Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3675640 A
Tipo de publicaciónConcesión
Fecha de publicación11 Jul 1972
Fecha de presentación9 Abr 1970
Fecha de prioridad9 Abr 1970
Número de publicaciónUS 3675640 A, US 3675640A, US-A-3675640, US3675640 A, US3675640A
InventoresGatts James D
Cesionario originalGatts J D
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Method and apparatus for dynamic health testing evaluation and treatment
US 3675640 A
Resumen
Method and apparatus for a dynamic health testing, evaluation and treatment comprising the recordation of test data from large numbers of individuals to establish dynamic physical performance norms for patients of many varied types. Historical data is taken from a patient which, in conjunction with a physical examination, is used to establish a specific theoretical dynamic physical performance norm for that particular patient and the recommended loading for the dynamic health testing machine. The patient is placed on the exercise machine which is under a programmed load based upon the basic data and numerous parameters of the patient's state of health are monitored under dynamic conditions. The monitored information is continuously fed back to correct the programmed load to protect the patient against overstress. The patient's performance is then compared with his own theoretical norm and treatment is recommended consistent with the patient's age and health which would lead toward the achievement of the dynamic physical performance norm.
Imágenes(3)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent Gatts 1 July 11, 1972 [72] Inventor: James D. Gatts, 4625 E. Louisiana, Apt.

20]. Denver, Colo. 80222 221 Filed: April 9,1970

2| Appl.No.: 26,817

Amer. Journ. of Med. Electronics, I964. Jan.- March. pp. 4|- 46. Surgery, Dec., I968, pp. l057- I070.

Primary Examiner-Kyle L. Howell AtmrneyPhillip L. De Arment and Gay Chin ABSTRACT Method and apparatus for a dynamic health testing. evaluation and treatment comprising the recordation of test data from large numbers of individuals to establish dynamic physical performance norms for patients of many varied types. Historical data is taken from a patient which. in conjunction with a physical examination. is used to establish a specific theoretical dynamic physical performance norm for that particular patient and the recommended loading for the dynamic health testing machine. The patient is placed on the exercise machine which is under a programmed load based upon the basic data and numerous parameters of the patient's state of health are monitored under dynamic conditions. The monitored information is continuously fed back to correct the programmed load to protect the patient against overstress. The patients performance is then compared with his own theoretical norm and treatment is recommended consistent with the patient's age and health which would lead toward the achievement of the dynamic physical performance norm.

1 1 Claims, 3 Drawing Figures PATENTEDJUL 1 1 I972 sum 1 OF 3 INVENTOR. JAMES D. 'GATTS ATTORNEY METHOD AND APPARATUS FOR DYNAMIC HEALTH TESTING EVALUATION AND TREATMENT This invention is directed to a method and apparatus for carrying out the method for establishing an accurate, standardized, dynamic, and repeatable health evaluation system which will diagnose, evaluate, and systematically program an individual from a condition of minimal to optimal physical performance reserve, excluding, of course, certain non-reversible cardiopulmonary pathologies.

At the present time there is nothing known to be available in the prior art in the form of either a standardized, dynamic health evaluation; dynamic physical performance rehabilitation program; or combination evaluation, reconditioning and post conditioning maintenance system. Static cardiac tests (EKG) have been shown to be essentially valueless for prognostic or corrective tests.

Heart disease is the number one medical problem as it is the leading cause of death in the United States with 54.3 percent of all deaths resulting from heart disease. Above the age of 45 years, heart disease claims lives by a two to one ratio over the next leading cause of death.

The primary object of the present invention is to provide a new and improved method and apparatus adapted to test for and establish levels of reversible cardiovascular and cardiopulmonary disease or cardiovascular deconditioning in various population segments and to develop and prescribe an optimum therapy program leading to a state of normal health.

A further important object of the invention is to provide a new and improved method and apparatus adapted to establish a unique and standardized nationwide source of dynamic physical performance data for cardiovascular and cardiopulmonary research.

ln accordance with the invention there is provided a novel method and means for carrying out the method, which method comprises the steps of establishing and recording basic patient data in the form of the significant parameters of cardiac, pulmonary, and physical characteristics for differing categories of patients and establishing a physical, cardiac, and pulmonary norm for each category; further, establishing and recording the significant cardiac, pulmonary and physical characteristics of a specific patient; comparing the significant cardiac, pulmonary, and physical characteristics of the patient with the norm for the category into which he fits to establish the amount of deviation from the norm; establishing a dynamic treatment program in accordance with such deviation, and modifying the dynamic treatment in accordance with the monitored data to provide an optimized level of reconditioning therapy to lead the patient to a normal state of health.

For a better understanding of the present invention, together with other and further objects thereof, reference is made to the following description taken in connection with the accompanying drawing and its scope will be pointed out in the appended claims.

In the drawings:

FIG. I is a perspective view of the apparatus according to the present invention in operation;

FIG. 2 is a block diagram of a computer program for carrying out the method of this invention; and

FIG. 3 is a block diagram of the complete dynamic health evaluation system according to the present invention.

The method and apparatus of this invention which shall be termed the dynamic health evaluation system It] and as preferred embodiment thereof disclosed in H6. 1 involves the unique combination ofseveral different systems. These are the static data input systems l2, the exercise systems 14, the body parameter measurement or sensor system l5, the central processor system l6, and the data output systems 18. The static data input system 12 comprises a typewriter, reader, and paper tape input device which are standard peripheral equipment of the PDP-l2 computer, more fully described below, and which receives patient data and physical examination data for input to the central processor. The exercise system 14 comprises a load device such as a treadmill, bicycle ergometer, or crank ergometer and provides a controlled and programmed load to the patient during the tirllfhe sensor data is being obtained. A suitable treadmill is known as model P-2000, manufactured by Warren E. Collins, Inc., 220 Wood Road, Raintree, Mass. The body parameter measurement system 15 obtains the dynamic body functions through sensors and pickups digital for input to the central processor system. The central processor or computer system 16 ich may be a model POP-l2 computer from Digital Equi t Corp., 146 Main Street, Maynard, Mass. includes analog to digital input converters, programmable output discretes, historical data storage, and the central processor. This system receives the static patient data, the dynamic body measurement data, population research data and the exercise load data, and computes, compares, and programs output data to the output data systems 18 which include the plotter, printout reader, exercise load setting device, and magnetic tape memory storage. A suitable plotter is manufactured by Houston C omplot. Houston Instruments Division of Bausch & Lomb in Bellair. Texas. The printout reader, exercise load setting device and magnetic tape memory storage are standard peripheral equipment of the PDP-l 2 computer, referred to above.

in carrying out the mefliod of this invention, the physiological monitoring parameters of primary importance to be measured by the body parameter measurement system 15 are believed to be heart rate and rhythm, blood pressure, ST segment of the electrocardiogram, oxygen consumption, CO production, and respiratory volume and rate. The system 15 may comprise an electrocardiograph such as model 337 available from the Birtcher Corporation, 437l Valley Blvd., Los Angeles, Calif. for taking an EKG and which supplies a signal to a heart rate meter such as model 760-20-12 l manufactured by the Sanborn Division of Hewlett Packard Co., Wyman Street, Wotham, Mass. Oxygen consumption may be measured by a model 778 Oxygen Process Analyzer from Beckman Instruments, lnc., 2500 Harbor Blvd, Fullerton, Calif. and CO production may be measured by a model 3 l 5 Infra Red CO analyzer from the same company. Blood pressure may be measured by a model 1900 London Pressurometer from the Avionics Research Products Corp., 690i West Imperial Hwy, Los Angeles, Calif. and the respiratory rate by a model 760-20-130 meter from the Sanborn Division of Hewlett Packard Co., 175 Wayman Street, Wotham, Mass. These measurement parameters are chosen because they are believed by leading cardiologists across the nation to be the best current indexes to cardiopulmonary function, and because they can be used with considerable reliability and without surgical insult to the patient. The measurements made are concerned with dynamic conditions, that is, it is the rate of change per unit time under dynamic patient conditions in each of the parameters stated that is considered significant.

The present invention takes all of these measurements and correlates, weighs and evaluates them and brings them into the deten'nination at the best possible time. For example, the change in heart rate may be the most important at the very beginning of the exercise program. The change in oxygen consumption may be more significant when it reaches the steady state after several minutes. Blood pressure is usually most important at the end of the test or during the recovery phase, and, of course, the ST segment depression of the EKG wave varies, but it generally increases in intensity as the exertional period continues in time or as it becomes more strenuous. When these curves are computed for their most significant values, that is, weighted and individually modified in accordance with the formulation during the respective signifcant portions of the exertional workout, a composite curve is produced, at the end of the test, which can be the most meaningful in evaluating the person's performance.

Preferably the exercise equipment comprises both a bicycle ergometer, a treadmill, and a crank ergometer so that essentially all people can be evaluated for cardiopulmonary conditioning regardless of any handicaps; thus ifa man cannot walk on a treadmill, he can stand and turn a crank or he can ride an ergometer. The input loading to the various exercise devices is a weighted and regulated workload regardless of which device is being used.

The processor of the system comprises a computer which is programmed to compare a given individual using the dynamic testing device, against a preestablished norm for a person of that type. The device establishes approximatelyhow a specific individual should perform if he were in good physical and cardiopulmonary health. This performance curve is accomplished by a comparison of the individuals data with clinical data stored in a memory bank that considers such important parameters as physical handicaps, known cardiac disease, age, weight, existing pathology of non-cardiac origin, and the like. The dynamic health evaluation (DHE) system establishes that if the pertinent information concerning a specific person is recorded and evaluated against sufficient known clinical dynamic performance data, it will show what that specific person's physical performance capacity should be. Subsequently, when the same patient goes through the actual dynamic testing process, he prints out his own personal curve of performance in the readout system. Simultaneously, the computer prints out a proposed curve of performance for that same individual as if he were in a normal state of health. The personal performance curve would be first of all, a series of curves representing approximately five or six specifically weighted physiological parameters such as, but not limited to heart rate and rhythm, blood pressure, ST segment of the EKG wave, oxygen consumption, carbon dioxide production, respiratory volume and rate. The computer would, in addition, combine this information into a single weighted performance summary curve for that patient. The purpose is to provide the dynamic health evaluation clinic physician or other physicians reviewing the patients condition complete information on what the person's performance was in each parameter. The individual himself would receive a copy of the summary curve of performance, so that he could compare himself against, not necessarily an olympic athlete, but rather a person just like himself, in a good state of health.

An additional function of the computer of the DHE clinic is to compare the two curves, that is the curve of the individuals own performance and the theoretical curve of a similar individual in optimum physical condition, and produce a recommended reconditioning level designed in terms of intensity, frequency, and duration to systematically program this patient to an optimum state of physical capacity that is consistent with his age and general health.

A simplified description of the computer operation follows. There are four separate inputs or signals to the computer. These are: (l) basic patient statistics, (2) nonnal population coefficients, (3) no-go limits and, (4) patient dynamic measurement parameters. The outputs or signals from the DHE system include: l point by point plot of each dynamic measurement parameter of the patient, (2) point by point plot of each dynamic measurement parameter corrected to provide a curve of the patient as if he were in normal cardiac health, (3) summary plot or curve combining all patient dynamic measurement parameters into a single curve utilizing previously established weighting factors, (4) summary plot or curve for patient in normal cardiopulmonary health, (5) plot of difference between patient summary curve (3 above) and ideal summary curve (4 above), (6) programmed load for a load device such as a treadmill, and (7) printout of optimum reconditioning level and schedule to minimize variation in (5).

Reference is now made to FIG. 2 which shows a simplified block diagram ofthe intelligence flow of the system. The basic patient statistics are collected and data introduced as at 20. These include the significant history and physical examination data. Based upon this actual patient historical and physical examination data normal curves which are generally representative of this patient for each significant parameter such as heart rate; oxygen consumption; blood pressure; and the like are withdrawn from research data as at 22. These normal Curves are derived from past research test data which is used to generate an equation of the curve. The equation for these parameters in terms of height above a coordinate axis and time can be expressed by the following equation:

B=a t'+ar!+a,r+....a,,t" (I Where:

B= functions of the significant patient parameters a coefficients which are a function of the basic patient statistics and research statistics n indication of the complexity of the curve r elapsed time from start of the test The alphas are developed from research data and are continually updated as more data is accumulated.

in addition, dynamic physical data will be obtained from the patient during the test for each significant parameter such as heart rate; oxygen consumption; blood pressure; and the like as at 28 and will generate a curve of actual values versus time. This results in two curves as at 34 for each of the significant parameters; one curve the patient has exhibited during the test and one nominal curve from research data. These curves are constructed on the same time base and are plotted during the test for comparison purposes.

All of the significant parameters can be combined into one performance summary curve. The value of performance at a particular time in the test is determined by equation of the form of equation 2. The usage of equation 2 is similar in that two curves are constructed from its results; one curve based on the data exhibited by the patient during the test and one nominal curve:

Where:

Y= perfon'nance summary value B functions of the significant patient parameters from equation 1 or actual patient test data C weighting factors based on the relative importance of the betas with time The weighting factors C are determined from accumulated research data and stored as at 22 to solve equation 2 as at 32.

The initial treadmill setting is determined from basic patient statistics and research data as at 24.

As the test is started, values for all of the significant patient parameters are obtained from the sensors as at 26 and fed to 28 as the first data point. This first data is associated with a time such as the time of start of the test. The time of all other data points is measured from this point. This point is used in equation 1 to obtain the ideal value for the patient parameter as at 30. This process is simultaneously repeated for ail of the significant patient parameters. All of these ideal values for patient parameters are used along with their associated time in equation 2 to obtain a point on the normal ideal summary curve as at 32. All of the actual readings of the patient parameters obtained from the treadmill and sensors are used in equation 2 to obtain a summary dynamic patient curve as at 34. The ideal composite curve and the dynamic patient curve are compared as at 32 and a difference output obtained and plotted at 34. This difference is an indication of how far the patient deviates from the ideal value. It is recorded as at 36 and may be used to revise the treadmill setting as at 38.

At the end of this process, for each data point, the following parameters may be plotted on the plotter versus time as at 34: results of test data for patient parameters; results of equation 1 for ideal parameters; results of equation 2 for patient parameters; results of or for ideal parameters; and difierential values. The differential values are also plotted versus time and can be used to prescribe treatment for the patient, since it is an indi cation of the patient's deviation from the ideal which represents that necessary to bring the patient to an optimal state of health attainable for him. The patient data value, its associated time and the treadmill setting are compared to a memory as at 29 for each data point. The current treadmill setting may be altered as at 38 as the data points are produced whenever the patients data value from the treadmill and sensors exceeds or approximates a value stored in the memory which would be dangerous for the health of the particular patientv The next data point is obtained from the sensors and the loop is repeated from the point at which the data point is associated with a time value. Th us at any time during the dynamic test, if a demand is made upon the patient which is in excess or approaching an excessive demand. the data from the sensors by comparison with a value stored in the memory, will reprogram the treadmill to a less severe program to protect the patient.

The system of this invention may be used as a research tool, whereby data from many many patients would be made available through a computer system to do various research projects on the development and progression of cardiovascular disease. Thus, the dynamic health evaluation system concept would establish a standardized dynamic testing and evaluating system which could be used throughout the nation.

The specific parameters measured by the system may vary with experience but would appear at the present time to include:

Heart Rate: The rate of change of heart rate per unit time and intensity of physical exertion is a sensitive and fundamental indicator of cardiac function. It is also currently one of the most dependable and convenient method of limiting physical overstress potential in normally functioning hearts; thus to say an individual will work or exert himself up to a given heart rate level is a recognized and quite standard limit establishing approach. There are acceptable maximum heart rate levels established and there is a considerable amount of work available on heart rate as an index to cardiac perfonnance.

Blood Pressure: The rate of change of blood pressure per unit time and intensity of physical exertion may be used as an indirect indicator of compliance of the cardiovascular system; the systolic pressure curve may furnish information on the force and time of ventricular contraction. Blood pressure is important because it gives information relating to the circulatory systems general capacity to adapt to an increased movement or pressure of blood. If the diastolic blood pressure elevates with exercise, the patient may be in the hypertensive or the pre-hypertensive category. If the blood pressure goes down or stays the same, the individuals blood pressure response is probably normal. The blood pressure pulse wave may offer information on the general cardiovascular condition relative to the development of atherosclerosis.

ST segment of the electrocardiagram: A bipolar transthoracic lead EKG offers an option to monitor changes in the ST segment of the EKG wave. This segment follows the ventricular contraction or the ORS complex and is considered to be the ventricular repolarization or recovery wave. A good deal of research on this subject has shown that the ST segment is probably associated with cardiac ischemia or a lack of proper oxygenation due to compromised coronary circulation. Some physicians believe that the level of depression of ST segment with exercise even indicates in a quantitative manner the amount of circulatory embarrassment or diminution of perfusion of the cardiac muscle with exercise. It also is an important diagnostic factor in that it gives a good indication of what the patient is experiencing at any time he may complain of chest pain or other discomfort related to cardiopulmonary function. In addition, the EKG wave will furnish cardiac rhythm or evidence of abnormal contractions and rhythms.

0,, Consumption: Changes in the rate ofO consumption are an indirect measurement of changes in the rate of metabolism. Maximum 0 consumption may be used as an indication of physiological performance capacity, or aerobic energy output. Oxygen is consumed in metabolism, and if the person's skeletal muscle mass is known, the oxygen uptake may give an idea of how efficiently the muscle mass is functioning. When large muscle groups are involved, oxygen consumption becomes a valid index to a person's ability to perform physically or his aerobic motor power. There may be a necessity for a correction for pulmonary function in that a person may have sufficient metabolic capacity but have deficient pulmonary or ventilatory capacity.

CO Production: CO production is an additional indirect indicator of metabolism. The CO, produced is a waste product. A measure of the performance of an engine can be made by the amount of air it takes in, or by the amount and type of air or exhaust that it puts out. One can calculate a respiratory coefficient or an exchange ratifif the amount of CO, produced related to the amount of oxygen taken in. This measurement offers an index to the efficiency of the skeletal muscle and its output capacity. It is also a good index to the condition of the cardiopulmonary complex, that is. the capacity of the blood to circulate oxygen and thflespiratory membrane to exchange oxygen and carbon dioxide.

Respiratory Volume/Min: The mechanical capacity of the pulmonary system to furnish 0, can be the limiting factor in establishing physical capacity. Its evaluation adds to the performance profile. This measurement is used mainly in combination with the others to establish the mechanical capacity of the chest, lungs, trachea, the air distribution system to the respiratory membrane. That is, how well is the person getting air or oxygen to the respiratory membrane and how well is he moving away carbon dioxide.

The dynamic health evaluation system is designed in such a manner that the physical monitoring parameters can be changed or modified as additional research data becomes available. For example cardiac output, oxygen saturation in mixed venous blood, systolic ejection time, and others could be included or replace existing parameters as technical progress allows more efficient and reliable sensing devices.

Typical Operational Procedure of Dynamic Health Evaluation System: To further clarify the function of the DHE, an imaginary patient will be taken through the system as illustrated by FIG. 3. As the patient enters the clinic at an appointed time, he will first go through the pretest history to develop the static data as at 40 to be inserted into the central processor or computer 44. The patients health history is obtained by a technician and an automated electronic questioning system as at 4]. The questions would be related to five main categories. The first would be cardiovascular disease. The intention would be to establish any existing disease or part disease that could limit or affect current dynamic cardiovascular performance capacity. It would also eliminate past diseases that are not pertinent to current performance capacity and help to establish a safe exertional limitation. The second category would be the pulmonary disease area. Here again, the intention would be to establish any existing or past disease which would compromise the pulmonary system and therefore compromise the capacity of the individual for physical work. In this area, physical activity, diet, weight, geographical location, a smoking or air pollution history, etc., could be considered in conjunction with cardiopulmonary conditions as parameters in a variety of research programs. The third category is physical impairment. Such things as arthritis, old leg or back injuries could alter a person's ability to perform and thus influence his physical output capacity. This category of the history would attempt to establish existing and past disease, or injury that might effect the individual performance. The other thing it would do is to establish the best type of exercise system for a particular patient such as a bicycle ergometer, treadmill or a crank ergometer. The fourth category of the history would be physical activity. This would allow the computer to know the type and intensity of exercise to which the individual is normally accustomed.

Such information would help to determine the most appropriate exercising device and also provide data for the level of testing intensity to employ. The last category would be general health area. This again would attempt to establish past or present disease, conditions of metabolism, circulation, CNS (central nervous system) function, etc., which might currently limit the persons exertional capacity.

The questions are asked and the answers provided in a coded form so that a digital type output can be placed into the central processor or computer 44 which will in part prepro gram the level and type of exercise to be used. The patient next experiences the physical examination as at 42. This is at least a partially automated system which measures the person's body weight, his height, etc., which goes into a digitized form to be used directly by the computer 44. The body type such as endomorph, mesomorph, ectomorph; the per cent overweight or underweight; body temperature; the resting blood pressure; resting pulse rate rhythm from resting EKG derived from the pretest resting state are also programmed in. Secondarily, there would be included some pulmonary measurements such as vital capacity, expiration time, maximum breathing capacity, and a further point is to physically examine any areas of real or suspected physical conditions relative to exertional capacity which were uncovered during the history taking session. At this point, the individual steps into the exercising area or room. He then has the various dynamic body sensors 46 applied, such as transthoracie cardiac electrodes placed on his chest, a blood pressure cuff or other blood pressure device attached, the oxygen consumption and CO, production mask (or tube) put in place, and respiratory volume rate sensors activated. There is first a pretest resting state (see above), the individual simply sitting or standing, then he is subjected to a pre-programmed exertional or exercise test on the exercise machine 48. This test will vary widely, depending on the history and physical examination data fed into the computer 44. The computer 44 then supplies updated data to the storage 50 of the clinic records relative to this par ticular patient and this data is also accumulated in the storage 52 of the research program which generates a normal popula' tion storage 54. The data from the normal population storage is fed back into the computer 44 to continuously nonnalize the comparative data. The data from the patient is compared with the normalized data by the computer and performance curves are plotted for the normal patient and the actual patient by plotter 56. These curves are compared by computer 44 and the curves as well as the differences are presented by plotter S6 and printer 60. As is necessary, the exercise test will run from 6 to ID minutes programmed at different levels ofintensity, resting periods, and so on. At the end of the test, there is a cool-off or recovery period during which parametric information would continue into the computer. With its preload of history and physical information, the computer writes out for this individual a theoretical optimum cardiac performance curve, that is, a cardiac performance curve based on testing thousands of people and knowing what the level should be for a person just like the individual being tested in an optimal state of health. The computer figures all of the patient's handicaps, and of course, his non-handicaps and establishes how he should perform. At the same time, he is writing an actual performance curve from his own exertional output. It will be noted that there is a feedback from the computer 44 directly to the exercise machine 48 via 47 by which the exercise machine is adapted to be reprogrammed to a different level of stress at any time the sensors 46 detect a condition being approached which the computer recognizes as being detrimental to the health of the patient being exercised. The computer compares the exertional output in terms of individual parameters and also in terms of a summary cardiac curve. At the end of the dynamic performance test, the system prints the readouts as at 60 which are then available to the physician. The readouts include separate written curves, summary curves, and also an optimum reconditioning program with which the physician may counsel the patient for implementation and return visits.

The dynamic health evaluation system of this invention is believed to be the only such system available that can safely and accurately establish a patient's level of dynamic performance capacity or cardiopulmonary health and evaluate changes in functional capacity. It is further believed the performance levels will become accurately prognostic in the event of unaltered progress of trends in dynamic cardiopulmo nary performance curves. The computer will also supply performance information to a paper punched tape writer 62. This information is thus available for feeding into computer 44 on a return visit of the patient and is also fed to readout 60 to be available for comparison with newly developed data. Thus it is seen that all ofthe objects ofthe invention are accomplished.

What is claimed is:

1. Apparatus for use in dynamic health testing, evaluation and treatment of a medical patient, said apparatus comprising:

an exerciser means programmable to provide a selected load to cause a patient to exercise a predetermined amount;

sensing means connectable to the patient to sense at least one body function parameter of the patient while exercising for providing first output signals as a function of the amount of exercise undertaken by the patient; an information storage means for providing second output signals from information stored therein indicative of the same body function parameters of at least one healthy human body when undergoing the same exercise;

comparison means for comparing said first and second output signals and providing an output indicative of any variation therebetween;

means for programming said exerciser in response to said second output signals; and

means for modifying said exerciser program in response to said first output signals. 2. Apparatus, as claimed in claim I, wherein said sensing means senses a plurality of body function parameters and said information storage means includes means for providing second output signals indicative of a corresponding plurality of body function parameters derived from a composite of healthy human bodies when undergoing the same exercise, said information storage means further comprising: means for storing data from said sensing means; first means responsive to the information stored on healthy human bodies to provide output signals for generating individual performance curves for each body function parameter being measured and for generating a summary curve of all body function parameters being measured for the patient if he were in a normal state of health; second means responsive to the data stored from the sensing means to provide output signals for generating individual performance curves for each actual body function parameter of the patient being measured and for gene rating a summary curve of all actual body function parame ters being measured; and third means responsive to output signals from said first and second responsive means to provide output signals for generating curves representative of the variance between the individual curves generated by the output of said first responsive means and the individual curves generated by the output of said second responsive means and representative of the variance between the summary curve generated by the output of said first responsive means and the summary curve generated by said second responsive means, respectively; said comparison means further including:

plotting means for plotting said curves in response to said outputs of said first, second and third responsive means respectively.

3. Apparatus, as claimed in claim 1, further including:

means for updating the information in said information storage device as more data is developed.

4. A dynamic testing, evaluation and treatment method for determining the state of health of the body of a medical patient, said method comprising the steps of:

exercising the patient using an automatic processor controlled exercising means;

measuring at least one of the significant health parameters ofthe patients body while it is being exercised;

obtaining at least one of the same significant health parameters from a human body of the same characteristics while doing the same exercise and known to be in a good state of health;

feeding the above measured and obtained parameters to automatic processor means to compare the measured health parameters with the same parameters of the healthy human body; and

automatically compiling data in said processor means representative of any variation of the measured health parameters of the patient from the same parameters obtained from a human body of the same characteristics and known to be in a good state of health.

5. The method, as claimed in claim 4, including the further step of:

developing a therapy program for the patient based on the data representative of any variation which program is designed to rehabilitate the body of the patient under test to a more optimum state of health.

6. The method, as claimed in claim 4, including the further step of:

compiling data representative of the maximum rate of change of each measured parameter which the body under test may be subjected without physical danger from the significant health parameters of the human body of the same characteristics and known to be in a good state of health; and

modifying the patients exercise rate in response to any measured significant parameters undergoing a rate of change greater than the predetermined rate of change during the testing.

7. The method, as claimed in claim 4, wherein:

said measuring step, said obtaining step and said comparing step include measuring, obtaining and comparing a plurality of significant health parameters.

8. A dynamic testing, evaluation, and treatment method for the purpose of determining the state of health of a human body of a medical patient, said method comprising the steps of:

exercising the patient using an automatic processor controlled exercising means;

measuring the rate of change of at least one of the significant health parameters of the patient's body while it is being exercised;

obtaining at least one of the same significant health parameters from a human body of the same characteristics while doing the same exercise and known to be in a good state of health;

feeding the above measured and obtainfvarameters to autornatic processor means to compar the rate of change of the measured health parameters with the rate of change of the same parameters of the healthy human body; and

automatically compiling data in said processor means representative of any variation of the rate of change of the measured health parameters from the rate of change of the same parameters obtained from a human body of the same characteristics and known to be in a good state of health.

9. The method, as claimed in claim 8, including the further step of:

developing a therapy program for the patient based on the data representative of any variation of the rate of change designed to rehabilitate the body of the patient under test of a more optimum state of health.

10. The method, as claimed in claim 8, further including the steps of:

compiling data representative of the maximum rate of change of each measured parameter which the body under test may be submitted without physical danger from the significant health parameters of the human body of the same characteristics and known to be in a good state of health; and

modifying the patient's exercise rate in response to any measured significant parameters undergoing a rate of change greater than the predetermined rate of change during the testing.

H. The method, as claimed in claim 8, wherein:

said measuring step, said obtaining step and said comparing step include measuring, obtaining and comparing a plurality of significant l'lealth parame ters.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3057201 *27 Mar 19599 Oct 1962Jaeger ErichErgometer
US3395698 *1 Oct 19656 Ago 1968Mc Donnell Douglas CorpPhysiologically paced ergomeric system
US3505992 *24 Nov 196514 Abr 1970Erich JaegerErgometer
US3518985 *15 Feb 19687 Jul 1970Quinton Wayne EControl system for an exercise machine using patient's heart rate and heart rate acceleration
Otras citas
Referencia
1 *Amer. Journ. of Med. Electronics, 1964, Jan. March, pp. 41 46.
2 *Surgery, Dec., 1968, pp. 1057 1070.
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3830228 *12 Jun 197220 Ago 1974M FonerBiophysiological information processing device
US3841309 *28 Feb 197315 Oct 1974Salter AMethod of analyzing cerebral electrical activity
US3940742 *6 Ago 197324 Feb 1976Medical Monitor Systems, Inc.Data acquisition, storage and display system
US3970996 *7 Ene 197420 Jul 1976Perfect LibertyApparatus for collecting medical data
US4105021 *13 Ago 19768 Ago 1978Joseph H. AllenMethod and arrangement for measuring blood pressure
US4112928 *8 Sep 197612 Sep 1978Keiper Trainingsysteme Gmbh & Co.Ergometer
US4202350 *15 May 197813 May 1980Walton Charles ADevice for measuring pulse, breathing and running rate for joggers
US4278095 *5 Jun 197914 Jul 1981Lapeyre Pierre AExercise monitor system and method
US4299235 *21 Sep 197910 Nov 1981Cohen Leonard AMethod and apparatus for measuring cost of physical activity
US4323237 *30 Ago 19796 Abr 1982Coats And Clark, Inc.Adaptive exercise apparatus
US4343315 *20 Jun 198010 Ago 1982Grey-Mac Fitness, Ltd.Method of and apparatus for measuring the physical condition of a person
US4367752 *30 Abr 198011 Ene 1983Biotechnology, Inc.Apparatus for testing physical condition of a subject
US4416293 *19 Mar 198122 Nov 1983Anderson Blair VMethod and apparatus for recording gait analysis in podiatric diagnosis and treatment
US4465077 *12 Nov 198114 Ago 1984Howard SchneiderApparatus and method of determining fertility status
US4598700 *8 Feb 19858 Jul 1986Tamm Ulf SApparatus for measuring pulse rate and pulmonary volume
US4632123 *10 May 198430 Dic 1986Baird CorporationRadioactivity detection system
US4679566 *24 Mar 198614 Jul 1987Tamm Ulf SApparatus for measuring pulse rate, vital capacity and pulmonary peak flow
US4708337 *26 Dic 198524 Nov 1987Industrial Technology Research InstituteAutomatic treadmill
US4735410 *12 Ago 19875 Abr 1988Mizuno CorporationRowing machine
US4817940 *4 Abr 19864 Abr 1989Fike CorporationComputerized exercise monitoring system and method for comparing present and past exercise activities
US4828257 *3 Feb 19889 May 1989Powercise International CorporationElectronically controlled exercise system
US4842266 *27 Ago 198627 Jun 1989Sweeney Sr James SPhysical exercise apparatus having motivational display
US4860763 *29 Jul 198729 Ago 1989Schminke Kevin LCardiovascular conditioning and therapeutic system
US4883063 *13 Abr 198928 Nov 1989Electric Power Research Institute, Inc.Personal monitor and process for heat and work stress
US4898182 *4 Feb 19886 Feb 1990Brian HawkinsApparatus for evaluating heart fitness
US4930518 *26 Sep 19885 Jun 1990Hrushesky William J MSinus arrhythmia monitor
US4930519 *9 Sep 19855 Jun 1990Medical Graphics CorporationMethod of graphing cardiopulmonary data
US4933873 *2 Jun 198812 Jun 1990Healthtech Services Corp.Interactive patient assistance device
US4981136 *14 Mar 19891 Ene 1991Performance Predictions, Inc.Nuclear magnetic resonance apparatus for evaluating muscle efficiency and maximum power of muscle of a living animal
US5007430 *5 Nov 198616 Abr 1991Dardik Irving IRhythmic biofeedback technique
US5036856 *19 Jul 19906 Ago 1991Thornton William ECardiovascular monitoring system
US5078152 *25 Dic 19887 Ene 1992Loredan Biomedical, Inc.Method for diagnosis and/or training of proprioceptor feedback capabilities in a muscle and joint system of a human patient
US5142484 *19 Dic 198925 Ago 1992Health Tech Services CorporationAn interactive patient assistance device for storing and dispensing prescribed medication and physical device
US5209240 *20 Feb 199111 May 1993Baltimore Therapeutic Co.Device for inducing and registering imbalance
US5355893 *13 Sep 199318 Oct 1994Mick Peter RVital signs monitor
US5362069 *3 Dic 19928 Nov 1994Heartbeat CorporationCombination exercise device/video game
US5400792 *13 Jul 199428 Mar 1995Siemens AktiengesellschaftMedical diagnostics installation controllable from a central work station
US5435315 *28 Ene 199425 Jul 1995Mcphee; Ron J.Physical fitness evalution system
US5442728 *22 Sep 199315 Ago 1995Healthtech Services Corp.Interactive patient assistance device for storing and dispensing a testing device
US5615685 *22 May 19951 Abr 1997Casio Computer Co., Ltd.Personal physical fitness measuring apparatus
US5655997 *7 Jul 199412 Ago 1997Integrated Fitness CorporationFitness feedback system for weight stack machines
US5730145 *23 Dic 199324 Mar 1998Defares; Peter BernardInteractive respiratory regulator
US5738612 *4 Dic 199614 Abr 1998Colin CorporationExercise apparatus having exercise-load changing function
US5785631 *31 Oct 199428 Jul 1998W.A.Y.S.S. Inc.Exercise device
US5785632 *7 Mar 199728 Jul 1998Integrated Fitness CorporationFitness feedback system for weight stack machines
US5868135 *5 Ago 19969 Feb 1999Healthtech Service CorporationInteractive patient assistance device for storing and dispensing a testing device
US5890996 *30 May 19966 Abr 1999Interactive Performance Monitoring, Inc.Exerciser and physical performance monitoring system
US5906581 *19 Dic 199625 May 1999Colin CorporationApparatus for evaluating exercise function of person
US5980464 *16 Nov 19989 Nov 1999Colin CorporationApparatus for evaluating exercise function of person
US6299581 *10 May 19969 Oct 2001New York UniversityMethod and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea
US644390416 Mar 20013 Sep 2002Polar Electro OyDetermination of stress level of fitness exercise
US654068715 Dic 20001 Abr 2003Pulse Metric, IncMethod for diagnosing, monitoring and treating hypertension and other cardiac problems
US66268456 Abr 200130 Sep 2003New York Medical CollegeMethod and apparatus for measurement of in vivo air volumes
US670599025 Jul 200016 Mar 2004Tensys Medical, Inc.Method and apparatus for monitoring physiologic parameters of a living subject
US694591112 Jul 200120 Sep 2005Edward, LlcSystem and method for prescribing a fitness program
US701317521 May 200214 Mar 2006Lifewaves International, Inc.Systems and methods for assessing and modifying an individual's physiological condition
US705467821 May 200230 May 2006Lifewaves International, Inc.Systems and methods for assessing and modifying an individual's physiological condition
US715195921 May 200219 Dic 2006Lifewaves International, Inc.Systems and methods for assessing and modifying an individual's physiological condition
US7192359 *18 Jul 200020 Mar 2007Aimon AbSystem, computer program product and method for recording and analyzing performance data
US722816821 May 20025 Jun 2007Lifewaves International, Inc.Systems and methods for assessing and modifying an individual's physiological condition
US733841023 Dic 20034 Mar 2008Lifewaves International Inc.Systems and methods for breathing exercise regimens to promote ischemic preconditioning
US7338447 *5 May 20034 Mar 2008Uscom Pty LtdBlood flow oxygen measurement system and method
US763076626 Jun 20038 Dic 2009Uscom LimitedExercise responsive pacemaker tuning method using Doppler blood flow measurements to adjust pacing for optimized flow
US7780573 *31 Ene 200724 Ago 2010Carmein David E EOmni-directional treadmill with applications
US778983521 Ene 20047 Sep 2010Uscom LimitedMethods and systems for determining cardiac output based on a valve cross sectional area estimate
US790136118 Abr 20068 Mar 2011New York UniversityMethod and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea
US79469947 Oct 200424 May 2011Tensys Medical, Inc.Compact apparatus and methods for non-invasively measuring hemodynamic parameters
US799255721 Abr 20089 Ago 2011Covidien AgGas supply device for sleep apnea
US800147227 Mar 200716 Ago 2011Apple Inc.Systems and methods for providing audio and visual cues via a portable electronic device
US8235724 *27 Mar 20077 Ago 2012Apple Inc.Dynamically adaptive scheduling system
US830260230 Sep 20086 Nov 2012Nellcor Puritan Bennett LlcBreathing assistance system with multiple pressure sensors
US8328693 *26 Dic 200711 Dic 2012Sato Sports Plaza Co., Ltd.Compression training apparatus, compression training system and method of control
US842922327 Mar 200723 Abr 2013Apple Inc.Systems and methods for facilitating group activities
US857320616 Jun 20085 Nov 2013Covidien LpPressure-controlled breathing aid
US86472408 Oct 201011 Feb 2014Innovative Applications, Inc.Exercise device
US874549627 Mar 20073 Jun 2014Apple Inc.Variable I/O interface for portable media device
US8771186 *17 May 20118 Jul 2014Welch Allyn, Inc.Device configuration for supporting a patient oxygenation test
US20120065988 *10 Oct 201115 Mar 2012Thomas LoserMethods for making complex therapeutic clinical decisions
US20120296183 *17 May 201122 Nov 2012Welch Allyn, Inc.Device configuration for supporting a patient oxygenation test
USRE34728 *24 Nov 199213 Sep 1994Heartbeat Corp.Video game difficulty level adjuster dependent upon player's aerobic activity level during exercise
USRE3874915 Sep 200028 Jun 2005Lifewaves International, Inc.Chronotherapy exercise technique
USRE4040117 May 200024 Jun 2008Lifewaves International, Inc.Therapeutic exercise program
DE102007054944A1 *17 Nov 200720 May 2009Graf, FriedrichComputer-aided game or simulation application i.e. computer-based flight simulator, controlling method for bicycle-ergometer, involves adjusting kinematics/mechanical state variable to individual physiological performance level of training
DE102007054944B4 *17 Nov 200714 Nov 2013Friedrich GrafVerfahren zur leistungsabhängigen Steuerung einer computergestützten Spiele- oder Simulationsapplikation
EP0028209A1 *13 Oct 19806 May 1981Emil Frank SmidakA device designed to stimulate exercise by the individual
EP0083847A2 *7 Dic 198220 Jul 1983HRH INDUSTRIES & TRADING LIMITEDRespirator for animals associated with analysing means
EP0153741A2 *27 Feb 19854 Sep 1985Giuseppe TorresinApparatus for the analysis of the cardiorespiratory function at rest as well as during exercise
EP0176277A2 *10 Sep 19852 Abr 1986Kabushiki Kaisha Silver MedicalOptimum exercise loading apparatus
EP0289938A1 *28 Abr 19889 Nov 1988Wilfried HammHome trainer control system
EP0688533A1 *26 May 199527 Dic 1995Casio Computer Co., Ltd.Device for measuring physiological data during exercise
EP1978497A1 *5 Abr 20078 Oct 2008Philips Electronics N.V.Method and system for providing an exercise goal
WO1985000279A1 *30 Jun 198331 Ene 1985Stanford Res Inst IntMethod and apparatus for diagnosis of coronary artery disease
WO1990012538A1 *24 Abr 19891 Nov 1990Robert C ReiboldUniversal fitness testing system
WO1995022929A1 *27 Feb 199531 Ago 1995Heiner StegmannDetermination of the individual anaerobic threshold
WO1997013456A1 *9 Oct 199617 Abr 1997Durand Assignees LtdFitness testing apparatus
WO2001070345A124 Mar 200027 Sep 2001Gyoergy MezeyArrangement and procedure for testing and improving the physical condition and technical skill of sportsmen
WO2002007594A1 *20 Jul 200131 Ene 2002Tensys Medical IncMethod and apparatus for monitoring physiologic parameters of a living subject
WO2002062211A2 *6 Feb 200215 Ago 2002Cardionetics LtdMethod and apparatus for generating a physical exercise program
WO2008122910A1 *31 Mar 200816 Oct 2008Koninkl Philips Electronics NvMethod and system for providing an exercise goal
WO2012047298A16 Oct 201112 Abr 2012Steven HeideckeExercise device
Clasificaciones
Clasificación de EE.UU.600/484, D24/167, 482/4
Clasificación internacionalA61B5/0205, A61B5/04, A61B5/08, A61B5/083, A61B5/22
Clasificación cooperativaA61B5/0205, A61B5/083, A61B5/04012, A61B5/222
Clasificación europeaA61B5/22B2, A61B5/0205, A61B5/083, A61B5/04R