Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3679577 A
Tipo de publicaciónConcesión
Fecha de publicación25 Jul 1972
Fecha de presentación29 Nov 1968
Fecha de prioridad29 Nov 1968
Número de publicaciónUS 3679577 A, US 3679577A, US-A-3679577, US3679577 A, US3679577A
InventoresWilliam H Hinds, Frank E Juge Jr, Charles F Wantland
Cesionario originalShell Oil Co
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Molten salt hydrofining process
US 3679577 A
Resumen  disponible en
Imágenes(3)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent 3,679,577 MOLTEN SALT HYDROFINING PROCESS Charles F. Wantland, Pasadena, Tex., Frank E. Juge, Jr., Maitland, Fla., and William H. Hinds, Houston, Tex., assignors to Shell Oil Company, New York, N.Y. No Drawing. Filed Nov. 29, 1968, Ser. No. 780,256 Int. Cl. C10g 13/08, 23/02, 29/12 US. Cl. 208-408 Claims ABSTRACT OF THE DISCLOSURE A process for conversion of heavy hydrocarbon fractions containing hetero-atom impurities comprising contacting the fractions in the presence of hydrogen, at elevated temperature and pressure with a molten salt comprising cadmium halides, an alkali metal halide and optionally one or more additional salts as diluents or cocatalysts.

BACKGROUND OF THE INVENTION Field of the invention This invention relates to a process for hydrofining heavy petroleum oils using a molten salt catalyst mixture comprising cadmium halide, an alkali metal halide and optionally other metal salts as diluents and/ or co-catalysts.

Description of the prior art A steadily increasing demand for distillate petroleum products and decreasing supply of crude oils of low residue content provides increasing incentive for processes which upgrade high-boiling residual polynuclear hydrocarbon stocks. There are available large quantities of naphthenic, aromatic or mixed based crudes from which some distillate products are recoverably by traditional means. However, the residual fraction, in which is concentrated relatively large quantities of materials containing sulfur, oxygen, nitrogen, and organo-metallic compounds must be disposed of. In the past, low-value stocks have been used for industrial and marine fuels but the supply exceeds demand. Moreover, air pollution restrictions imposed on many industrial areas prevent the use of these high sulfur and nitrogen fuels.

Current technology for upgrading these fuels, such as thermal cracking, catalytic cracking, and catalytic hydrogenation are less than satisfactory. Cracking or hydrogenation is relatively costly when applied to residual stocks due to rapid catalyst deactivation by the high content of contaminants and catalyst poisons found in residues.

The use of molten salt catalytic systems has long been recognized as a method to obviate many of the difiiculties encountered in more conventional refining techniques. In the main, previous work has concentrated on the use of molten caustics, such as sodium hydroxide, for example U.S. 3,051,645, issued August 1962. More recently, acidic molten salt systems, such as zinc chloride, have been proposed for hydrocarcking (Gorin et al., US. 3,355,376, issued November 1967). Use of a molten salt catalyst offers many advantages over conventional heterogeneous catalyst systems as, for example, continual renewal of catalyst surface, close temperature control by better and more uniform heat transfer and the possibility of continuous removal and relatively easy handling of contaminants, such as metals, which seriously interfere with catalyst performance in conventional heterogeneous phase catalytic systems.

The use of acidic salt systems also presents a number of problems. The salt must have reasonably high catalytic activity and the ability to retain activity without sub- "ice stantial decline over a period of use. The hydrocarbons and salt should be easily separated and the salt should be easily regenerated or otherwise restored for reuse after contamination or deactivation.

Th solubility of heavy hydrocarbons in some molten salt systems makes separation difficult. This feature alone is a serious economic deterrent to proposed molten salt hydroconversion processes and represents a major drawback of such systems.

We have now invented a process for hydrofining and/ or cracking heavy petroleum oils using a molten salt mixture possessing the required characteristics and advantages enumerated above. By hydrofining is meant, within the context of the present invention, hydrogenation, desulfurization, denitrification, and metals removal.

SUMMARY OF THE INVENTION The process of the invention in broad aspect comprises contacting heavy petroleum fractions with a molten salt mixture or solution comprising cadmium halide and other metal halides as later specified, in the presence of hydrogen at elevated temperature and pressure.

The heavy petroleum fraction feed to the present process may be any high boiling hydrocarbon oil at least about 50% by volume of which boils above about 450 F. Though lighter hydrocarbons can, in principle, be processed, the present process is most advantageous for treatment of oils containing materials which cannot be distilled in commercial equipment without extensive cracking, e. g., residual materials and hydrocarbon oils, containing asphaltenes, resins and the like. The process finds its greatest utility in the treatment of stocks containing appreciable amounts of hetero-atoms and/or metals. It is, therefore, particularly useful for the treatment of reduced crudes, pitch, vacuum residues, cracked gas oils, residues, and the like which cannot otherwise be deeply flashed without excessive carryover of metal contaminants. In addition, certain crude petroleum oils which contain only small amounts of gasoline and kerosene boiling-range hydrocarbons and which have been topped to remove lighter components may also be processed. Certain petroleum crude oils from tar sands and oils from shale or coal thus may be processed.

The metal salt catalyst of the invention comprises cadmium halide (chloride, bromide or iodide) which is mixed with and dissolved in alkali metal halides. Examples of suitable alkali metal halides are halides (chlorides, bromides, or iodides) of lithium, sodium, and potassium. additional metal salts as diluents or co-catalysts as, for example, any mineral acid salt of metals of Group I, H, HI, IV-B, VI-B, VII-B, and VIH of the Periodic Table of Elements. The preferred co-catalytic additional salt is zinc halide. In general, at least about 5% w. alkali metal salt should be contained in the mixture. The alkali metal halide functions to reduce markedly the solubility of hydrocarbon in the salt melt, thus providing a mixture which can easily be separated from the hydrocarbon feed and products, as for example, by phase separation. The pres ent process requires the use of an amount of molten salt mixture in excess of that required for stoichiometric reaction with the non-hydrocarbon elements of the heteroatom components in the feed, i.e., greatly in excess of that required for reaction with nitrogen, oxygen and sulfur in the feed. The invention lies in the catalytic eifect of the salt and not in the stoichiometric reactions which concurrently occur. The use of a relatively large excess of salt, relative to feed, characterizes one of the distinctions of the present process over previously known process for hydrogenation of hydrocarbonaceous material, such as coal, by impregnation of the material to be hydrogenated with a small quantity of metallic salt.

The process is carried out in the presence of hydrogen at elevated temperatures and pressures and is characterized by very short reaction contact time.

Temperatures in the range of about 650-850 F. are used and preferably in the range from about 750-810 F. Hydrogen pressures of between about SOD-5,000 p.s.i.g. shouldbe used-the total pressure depending, inter alia, upon the purity of the hydrogen used. It is an especially noteworthy characteristic of the present invention that shown in Table I. From these data it can be seen that the salt mixtures containing cadmium halides eifectively increase API gravity (indicating lower molecular weight), reduce the sulfur and nitrogen content of the feed, remove vanadium, and increase hydrogen content of the products. Run number N-ll illustrates that the absence of cadmium halide leads to thermal cracking only (note the negative hydrogen consumption denoting a positive hydrogen production) with little or no removal of sulfur, nitrogen or reaction contact time is very short. In general, a contact 10 metals.

TABLE I.MOLTEN SALT REACTIONS Run Number Feed N-7 N-8 N-9 N-10 N-ll C dI2 (31.2) CdClz (80.0) CdIz 71.3) CdBrz (65. 4) L101 (45. 5 (Pmmt W9 K01 (2o. K1 E28. 7 NaBl a4. 6 nor 54. 53 Temp., F... 5100' s00 566 Pressure, p 2, 000 2, 000 2, 000 2, 000 2, 000 WHSV feed/gm salt/hr. 0. 31 0. 19 0. 18 0. 23 0. 22 Hzloil (mole) 16. 6 16. 6 16. 6 l6. 6 16. 6 Conversion, percent w.

00-4 39. 6 19. 0 24. 9 33. 7 23. 7 H; consumption, s.e.f.lbb1 667 254 519 -428 API at 60 F 22. 9 34. 4 28. 0 31. 32. 7 28. 4 Sulfur, percent w 1. 82 1. 09 1. 31 1. 02 0. 95 1. 44 Tot N, p.p.rn 1. 500 950 1,400 900 1,200 1, 500 Metals, (p.p.m.) V V 5) V 5) V 5) V 5) V (11) 1 5 ppm. is the analytical senstlvity. time of between about 1.0 to 10 seconds is suflicient to EXAMPLE II V obtain the desired results. By contact time is meant the time in which the feed and molten salt catalyst are .in contact in the reaction zone. Longer contact time may, of course, be used depending, inter alia, upon the specific nature of the feed (i.e., boiling range, hetero-atom and metallic impurities), the degree of conversion desired and the temperature and contact efliciency of the specific reactor system employed.

. As inother hydroconversion processes, excess hydrogen is usually recovered, at least in part, from the reaction zone efiluent and recycled to the reaction zone together with additional makeup hydrogen. Pure hydrogen is not required and any suitable hydrogen-containing gas which is predominantly hydrogen can be used. For example, hydrogen-rich gas containing on the order of about 70% v. or more hydrogen which is obtained from a catalytic reforming process can be used.

Various methods of contacting the hydrocarbon feed with the molten salt catalyst may be employed. One simple method comprises merely passing the hydrocarbon into a molten salt bath. Various types of reactors may be used as will readily occur to those skilled in the art. Reactors employing a dispersed gas/liquid system have been found suitable. Reactors employing concurrent plugflow of the fluid (molten salt, hydrogen and hydrocarbon feed) with a high degree of gas-liquid and liquid-liquid contacting are especially useful. The process may be operated continuously or batchwise but is most efliciently and desirably conducted continuously in a short contact time plug-flow reactor system.

The following examples serve to further illustrate the practice and advantage of the invention and are not to be construed as limitations thereof.

'7 EXAMPLE I 'metal halide eificiently reduces hydrocarbon solubility.

Salt composition, operating conditions and results are The following experiments illustrate the hydrocracking potential of a molten salt system containing cadmium halide and zinc halide as co-catalysts. A Straight Run Residue (properties shown in Table II) was hydrocracked TABLE II Run Feed N-22 4 N-23 znBn (80.0) ZnBr (80.0) Salt composition, (percent w.) CdB1'2 (15.0) NaBr (5.0) NaBr (20.0) Operating conditions:

Suliur, percent w 1. 82 0. 14 0. 42 Nitrogen, p.p.m.w 1, 500 25 72 Vanadium, p.p.m 15 7 5 As these data show, the salt melt containing cadmium bromide produced significantly better sulfur and nitrogen removal and was more effective in reducing heavy (900 F. plus) boiling-range materialat these conditions down to 1.6% w. basis feed.

These examples illustrate the potential of the process of the invention. Many ways of utilizing this process in conversion catalysts), and large amounts of heavy fractions boiling above 900 F. is an increasing economic necessity. The process of the invention is a process useful for that purpose. The process may be employed, for example, under mild conditions to remove metals and hetero-atom impurities making a product suitable for further more conventional processing. On the other hand, the process is capable of extensive cracking directly (as shown in Example H) and may be so employed. Various combinations of such operation may be chosen depending on individual requirements.

We claim as our invention:

1. A process for the conversion of heavy hydrocarbon fractions having at least 50% boiling above about 450 F. comprising contacting the fraction with a molten salt mixture consisting essentially of cadmium chloride, cadmium bromide, or cadmium iodide dissolved in the alkali metal chloride, bromide or iodide corresponding to the cadmium salt in the presence of added hydrogen at elevated temperatures and pressures resulting in net hydrogen consumption.

2. The process of claim 1 wherein the mixture contains additional salt selected from the group of zinc chloride, zinc bromide, and zinc iodide.

3. The process of claim -1 wherein the temperature is in a range from about 650 to 850 F. and hydrogen pressure is in the range of 500-6000 p.s.i.g.

References Cited UNITED STATES PATENTS 2,749,288 6/1956 Watkins 208l25 2,987,468 6/1961 Chervenak 208-213 3,355,376 11/1967 Gorin et al 20810 3,371,049 2/1968 Gorin et al. 252-413 DELBERT E. GANTZ, Primary Examiner G. E. SCHMITKONS, Assistant Examiner U.S. CL X.R.

Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3901790 *22 Dic 197226 Ago 1975Exxon Research Engineering CoCatalytic hydrocracking with a mixture of metal halide and anhydrous protonic acid
US3966582 *7 Oct 197429 Jun 1976Clean Energy CorporationSolubilization and reaction of coal and like carbonaceous feedstocks to hydrocarbons and apparatus therefor
US3966583 *7 Oct 197429 Jun 1976Clean Energy CorporationCoal treatment process and apparatus
US3979332 *3 Feb 19757 Sep 1976Shell Oil CompanyDispersion
US4045461 *15 Mar 197630 Ago 1977Shell Oil CompanyHigh temperature methanation with molten salt-based catalyst systems
US4051015 *11 Jun 197627 Sep 1977Exxon Research & Engineering Co.Hydroconversion of heavy hydrocarbons using copper chloride catalyst
US4092236 *30 Ago 197630 May 1978Rockwell International CorporationHydrocracking coal, deashing, desulfurization
US4132628 *12 Ago 19772 Ene 1979Continental Oil CompanyMethod for recovering hydrocarbons from molten metal halides
US4247385 *26 Sep 197927 Ene 1981Conoco, Inc.Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst
US4504378 *18 Feb 198312 Mar 1985Marathon Oil CompanySodium tetrachloroaluminate catalyzed process for the molecular weight reduction of liquid hydrocarbons
US4752380 *23 Sep 198621 Jun 1988Union Oil Company Of CaliforniaArsenic removal from shale oil by chloride addition
US5338442 *16 Mar 199216 Ago 1994Exxon Research & Engineering Co.Process for converting and upgrading organic resource materials in aqueous environments
US740254716 Dic 200422 Jul 2008Shell Oil CompanySystems and methods of producing a crude product
US741364616 Dic 200419 Ago 2008Shell Oil CompanySystems and methods of producing a crude product
US741665316 Dic 200426 Ago 2008Shell Oil Companycontacting a crude feed with a hydrogen source in the presence of one or more catalysts containing a transition metal sulfide ( potassium iron sulfide) catalyst to produce a total product that includes the crude product, is a liquid mixture at 25 degrees C. and 0.101 MPa
US753434216 Dic 200419 May 2009Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US758868116 Dic 200415 Sep 2009Shell Oil CompanyCrude product is a liquid mixture at 25 degrees C. and 0.101 MPa; 180 A; Hydrotreating; total acid number (TAN) of 0.3 or more; metal or compounds from column 6 of periodic table as hydrotreating catalyst
US759194116 Dic 200422 Sep 2009Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US761519616 Dic 200410 Nov 2009Shell Oil CompanySystems for producing a crude product
US76254819 Jul 20081 Dic 2009Shell Oil CompanySystems and methods of producing a crude product
US762890816 Dic 20048 Dic 2009Shell Oil CompanyCrude product is a liquid mixture at 25 degrees C. and 0.101 MPa; 180 A; Hydrotreating; total acid number (TAN) of 0.3 or more; vanadium or vanadium compound as hydrorefining catalyst
US764862516 Dic 200419 Ene 2010Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US767436816 Dic 20049 Mar 2010Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US767437016 Dic 20049 Mar 2010Shell Oil Companyconversion of crude feeds to liquid mixtures used as transportation fuel, using hydrorefining catalysts; catalysis
US76782647 Abr 200616 Mar 2010Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US773649016 Dic 200415 Jun 2010Shell Oil Companyconversion of crude feeds to liquid mixtures used as transportation fuel, using hydrorefining catalysts; catalysis
US774536922 Jun 200629 Jun 2010Shell Oil CompanyMethod and catalyst for producing a crude product with minimal hydrogen uptake
US77493743 Oct 20076 Jul 2010Shell Oil CompanyMethods for producing a crude product
US776316016 Dic 200427 Jul 2010Shell Oil CompanyContacting a crude feed with a hydrogen source in the presence of a transition metal sulfide catalyst, to produce a crude product which is a liquid mixture at 25 degrees; hydrotreatment; control to inhibit formation of coke; producing transportation fuel
US778084416 Dic 200424 Ago 2010Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US780704616 Dic 20045 Oct 2010Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US781144516 Dic 200412 Oct 2010Shell Oil CompanyContacting a crude feed with a hydrogen source in the presence of an alkali metal salts catalysts, to produce a total product that includes the crude product which is a liquid mixture at 25 degrees; hydrotreatment
US782895816 Dic 20049 Nov 2010Shell Oil CompanyA crude product containing hydrocarbons with variable boiling range distribution at variable temperature range; using alkali metal catalyst; hydrotreatment
US783786316 Dic 200423 Nov 2010Shell Oil CompanyCrude product is a liquid mixture at 25 degrees C. and 0.101 MPa; vanadium, or compounds of vanadium as catalyst; alkali metal or alkaline metal salt of an organic acid;
US785483312 May 200821 Dic 2010Shell Oil CompanyMixing a transition metal oxide and a metal salt to form a transition metal oxide/metal salt mixture; reacting to form an intermediate, reacting intermediate with sulfur or sulfur compounds, and a hydrocarbon to produce transition metal sulfide catalyst; hydrotreatment
US787922316 Dic 20041 Feb 2011Shell Oil CompanySystems and methods of producing a crude product
US79189927 Abr 20065 Abr 2011Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US795549925 Mar 20097 Jun 2011Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US795979616 Dic 200414 Jun 2011Shell Oil Companyin presence of a pore size catalyst; crude product is a liquid mixture at 25 degrees C. and 0.101 MPa; hydrotreating; specific micro-carbon-residue in the product; vacuum gas oil product; nitrogen content; producing a transportation fuel
US795979727 Ene 200914 Jun 2011Shell Oil CompanySystems and methods of producing a crude product
US802579116 Dic 200427 Sep 2011Shell Oil CompanyContacting a crude feed with a hydrogen source in the presence of a catalyst selected from alkali metal or alkali metal salts catalysts, a transition metal sulfide catalyst to produce a total product that includes the crude product which is a liquid mixture at 25 degrees; naphtha; vaccum gas oil
US802579416 Dic 200427 Sep 2011Shell Oil CompanyCrude product is a liquid mixture at 25 degrees C. and 0.101 MPa; catalysts having a pore size distribution with a median pore diameter at least 180 A; Hydrotreating; specific micro-carbon-residue in the product
US807093627 Ene 20096 Dic 2011Shell Oil CompanySystems and methods of producing a crude product
US807093716 Dic 20046 Dic 2011Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US816316612 May 200824 Abr 2012Shell Oil CompanySystems and methods of producing a crude product
US824148916 Dic 200414 Ago 2012Shell Oil CompanyCrude product is a liquid mixture at 25 degrees C. and 0.101 MPa; ; Hydrotreating; specific micro-carbon-residue in the product; crude feed has a total content of alkali metal, and alkaline-earth metal, in metal salts of organic acids of 0.00001 grams per gram of crude feed
US826816412 May 200818 Sep 2012Shell Oil CompanyHaving per gram of crude product at least 0.001 grams of naphtha, the naphtha having an octane number of at least 70, and the naphtha having at most 0.15 grams of olefins per gram of naphtha, as determined by ASTM Method D6730, at least 0.001 grams of kerosene, at most 0.05 grams of residue
US839425414 Abr 201112 Mar 2013Shell Oil CompanyCrude product composition
US847565125 Mar 20092 Jul 2013Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US84814509 Mar 20119 Jul 2013Shell Oil CompanyCatalysts for producing a crude product
US850679416 Dic 200413 Ago 2013Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US860893814 Abr 201117 Dic 2013Shell Oil CompanyCrude product composition
US860894616 Dic 200417 Dic 2013Shell Oil CompanySystems, methods, and catalysts for producing a crude product
US861385114 Abr 201124 Dic 2013Shell Oil CompanyCrude product composition
US866345314 Abr 20114 Mar 2014Shell Oil CompanyCrude product composition
WO2005063932A2 *16 Dic 200414 Jul 2005Shell Oil CoSystems and methods of producing a crude product
Clasificaciones
Clasificación de EE.UU.208/108, 208/253, 208/406, 208/209, 208/430, 208/247, 208/89, 502/226
Clasificación internacionalC10G45/14, C10G47/08
Clasificación cooperativaC10G47/08, C10G2300/107
Clasificación europeaC10G47/08