hancor, Inc. Septic tank for alternative sewer systems
US4726707A (en) * 1983-11-26 1988-02-23 Newton John R Composite article
US4822213A (en) * 1987-12-30 1989-04-18 Environment/One Corporation Narrow accessway sewage collection tank assembly, remote operated quick connect-disconnect coupling and system using the same
US4869033A (en) * 1986-10-30 1989-09-26 Compagnie D'enterprises Cfe Pressurized fluid storage tank
US4971477A (en) * 1988-12-22 1990-11-20 Total Containment, Inc. Secondary contained fluid supply system
US5147980A (en) * 1991-02-19 1992-09-15 Ferguson Jr Robert A Swimming pool flush mount junction box
US5263298A (en) * 1990-01-15 1993-11-23 Ballesteros Angel G Procedure for making in-situ manholes for underground electric and telephone lines ductwork
DE9402158U1 (en) * 1994-02-09 1994-03-24 Kabelmetal Electro Gmbh Underfloor housing for telecommunications equipment
ES2067374A2 (en) * 1992-11-11 1995-03-16 Rafibra S L Manhole cover
US5404676A (en) * 1993-04-19 1995-04-11 Dabico, Inc. Watertight pit cover
US5494374A (en) * 1992-03-27 1996-02-27 Youngs; Andrew Secondary containment flexible underground piping system
US5495695A (en) * 1993-01-21 1996-03-05 Dalworth Concrete Products, Inc. Vaulted underground storage tank
US5553971A (en) * 1988-12-20 1996-09-10 Intelpro Corporation Double-containment underground piping system
US5603401A (en) * 1995-09-29 1997-02-18 Brunner; Martin C. Storage apparatus
US5653559A (en) * 1994-02-09 1997-08-05 Kabelmetal Electro Gmbh Underground housing for telecommunication device
US5722204A (en) * 1995-02-22 1998-03-03 Alcatel Kabel Ag & Co. Device for housing the active and passive junction assemblies of telecommunications installations
US5735430A (en) * 1995-08-10 1998-04-07 Gorman; Dewitt Y. Underground storage container
US5778608A (en) * 1995-01-31 1998-07-14 Dalworth Concrete Products, Inc. Vaulted underground storage tank
US5865216A (en) * 1995-11-08 1999-02-02 Advanced Polymer Technology, Inc. System for housing secondarily contained flexible piping
US5956230A (en) * 1996-02-14 1999-09-21 Alcatel Alsthom Compagnie Generale D'electicite Device for housing the active and passive nodal point modules of telecommunication installations
US6050050A (en) * 1996-12-31 2000-04-18 Bp Amoco Corporation Form in-place submersible pump containment
US6061975A (en) * 1998-06-12 2000-05-16 Lucent Technologies, Inc. Telecommunications equipment enclosure system
US6202675B1 (en) 1998-05-18 2001-03-20 Robert A. Forte Lift station flood control system
US6634374B1 (en) * 2002-03-28 2003-10-21 Larry R. Kondas In ground hose well
US20070167074A1 (en) * 2003-04-02 2007-07-19 Palmer Ian J Connection system
US20100007153A1 (en) * 2003-02-01 2010-01-14 Aloys Wobben Method for the Erection of a Wind Energy Plant and Wind Energy Plant
US20110221614A1 (en) * 2010-03-11 2011-09-15 Khaled Jafar Al-Hasan Traffic Control System
US20140182226A1 (en) * 2012-12-31 2014-07-03 Anthony P. HABODASZ Modular cover for support column
USD736835S1 (en) * 2014-01-15 2015-08-18 Oldcastle Precast, Inc. Pump station base
USD736834S1 (en) * 2014-01-15 2015-08-18 Oldcastle Precast, Inc. Water pumping station
USD737333S1 (en) * 2014-01-15 2015-08-25 Oldcastle Precast, Inc. Valve housing
US9587392B2 (en) 2013-05-02 2017-03-07 Oldcastle Precast, Inc. Water pumping station with an integral valve vault
US9768592B2 (en) 2015-08-19 2017-09-19 Hubbell Incorporated Utility enclosure pedestal
USD815668S1 (en) 2016-10-25 2018-04-17 Oldcastle Precast, Inc. Precast valve housing
US10143298B2 (en) 2016-04-07 2018-12-04 Douglas Wood Modular structural support apparatus and method of constructing the same
US10256617B1 (en) * 2018-04-20 2019-04-09 Jdt Concepts Llc Handhole assembly
EP3739704A1 (en) * 2019-05-16 2020-11-18 Channell Commercial Corporation High security multi-tiered locking system for utility vaults
US20210384715A1 (en) * 2020-06-09 2021-12-09 Michael M. Bogart Utility junction box
US20220224095A1 (en) * 2021-01-13 2022-07-14 Sumitomo Wiring Systems, Ltd. Power distribution box with an engagement feature for overcoming a cantilevered force of a bend in a wire bundle

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB189609418A (en) * 1896-05-04 1896-11-21 Stephen Rowland Foreman A Combination Lock and Hasp for Fastening Hampers, Trunks, Boxes, and the like.
US574834A (en) * 1897-01-05 Air-box
US599441A (en) * 1898-02-22 Edgar s
US1165804A (en) * 1915-03-25 1915-12-28 Quigley Furnace And Foundry Co Manhole-cover fastening.
US1265767A (en) * 1917-02-07 1918-05-14 Calvin C Fouts Meter-box.
US1473001A (en) * 1921-07-01 1923-11-06 Armstrong & White Lock for switch safety boxes
US2163221A (en) * 1937-12-24 1939-06-20 American Telephone & Telegraph Manhole structure
CA616608A (en) * 1961-03-21 Lancaster Johnston Herbert Swimming pool construction and method
FR1363439A (en) * 1963-05-06 1964-06-12 Ingenjors N Orrje & Co Ab Fa building element
US3390224A (en) * 1966-09-28 1968-06-25 New England Realty Co Adjustable underground shell
US3508363A (en) * 1968-06-19 1970-04-28 Mc Graw Edison Co Tamper-proof locking assembly for underground electrical vaults
US3519726A (en) * 1968-11-06 1970-07-07 Youngstown Steel & Alloy Co Transformer vault for underground installation

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US574834A (en) * 1897-01-05 Air-box
US599441A (en) * 1898-02-22 Edgar s
CA616608A (en) * 1961-03-21 Lancaster Johnston Herbert Swimming pool construction and method
GB189609418A (en) * 1896-05-04 1896-11-21 Stephen Rowland Foreman A Combination Lock and Hasp for Fastening Hampers, Trunks, Boxes, and the like.
US1165804A (en) * 1915-03-25 1915-12-28 Quigley Furnace And Foundry Co Manhole-cover fastening.
US1265767A (en) * 1917-02-07 1918-05-14 Calvin C Fouts Meter-box.
US1473001A (en) * 1921-07-01 1923-11-06 Armstrong & White Lock for switch safety boxes
US2163221A (en) * 1937-12-24 1939-06-20 American Telephone & Telegraph Manhole structure
FR1363439A (en) * 1963-05-06 1964-06-12 Ingenjors N Orrje & Co Ab Fa building element
US3390224A (en) * 1966-09-28 1968-06-25 New England Realty Co Adjustable underground shell
US3508363A (en) * 1968-06-19 1970-04-28 Mc Graw Edison Co Tamper-proof locking assembly for underground electrical vaults
US3519726A (en) * 1968-11-06 1970-07-07 Youngstown Steel & Alloy Co Transformer vault for underground installation

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974599A (en) * 1971-12-08 1976-08-17 Indian Head Inc. Underground reinforced plastic enclosure
US3728464A (en) * 1972-04-17 1973-04-17 R Griffing Underground transformer enclosure, and method of installing the same
US3938285A (en) * 1973-01-10 1976-02-17 Owens-Corning Fiberglas Corporation Manhole and method of manufacture
US3968601A (en) * 1973-06-25 1976-07-13 Brown Clayton S Handhole to receive and locate connections of underground secondary electrical power cable terminations
US3930372A (en) * 1973-11-28 1976-01-06 Johns-Manville Corporation Method and arrangement for controlling the position of an underground manhole assembly
USRE29636E (en) * 1975-01-06 1978-05-23 Owens-Corning Fiberglas Corporation Manhole and method of manufacture
US4014475A (en) * 1976-01-30 1977-03-29 Environment/One Corporation Combined manway and collection tank for sewage grinder
US4089139A (en) * 1976-08-24 1978-05-16 Armco Steel Corporation Segmented cylindrical reinforced plastic manhole structure
US4158102A (en) * 1978-03-27 1979-06-12 Bright William L Enclosure for equipment
US4242847A (en) * 1978-12-27 1981-01-06 Universal Sanitary Equipment Manufacturing Co., Inc. Modular lift station construction
US4345998A (en) * 1979-07-05 1982-08-24 Graffis Kelly R Plastic catch basin
US4416836A (en) * 1981-12-03 1983-11-22 Kennecott Corp. Induced draft cooling tower
US4541209A (en) * 1983-08-15 1985-09-17 Jack E. Hoag Vault mount for electrical apparatus
US4632041A (en) * 1983-10-20 1986-12-30 Aktiebolaget Bofors Blasting chamber
US4726707A (en) * 1983-11-26 1988-02-23 Newton John R Composite article
US4662777A (en) * 1983-11-26 1987-05-05 Newton John R Composite article
US4709723A (en) * 1986-07-17 1987-12-01 Hancor, Inc. Septic tank for alternative sewer systems
US4869033A (en) * 1986-10-30 1989-09-26 Compagnie D'enterprises Cfe Pressurized fluid storage tank
US4822213A (en) * 1987-12-30 1989-04-18 Environment/One Corporation Narrow accessway sewage collection tank assembly, remote operated quick connect-disconnect coupling and system using the same
WO1989006298A1 (en) * 1987-12-30 1989-07-13 Environment/One Corporation Narrow accessway sewage collection tank assembly, remote operated quick connect-disconnect coupling and system using the same
US6116817A (en) * 1988-12-20 2000-09-12 Pisces By Opw, Inc. Hydrocarbon fuel piping system with a flexible inner pipe and an outer pipe
US5775842A (en) * 1988-12-20 1998-07-07 Pisces By Opw, Inc. Double containment under ground piping system
US5553971A (en) * 1988-12-20 1996-09-10 Intelpro Corporation Double-containment underground piping system
US4971477A (en) * 1988-12-22 1990-11-20 Total Containment, Inc. Secondary contained fluid supply system
US5263298A (en) * 1990-01-15 1993-11-23 Ballesteros Angel G Procedure for making in-situ manholes for underground electric and telephone lines ductwork
US5147980A (en) * 1991-02-19 1992-09-15 Ferguson Jr Robert A Swimming pool flush mount junction box
US5494374A (en) * 1992-03-27 1996-02-27 Youngs; Andrew Secondary containment flexible underground piping system
ES2067374A2 (en) * 1992-11-11 1995-03-16 Rafibra S L Manhole cover
US5495695A (en) * 1993-01-21 1996-03-05 Dalworth Concrete Products, Inc. Vaulted underground storage tank
US5404676A (en) * 1993-04-19 1995-04-11 Dabico, Inc. Watertight pit cover
USRE37114E1 (en) 1993-11-01 2001-03-27 Advanced Polymer Technology, Inc. Secondary containment flexible underground piping system
US5653559A (en) * 1994-02-09 1997-08-05 Kabelmetal Electro Gmbh Underground housing for telecommunication device
CN1080013C (en) * 1994-02-09 2002-02-27 电缆金属电气有限公司 Gehaeuse in unterflurausfuehrung fuer fernmelde-technische geraete
DE9402158U1 (en) * 1994-02-09 1994-03-24 Kabelmetal Electro Gmbh Underfloor housing for telecommunications equipment
US5778608A (en) * 1995-01-31 1998-07-14 Dalworth Concrete Products, Inc. Vaulted underground storage tank
US5722204A (en) * 1995-02-22 1998-03-03 Alcatel Kabel Ag & Co. Device for housing the active and passive junction assemblies of telecommunications installations
US5735430A (en) * 1995-08-10 1998-04-07 Gorman; Dewitt Y. Underground storage container
US5603401A (en) * 1995-09-29 1997-02-18 Brunner; Martin C. Storage apparatus
US5865216A (en) * 1995-11-08 1999-02-02 Advanced Polymer Technology, Inc. System for housing secondarily contained flexible piping
US5956230A (en) * 1996-02-14 1999-09-21 Alcatel Alsthom Compagnie Generale D'electicite Device for housing the active and passive nodal point modules of telecommunication installations
US6050050A (en) * 1996-12-31 2000-04-18 Bp Amoco Corporation Form in-place submersible pump containment
US6202675B1 (en) 1998-05-18 2001-03-20 Robert A. Forte Lift station flood control system
US6061975A (en) * 1998-06-12 2000-05-16 Lucent Technologies, Inc. Telecommunications equipment enclosure system
US6634374B1 (en) * 2002-03-28 2003-10-21 Larry R. Kondas In ground hose well
US8291646B2 (en) * 2003-02-01 2012-10-23 Aloys Wobben Wind power installation pylon interior
US20100007153A1 (en) * 2003-02-01 2010-01-14 Aloys Wobben Method for the Erection of a Wind Energy Plant and Wind Energy Plant
US20070167074A1 (en) * 2003-04-02 2007-07-19 Palmer Ian J Connection system
US20110221614A1 (en) * 2010-03-11 2011-09-15 Khaled Jafar Al-Hasan Traffic Control System
US8395530B2 (en) * 2010-03-11 2013-03-12 Khaled Jafar Al-Hasan Traffic control system
US20140182226A1 (en) * 2012-12-31 2014-07-03 Anthony P. HABODASZ Modular cover for support column
US20150345151A1 (en) * 2012-12-31 2015-12-03 Anthony P. HABODASZ Modular cover for support column
US9428918B2 (en) * 2012-12-31 2016-08-30 Anthony P. HABODASZ Modular cover for support column
US9140016B2 (en) * 2012-12-31 2015-09-22 Anthony P. HABODASZ Modular cover for support column
US9587392B2 (en) 2013-05-02 2017-03-07 Oldcastle Precast, Inc. Water pumping station with an integral valve vault
USD736835S1 (en) * 2014-01-15 2015-08-18 Oldcastle Precast, Inc. Pump station base
USD737333S1 (en) * 2014-01-15 2015-08-25 Oldcastle Precast, Inc. Valve housing
USD736834S1 (en) * 2014-01-15 2015-08-18 Oldcastle Precast, Inc. Water pumping station
US9768592B2 (en) 2015-08-19 2017-09-19 Hubbell Incorporated Utility enclosure pedestal
US10143298B2 (en) 2016-04-07 2018-12-04 Douglas Wood Modular structural support apparatus and method of constructing the same
USD815668S1 (en) 2016-10-25 2018-04-17 Oldcastle Precast, Inc. Precast valve housing
US10256617B1 (en) * 2018-04-20 2019-04-09 Jdt Concepts Llc Handhole assembly
EP3739704A1 (en) * 2019-05-16 2020-11-18 Channell Commercial Corporation High security multi-tiered locking system for utility vaults
US11486166B2 (en) 2019-05-16 2022-11-01 Channell Commercial Corporation High security multi-tiered locking system for utility vaults
US20210384715A1 (en) * 2020-06-09 2021-12-09 Michael M. Bogart Utility junction box
US20220224095A1 (en) * 2021-01-13 2022-07-14 Sumitomo Wiring Systems, Ltd. Power distribution box with an engagement feature for overcoming a cantilevered force of a bend in a wire bundle
US11942771B2 (en) * 2021-01-13 2024-03-26 Sumitomo Wiring Systems, Ltd. Power distribution box with an engagement feature for overcoming a cantilevered force of a bend in a wire bundle

Similar Documents

Publication Publication Date Title
US3672103A (en) Modular utility vault
US5522186A (en) Tree supported structure
US7851702B2 (en) Service cabinet for use with a utility pole
US4126972A (en) Tornado protection building
US4005253A (en) Grade-level enclosure for electrical apparatus
US6467233B1 (en) Wind tower
US3303264A (en) Dual service conduit and outlet system
CA2941969A1 (en) Anti-theft utility enclosure
DE3341500A1 (en) INSTALLATION CORE FOR A BUILDING
US10046905B2 (en) Intermodal container tank structure
US5460114A (en) Float for dock construction
SE424342B (en) SERVICE DEVICE, SEPARATELY FOR VESSELS AT A QUEEN
US6881899B1 (en) Pullbox assembly
US4470365A (en) Concrete marine float having utility distribution system
US871977A (en) Sectional vault.
US4548293A (en) Bin ladder construction
US2281967A (en) Wall construction
US20040188447A1 (en) Underground storage tank
GB2226352A (en) A modular protective structure for underwater installations
US3472272A (en) Railing
EP0219262B1 (en) Buildings for harsh environments
US871655A (en) Reinforced vault.
WO1998017872A1 (en) Multi-walled, sectional swimming pool fabricated of preformed plastic or resin
CA2047035A1 (en) Stepladder
DE3137167C2 (en)