US3676923A - Methods of producing solenoid array memories - Google Patents

Methods of producing solenoid array memories Download PDF

Info

Publication number
US3676923A
US3676923A US19569A US3676923DA US3676923A US 3676923 A US3676923 A US 3676923A US 19569 A US19569 A US 19569A US 3676923D A US3676923D A US 3676923DA US 3676923 A US3676923 A US 3676923A
Authority
US
United States
Prior art keywords
conductors
fabric
solenoid
array
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US19569A
Inventor
William A Reimer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AG Communication Systems Corp
Original Assignee
GTE Automatic Electric Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Automatic Electric Laboratories Inc filed Critical GTE Automatic Electric Laboratories Inc
Application granted granted Critical
Publication of US3676923A publication Critical patent/US3676923A/en
Assigned to AG COMMUNICATION SYSTEMS CORPORATION, 2500 W. UTOPIA RD., PHOENIX, AZ 85027, A DE CORP. reassignment AG COMMUNICATION SYSTEMS CORPORATION, 2500 W. UTOPIA RD., PHOENIX, AZ 85027, A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GTE COMMUNICATION SYSTEMS CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/02Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using magnetic or inductive elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49069Data storage inductor or core

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Woven Fabrics (AREA)

Abstract

Read only data planes for use with solenoid array memories are woven by processes which employ weaving conductive and nonconductive strands of material as both the warp and the woof (filler) of a fabric. The data planes take two basic forms, one being a woven mat of substantially the same length and width dimensions of its associated memory stack, and another being in the form of a strip which may be folded back and forth, the folded sections being co-extensive to form the data plane. Coding is effected by interrupted and/or connecting selected conductors.

Description

United States Patent Reimer 1 July 18, 1972 1 METHODS OF PRODUCING SOLENOID ARRAY MEMORIES [72] lnventor: William A. Relmer, Wheaton, Ill.
[73] Assignee: GTE Automatic fleet-1e Laboratories incorponted, Northlake, 1]].
221 Filed: March 16, 1970 21 Appl. No.: 19,569
Related u.s. Application um [62] Division of Ser. No. 735,319, June 7, 1968, Pat. No.
[52] US. Cl. ..29/604, 174/117 F, 340/174 WC, 340/ l 74 MA [51 Int. Cl. ..H01|7/06 [S8] FleldolSearch ..29/604, 624, 625; 340/174 WC, 340/174 MA;174/117,117.1
[56] References Cited UNITED STATES PATENTS 3,234,529 2/1966 Hsueh ct a1 ..340/l74 WC 3,378,629 4/1968 Rask ..29/604 UX 3,414,666 12/1968 Doundoulakis et al. ..........29/604 UX FOREIGN PATENTS OR APPLICATIONS 1,346,121 11/1963 France ..I74/l 17.1
Primary Examiner-John F. Campbell Assistant Examiner-Carl E. Hall Attorney-K. Mullerheim, B. E. Franz and Robert F. Van
[57] ABSTRACT Read only data planes for use with solenoid array memories are woven by processes which employ weaving conductive and non-conductive strands of material as both the warp and the woof (filler) of a fabric. The data planes take two basic forms, one being a woven mat of substantially the same length and width dimensions of its associated memory stack, and another being in the form of a strip which may be folded back and forth, the folded sections being co-extensive to form the data plane. Coding is effected by interrupted and/or connecting selected conductors.
4 Claims, 12 Drawing Figures Patented July 18, 1972 6 Shoots-Sheet 3 Patented July 18, 1972 6 Sheets-Sheet 5 Patented July 18, 1972 abs 6 Shgats-Sheet 6 olb'c OIO1 METHODS OF PRODUCING SOLENOID ARRAY MEMORIES This is a division of my copending application Ser. No. 735,319, filed June 7, 1968 now U.S. Pat. No. 3,535,690 on data planes for use in memory systems.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to processes for producing data planes, particularly data planes for read only memories, which are constructed as a woven fabric.
2. Description of the Prior Art Data planes of the type with which the invention is more particularly ooncemed are described and illustrated by George G. Pick in U.S. Pat. No. 3,299,412 and by .l. M. Donnelly et al. in their U.S. Pat. application entitled "Solenoid Array Memory Having Bipolar Output Signals," Ser. No. 379,94l, filed July 2, 1964, as encoded, printed conductors carried on a substrate. In addition to the above application, read only memories having woven data planes are discussed by R. L. Alonso in an article entitled Vintage Machine Produces Memories, Electronics, p. 88, May I, 1967. The process for producing such planes is described therein as a program-controlled vertical separation of longitudinal conductors, which separations are manually transposed by 90 and temporarily held in place on a jig until the wires are encapsulated. Changes in coding require that additional wires be threaded through the plane, the wires carrying the unwanted cpde being disconnected and remaining in the encapsulated p anes.
SUM MARY OF THE INVENTION This invention in its primary aspect is directed to the production of woven data planes for read only memory systems. The data planes of the present invention are thin, flexible sheets or strips of woven material including conductive and non-conductive strands as both the warp and woof of the fabric. The conductive strands are initially uninsulated wire, the entire data plane rather than the conductive members being insulated during production.
The processes generally comprise the steps of weaving the fabric, encoding the data, forming apertures for accepting signal transfer apparatus, coating the fabric with insulation and cutting the fabric to the desired length; however, as can be determined from the detailed description, alternate steps and orders of performance may be employed as may be required for different applications of the data planes (e.g. encoding in the field).
BRIEF DESCRIPTION OF THE DRAWINGS The invention, its organization, construction and operation may be better understood by reference to the written description taken in conjunction with the drawings, in which:
FIG. I is a pictorial replesentation of a solenoid array memory illustrating that data planes may take the form of either sheets or folded strips;
FIG. 2 is a pictorial representation of one of the processes of the invention;
FIG. 3 is a fragmentary view of a data plane produced by the process of FIG. 2, while FIG. 3a is a pictorial view of the weave of the data plane of FIG. 3, FIG. 3b is a section view taken along the line 11-11 of FIG. 3a showing the spaced-apart relationship of the conductive members, and FIG. 30 is a similar section view showing the same conductive members in electrical contact;
FIG. 4 is a pictorial representation of another process of the invention;
FIG. 5 is a fragmentary view of a data plane produced by the process of FIG. 4, while FIG. 5a is a detailed pictorial view of the weave of the fabric of FIG. 5 at preselected woven contacting intersections, and FIG. 5b is a sectional view taken along the line c-c of FIG. 5a showing the contact between the preselected conductors at their intersections.
FIG. 6 is a schematic representation of a data plane which is coded by various combinations of conductors and ruptures thereof; and
FIG. 7 is a flow chart which describes the step-by-step production of the data planes in accordance with the various processes of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Data sheets or strips which form the memory planes described herein may be produced by the same general process constituting the subject of the present invention. The number of conductive patterns across the width of the fabric in relation to the total width of the data plane arbitrarily determines the designation strip or sheet.
DATA PLANE ENVIRONMENT FIG. 1 generally illustrates the use of coded sheets 130 and folded coded strips 140 in a solenoid array memory stack. Briefly, a plurality of elongated solenoids are secured to a mother board 120 and extend through the apertures (i.e., 316, 516 of FIGS. 3 and 5, respectively) of the data planes and 140. Electrical connections may be made to the data planes directly as referenced by leads and or the data planes may be of the type to be indirectly driven by transformer action as described and illustrated in the above-mentioned Pick patent and the Donnelly et al. application.
Although the data planes contemplated herein are illustrated in the environment of a solenoid array memory system, the planes may also be employed in systems which employ other signal transfer apparatus, such as the cores in systems of the type described in the above Alonso article.
DATA PLANES AND THEIR MANUFACTURE FIG. 2 pictorially illustrates a process, referenced herein as process X1, in which a supply of conductive filaments 210 and a supply of non-conductive filaments 220 are fed to a loom 230 to continuously produce the uncoded fabric 300 which is supported by table 235. Fabric 300 passes through bonding apparatus 240 and emerges as fabric 301 which is supported by table 245. The bonded fabric is passed through a coder 250 which electrically connects selected crosspoints, ruptures selected conductors, and trims the edges of fabric to remove, in particular, the conductive loops 318 of FIG. 3. The coded fabric 302 is supported by table 255 as it is fed into a coater 260 which may be a simple bath of varnish and emerges as fabric 303. The insulative coating may then require drying or curing as symbolized by fan 265. At this point fabric 303 is either collected on a drum 270 and stored for later cutting, or it is sent directly to cutter 280 which provides the desired lengths of encoded fabric 304.
Insulated Intersections, FIGS. 3-3c. The data plane illustrated by the fragmentary views of FIG. 3 comprises longitudinal insulators 311, transverse insulators 310, longitudinal conductors 313 and transverse conductors 312 (grouped on each side of an aperture 316). A pattern of groups of three conductors is illustrated in both the longitudinal and transverse directions in the present example. Located in the center of these conductive patterns are the aforementioned apertures 316, for receiving the elongated solenoids or other signal transfer devices of a memory, as illustrated in FIG. I
The memory plane is encoded with binary information by directing each longitudinal conductor to either bypass or loop a solenoid accepting aperture 316 with the aid of the transverse conductors. This coding is accomplished as follows. Considering the longitudinal conductors 313 additionally referenced A, B, and C, etc., it can be seen that the conductor 313D loops around the solenoid accepting apertures 316A, 3163 and 316C by virtue of the electrical connections 314 between conductors 313D, 312A, 313C, 312D, 313F, 312G, 313C again, 3121.. and 313D again. This composite conductor is further inhibited from by-passing the apertures 316 by vir tue of the circuit interruptions provided by apertures 315A.
Furthermore, conductors 313A and 313B have no discontinuities along their lengths and therefore bypass apertures 316, The information is therefore coded as binary 001 in the area of aperture 316B. Conductor 313D and 313E also have discontinuities at apertures 315B and 315C (programmed into the coder) as an aid in coding adjacent bits and to prevent short circuits such as would otherwise be present between conductor 312A and 312L along conductor 313D.
End loops 317 and 318 illustrate the appearance of the edge of the fabric before it is trimmed. The entire data plane is coated with an insulating material 319, such as varnish, to prevent electrical contact between planes. Apertures 320, electrically separate the conductive patterns in the woof direction. Such apertures are also programmed to be placed in the fabric by the coder.
FIG. 3a illustrates the weave of the fabric as comprising transverse insulators 310A-310d, longitudinal insulators 311, a transverse conductor 312, and a longitudinal conductor 313. The insulating material is not shown in FIGS. 3a, 3b and 30. FIG. 3b further illustrates this weave showing that, before coding, conductors 312 and 313 are held in a spaced-apart relationship by the insulators 310 and 311. FIG. 3c illustrates the appearance of conductors 312 and 313 (minus solder) when they are connected together to form a connection such as 314 of FIG. 3.
FIG. 4 generally illustrates a process, referenced herein as process Y, wherein spools of insulators 410 and conductors 420 supply loom 430 with material to produce an uncoded fabric 500 which has preselected electrical contacts between warp and woof conductors. Table 435 supports the fabric as it feeds to terminator 440 which electrically connects and secures the preselected crossovers of the conductors to form fabric 501 which is supported by table 445. At this point coater 440 applies insulation to the continuous fabric which is then taken up on drum 460. Drying or curing, symbolized by fan 465, may be required after the insulated coating is applied. Immediately prior to, or just after coating (or drying), the edges of the fabric are trimmed (not shown in FIG. 4), but preferably in the coder 470). In following alternative steps, the fabric may be supplied either directly, or from storage, to a coder 470 which selectively ruptures the longitudinal conductors to provide a continuous coded (and indexed) sheet of material which may be either gathered on drum 480 for storage or passed directly to the cutter 490.
Connected Intersections, FIGS. 5-51). The memory plane illustrated in the fragmentary view of FIG. 5 is, on its face alone, quite similar to that illustrated in FIG. 3; however, the pattern of preselected electrical connections 514 at each intersection of conductors (i.e., 512A, 513A) removes the possibility of or the need for electrically connecting these intersections as a portion of the coding operation. It is evident that the coding operation is much simplified for data planes of this particular construction in that the provision of discontinuities, such as those provided by apertures 515, provide for a single type of coding procedure at each solenoid location. Also, by providing groups of conductors on all sides of an aperture 516, a much greater coding availability is provided over the embodiment shown in FIG. 3. The three particular binary digits stored in this illustration by conductors 513D513F with respect to aperture 5168 are 0, 0 and l, respectively, which can easily be ascertained by following the conductive path for each said conductor with respect to that particular location. The present illustration shows three conductors grouped on each of four sides of an aperture for use with that aperture; however, particular codes may permit one aperture to be encoded by the use of the conductor groups next adjacent thereto (i.e., the conductors of adjacent apertures).
Apertures 520 serve the same purpose as apertures 320 of FIG. 3, namely, separation of conductive patterns in the woof direction.
The fabric itself is similar to that of FIG. 3 in that filaments 510 and 511 are non-conductive elements and elements 512 and 513 are the conductive elements. The weave provides preselected electrical contact at intersections 514 only, the remaining intersections are spaced-apart as shown in FIGS, 30 and 3b. An insulating material 519 is also applied to the memory plane of FIG. 5 to prevent electrical connections between adjacent planes.
A more detailed look may be had at the preselected contacting intersections of the conductors of this data plane (shown without insulator 519) by referring to FIG. 5a wherein insulators Sula-510d are shown in the transverse direction and insulators 511 are shown in the longitudinal direction. Woven in with the insulators are conductor 513 in the longitudinal direction and conductor 512 in the transverse direction which contacts conductor 513. A section view of this weave is shown in FIG. 5b. Although conductors 512 and 513 are specifically woven to make electrical contact, it is preferred that each preselected intersection also be secured by solder, for example, to insure good electrical contact.
Attention is invited to FIG. 6 which is a schematic representation of various coding techniques which may be employed for weaves similar to those of FIGS. 5, 5a and 5b. Although in practice the various codings and variations in weave would probably not be employed in the same data plane, FIG. 6 makes a showing of such combinations in order to show the general layout of the conductors (insulators not being shown in FIG. 6). The necessity for ruptures 520 to isolate circuits is more easily seen in FIG. 6 than in the previous drawings.
Furthermore, it will be seen from FIG. 6 how according to one aspect of the process according to the present invention which makes use of grids formed from sections of vertical and horizontal conductors provided in groups, a plurality of windings for a given set of signal transfer devices or memory elements can be accommodated in a single data plane in contrast to, say, the arrangement shown in the above US. Pat. No. 3,299,412 which requires a separate data plane for each of these windings.
In the first coding technique shown in the top portion of FIG. 6 conductors A, B, C A1, B1, C1 (warp conductors 513) encircle or bypass the signal transfer devices to store a I or 0, respectively. For example, conductor A encircles the left-hand signal transfer device, bypasses the center device and encircles the right-hand device to store 101. More particularly, conductors A, A1 are electrically connected by associated woof conductors a, a1 and ruptures 515, 530 form the encircle and bypass pattern. Ruptures 515 encode data at each bit location, while ruptures S30 insure encirclement for good coupling in the event that two 1's are consecutively stored (e.g. conductors B, B1).
The second variation shown in die center portion of FIG. 6 employs bipolar encoding. Conductor A2, for example by way of conductors at, A3, a1 etc., partially encircles the right and left signal transfer devices on one side (the upper side) thereof and partially encircles the center device in the opposite direction to carry lOl as the stored data. Similarly conductor C3, by way of conductors c, C2, 01 etc. partially encircle all three signal transfer devices on the lower side thereof to store 000 as indicated in FIG. 6. The modification shown in the bottom portion of FIG. 6 and providing conductors A4-C6 improves on this type of encoding by utilizing a center set of conductors A4, B4, C4 as central connection busses for the conductors A5, B5, C5 and A6, B6, C6 which are employed to partially encircle their respective sides of the transfer devices. This variation provides more uniform bipolar coupling between the coded circuits and the transfer devices than does the above-mentioned second coding variation. Tracing conductor B4 shows that it and its associated conductors B5, B6, b, b1 store OIO by partially encircling the left and right devices on the lower sides thereof and the center device on the upper side thereof.
THE PROCESSES FIG. 7 is a flow chart which illustrates various processes for producing data planes. Each of these processes are set forth below generally as processes X and Y in that the data plane of FIG. 3 may be made by process X and the data plane of FIG. 5 may be made by the process Y. In FIG. 7 designations X and Y have accordingly been shown near the points where these two processes branch off from each oflier. These processes have been further detailed below as sub-processes X1, X2, Y1, Y2, Y3, Y4 and XY to show the various combinations of steps and orders of perfonnance. Again, the corresponding designations have been applied in FIG. 7 near where these subprocesses begin to follow separate paths.
Sub-process X1. The first step in any of the processes described below is the weaving of the fabric. in this instance a loom would produce the weave shown in FIG. 30. After the fabric is woven, the insulators are bonded at their intersections by thermal or chemical action. Next, the fabric is selectively encoded by electrically connecting selected crosspoints of the conductors by soldering, welding or applying conductive epoxies, and selected conductor sections are removed by punching, electrically arcing, chemically etching, or by controlled sand blasting. The outer edges are then trimmed to form individual transverse conductors from the continuous folded conductor produced by the shuttle during weaving. Finally, the fabric is coated with an insulation, such as varnish or other suitable material (drying or curing may then be required according to the insulation employed) and cut to the desired length.
Sub-process X2. This process is almost identical with the foregoing subprocess with the exception that the fabric 301 of FIG. 2, after being encoded, is first coated with insulation before the edges are trimmed.
Sub-process Y1. After the fabric is woven into a configuration illustrated in FIG. 5, the preselected crosspoints of the electrical conductors 512 and 513 are connected to insure good electrical conductivity. Then the edges of the fabric are trimmed to remove the end loops of the transverse conductors. Next, the fabric is coated with insulation and, finally, cut to the desired length for storage as uncoded data planes. This process is preferred for providing a supply of uncoded data planes which are to have their information content provided at a later time. This is particularly useful for changes in information where an uncoded data plane is coded with information in the field to replace a data plane which needs an up-dating of information.
Sub-process Y2. After the fabric is woven and the electrical conductors are connected at preselected crossovers as in process Y], the fabric is next coated with insulation and the edges are then trimmed. The continuous sheet is then encoded with data by any of the aforementioned or other means of rupturing and finally cut to the desired length. Process Y2 would be advantageously employed in initial fabrication of a memory stack in that each plane could also be indexed and identified (by punching, stamping indicia, etc.) at the time of coding the continuous sheet which would minimize the handling of the data planes.
Sub-process Y3. Process Y3 is a combination of portions of sub-processes Y1 and Y2 in that after the cloth is woven and the electrical conductors are connected at the preselected intersections, the edges are first trimmed, then the continuous sheet is coated with insulation, the data is encoded in the continuous sheet and, finally, the data planes are cut to the desired length.
Sub-process Y4. This process comprises the following steps: weaving the fabric; electrically and mechanically connecting the preselected intersections of the conductors; coating the continuous fabric with insulation; trimming the edges of the continuous fabric; cutting the fabric to the desired length; and encoding data in the separate data planes so formed.
In following sub-process Y] or Y4, fabric 502 would be fed either directl or indirectly to cutter 490 to provide uncoded data sheets w ich would then be passed through an encoder to provide coded data planes.
Sub-process XY. It should be noted that data planes may be fabricated with a weave such as shown in FIG. 5 by employing a portion of process X, wherein just prior to or after the step of bonding, and the preselected intersections of the conductors are connected, as performed by the terminator 440 of FIG. 4. Then the step of encoding data includes only selective rupturing of the conductors. Of course, the fabric would also be trimmed and coated as set forth above.
Although the above description sets forth the trimming step as being perfonned either just before or just after the fabric is coated with insulation, the woof conductors may be separated at any time after the fabric has been woven. it is preferred, though, that first the insulators be bonded in process X or the conductors be connected in process Y to prevent any shift in conductor positions.
What is claimed is:
l. The method of making read only solenoid array memories, said method comprising the steps of:
weaving an array of vertical and horizontal groups of conductors and insulating strands substantially in a single plane, said woven plane having solenoid receiving apertures therethrough at selected positions between vertical and horizontal groups of conductors, and said conductors being generally insulated from each other;
establishing electrical connections between selected vertical and horizontal conductors such that an electrical circuit path is formed about and spaced apart from each said solenoid receiving aperture, thereby producing a master pattern; inserting a solenoid core in each of said solenoid receiving apertures; and interrupting the individual conductors of said master pattern at selected points such that a plurality of individual circuit paths selectively thread or bypass each said solenoid core thereby providing said memories with a selected data code.
2. The method of claim 1 wherein said array is woven in a continuous fabric and further including the step of cutting said fabric into desired lengths prior to producing said master pattern.
3. The method of claim I further including the step of cutting said array into desired lengths after said data code has been provided in said plane.
4. The method of claim 1 further including the step of coating said array with electrically insulative material to thereby bond said insulating strands to one another and to said conductors.
# t t i

Claims (4)

1. The method of making read only solenoid array memories, said method comprising the steps of: weaving an array of vertical and horizontal groups of conductors and insulating strands substantially in a single plane, said woven plane having solenoid receiving apertures therethrough at selected positions between vertical and horizontal groups of conductors, and said conductors being generally insulated from each other; establishing electrical connections between selected vertical and horizontal conductors such that an electrical circuit path is formed about and spaced apart from each said solenoid receiving aperture, thereby producing a master pattern; inserting a solenoid core in each of said solenoid receiving apertures; and interrupting the individual conductors of said master pattern at selected points such that a plurality of individual circuit paths selectively thread or bypass each said solenoid core thereby providing said memories with a selected data code.
2. The method of claim 1 wherein said array is woven in a continuous fabric and further including the step of cutting said fabric into desired lengths prior to producing said master pattern.
3. The method of claim 1 further including the step of cutting said array into desired lengths after said data code has been provided in said plane.
4. The method of claim 1 further including the step of coating said array with electrically insulative material to thereby bond said insulating strands to one another and to said conductors.
US19569A 1970-03-16 1970-03-16 Methods of producing solenoid array memories Expired - Lifetime US3676923A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1956970A 1970-03-16 1970-03-16

Publications (1)

Publication Number Publication Date
US3676923A true US3676923A (en) 1972-07-18

Family

ID=21793902

Family Applications (1)

Application Number Title Priority Date Filing Date
US19569A Expired - Lifetime US3676923A (en) 1970-03-16 1970-03-16 Methods of producing solenoid array memories

Country Status (1)

Country Link
US (1) US3676923A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218581A (en) * 1977-12-29 1980-08-19 Hirosuke Suzuki High frequency flat cable
US20030134525A1 (en) * 2002-01-15 2003-07-17 Matthew Sweetland Woven multiple-contact connector
US20040005793A1 (en) * 2002-01-15 2004-01-08 Tribotek, Inc. Multiple-contact woven power connectors
US20040009693A1 (en) * 2002-01-15 2004-01-15 Tribotek, Inc. Multiple-contact cable connector assemblies
US20040048500A1 (en) * 2002-01-15 2004-03-11 Tribotek, Inc. Woven multiple-contact connectors
US20040214454A1 (en) * 2002-01-15 2004-10-28 Tribotek, Inc. Method and apparatus for manufacturing woven connectors
US20050014421A1 (en) * 2003-07-14 2005-01-20 Tribotek, Inc. System and methods for connecting electrical components
US20050045461A1 (en) * 2003-07-11 2005-03-03 Tribotek, Inc. Multiple-contact woven electrical switches
US20050159028A1 (en) * 2002-01-15 2005-07-21 Tribotek, Inc. Contact woven connectors
US20050202695A1 (en) * 2002-01-15 2005-09-15 Tribotek, Inc. Electrical connector
US20060211295A1 (en) * 2005-03-15 2006-09-21 Tribotek, Inc. Electrical connector having one or more electrical contact points
US20070015387A1 (en) * 2005-07-18 2007-01-18 Tribotek, Inc. Electrical connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1346121A (en) * 1963-01-31 1963-12-13 Device for making the electrical connections in an assembly
US3234529A (en) * 1962-10-23 1966-02-08 Rca Corp Semi-permanent memory
US3378629A (en) * 1965-08-09 1968-04-16 Continental Copper & Steel Ind Woven conductor and method of forming the same
US3414666A (en) * 1963-10-14 1968-12-03 Electromechanical Devices Inc Weaved electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234529A (en) * 1962-10-23 1966-02-08 Rca Corp Semi-permanent memory
FR1346121A (en) * 1963-01-31 1963-12-13 Device for making the electrical connections in an assembly
US3414666A (en) * 1963-10-14 1968-12-03 Electromechanical Devices Inc Weaved electronic equipment
US3378629A (en) * 1965-08-09 1968-04-16 Continental Copper & Steel Ind Woven conductor and method of forming the same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218581A (en) * 1977-12-29 1980-08-19 Hirosuke Suzuki High frequency flat cable
US7101194B2 (en) 2002-01-15 2006-09-05 Tribotek, Inc. Woven multiple-contact connector
US20050202695A1 (en) * 2002-01-15 2005-09-15 Tribotek, Inc. Electrical connector
US20060063413A1 (en) * 2002-01-15 2006-03-23 Tribotek, Inc. Electrical connector
US20040048500A1 (en) * 2002-01-15 2004-03-11 Tribotek, Inc. Woven multiple-contact connectors
US20040171284A1 (en) * 2002-01-15 2004-09-02 Tribotek, Inc. Woven multiple-contact connector
US20040214454A1 (en) * 2002-01-15 2004-10-28 Tribotek, Inc. Method and apparatus for manufacturing woven connectors
US7223111B2 (en) 2002-01-15 2007-05-29 Tribotek, Inc. Electrical connector
US7083427B2 (en) 2002-01-15 2006-08-01 Tribotek, Inc. Woven multiple-contact connectors
US20050130486A1 (en) * 2002-01-15 2005-06-16 Tribotek, Inc. Woven multiple-contact connector
US20050159028A1 (en) * 2002-01-15 2005-07-21 Tribotek, Inc. Contact woven connectors
US6942496B2 (en) 2002-01-15 2005-09-13 Tribotek, Inc. Woven multiple-contact connector
US7021957B2 (en) 2002-01-15 2006-04-04 Tribotek, Inc. Woven multiple-contact connector
US6945790B2 (en) 2002-01-15 2005-09-20 Tribotek, Inc. Multiple-contact cable connector assemblies
US6951465B2 (en) 2002-01-15 2005-10-04 Tribotek, Inc. Multiple-contact woven power connectors
US20040009693A1 (en) * 2002-01-15 2004-01-15 Tribotek, Inc. Multiple-contact cable connector assemblies
US20030134525A1 (en) * 2002-01-15 2003-07-17 Matthew Sweetland Woven multiple-contact connector
US20040005793A1 (en) * 2002-01-15 2004-01-08 Tribotek, Inc. Multiple-contact woven power connectors
US7056139B2 (en) 2002-01-15 2006-06-06 Tribotek, Inc. Electrical connector
US20060134943A1 (en) * 2002-01-15 2006-06-22 Tribotek, Inc. Contact woven connectors
US7077662B2 (en) 2002-01-15 2006-07-18 Tribotek, Inc. Contact woven connectors
US20050045461A1 (en) * 2003-07-11 2005-03-03 Tribotek, Inc. Multiple-contact woven electrical switches
US7094064B2 (en) 2003-07-11 2006-08-22 Tribotek, Inc. Multiple-contact woven electrical switches
US7097495B2 (en) 2003-07-14 2006-08-29 Tribotek, Inc. System and methods for connecting electrical components
US7125281B2 (en) 2003-07-14 2006-10-24 Tribotek, Inc. Systems and methods for connecting electrical components
US20050014421A1 (en) * 2003-07-14 2005-01-20 Tribotek, Inc. System and methods for connecting electrical components
US20050239329A1 (en) * 2003-07-14 2005-10-27 Tribotek, Inc. Systems and methods for connecting electrical components
US20060211295A1 (en) * 2005-03-15 2006-09-21 Tribotek, Inc. Electrical connector having one or more electrical contact points
US7140916B2 (en) 2005-03-15 2006-11-28 Tribotek, Inc. Electrical connector having one or more electrical contact points
US7458827B2 (en) 2005-07-18 2008-12-02 Methode Electronics, Inc. Electrical connector
US20070015387A1 (en) * 2005-07-18 2007-01-18 Tribotek, Inc. Electrical connector
US7214106B2 (en) 2005-07-18 2007-05-08 Tribotek, Inc. Electrical connector

Similar Documents

Publication Publication Date Title
US3711627A (en) Device for electrical connection of electric and electronic components and method of its manufacture
US3676923A (en) Methods of producing solenoid array memories
US3631298A (en) Woven interconnection structure
CN106337237B (en) Woven signal routing substrate for wearable electronic devices
US3673681A (en) Electrical circuit board wiring
US3414666A (en) Weaved electronic equipment
US3353263A (en) Successively stacking, and welding circuit conductors through insulation by using electrodes engaging one conductor
US3371250A (en) Woven circuit device
US3697818A (en) Encapsulated cordwood type electronic or electrical component assembly
US3825999A (en) Method of connecting electrical component
US3378629A (en) Woven conductor and method of forming the same
US3492665A (en) Magnetic device using printed circuits
US3824433A (en) Universal circuit board
US3431350A (en) Circuit board
US3747209A (en) Automated wiring system and method
US3393449A (en) Method of assembly of resistor matrix
US3535690A (en) Read only data plane
US3336434A (en) Wiring system and connection
US3634602A (en) Multilayer conductor sheet
US2910675A (en) Core array using coaxially spaced conductors
US4429179A (en) Woven wire fanout
US3703033A (en) Combined component and interconnection module and method of making
US3944719A (en) Wire routing apparatus
US3716846A (en) Connector sheet with contacts on opposite sides
US3753046A (en) Multi-layer printed circuit board

Legal Events

Date Code Title Description
AS Assignment

Owner name: AG COMMUNICATION SYSTEMS CORPORATION, 2500 W. UTOP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GTE COMMUNICATION SYSTEMS CORPORATION;REEL/FRAME:005060/0501

Effective date: 19881228