US3679577A - Molten salt hydrofining process - Google Patents

Molten salt hydrofining process Download PDF

Info

Publication number
US3679577A
US3679577A US780256A US3679577DA US3679577A US 3679577 A US3679577 A US 3679577A US 780256 A US780256 A US 780256A US 3679577D A US3679577D A US 3679577DA US 3679577 A US3679577 A US 3679577A
Authority
US
United States
Prior art keywords
molten salt
salt
hydrogen
feed
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US780256A
Inventor
Charles F Wantland
Frank E Juge Jr
William H Hinds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Application granted granted Critical
Publication of US3679577A publication Critical patent/US3679577A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/08Halides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C

Definitions

  • ABSTRACT OF THE DISCLOSURE A process for conversion of heavy hydrocarbon fractions containing hetero-atom impurities comprising contacting the fractions in the presence of hydrogen, at elevated temperature and pressure with a molten salt comprising cadmium halides, an alkali metal halide and optionally one or more additional salts as diluents or cocatalysts.
  • This invention relates to a process for hydrofining heavy petroleum oils using a molten salt catalyst mixture comprising cadmium halide, an alkali metal halide and optionally other metal salts as diluents and/ or co-catalysts.
  • molten salt catalytic systems has long been recognized as a method to obviate many of the difiiculties encountered in more conventional refining techniques.
  • molten caustics such as sodium hydroxide
  • acidic molten salt systems such as zinc chloride
  • molten salt catalyst offers many advantages over conventional heterogeneous catalyst systems as, for example, continual renewal of catalyst surface, close temperature control by better and more uniform heat transfer and the possibility of continuous removal and relatively easy handling of contaminants, such as metals, which seriously interfere with catalyst performance in conventional heterogeneous phase catalytic systems.
  • the use of acidic salt systems also presents a number of problems.
  • the salt must have reasonably high catalytic activity and the ability to retain activity without sub- "ice stantial decline over a period of use.
  • the hydrocarbons and salt should be easily separated and the salt should be easily regenerated or otherwise restored for reuse after contamination or deactivation.
  • hydrofining is meant, within the context of the present invention, hydrogenation, desulfurization, denitrification, and metals removal.
  • the process of the invention in broad aspect comprises contacting heavy petroleum fractions with a molten salt mixture or solution comprising cadmium halide and other metal halides as later specified, in the presence of hydrogen at elevated temperature and pressure.
  • the heavy petroleum fraction feed to the present process may be any high boiling hydrocarbon oil at least about 50% by volume of which boils above about 450 F.
  • lighter hydrocarbons can, in principle, be processed, the present process is most advantageous for treatment of oils containing materials which cannot be distilled in commercial equipment without extensive cracking, e. g., residual materials and hydrocarbon oils, containing asphaltenes, resins and the like.
  • the process finds its greatest utility in the treatment of stocks containing appreciable amounts of hetero-atoms and/or metals. It is, therefore, particularly useful for the treatment of reduced crudes, pitch, vacuum residues, cracked gas oils, residues, and the like which cannot otherwise be deeply flashed without excessive carryover of metal contaminants.
  • the metal salt catalyst of the invention comprises cadmium halide (chloride, bromide or iodide) which is mixed with and dissolved in alkali metal halides.
  • suitable alkali metal halides are halides (chlorides, bromides, or iodides) of lithium, sodium, and potassium.
  • additional metal salts as diluents or co-catalysts as, for example, any mineral acid salt of metals of Group I, H, HI, IV-B, VI-B, VII-B, and VIH of the Periodic Table of Elements.
  • the preferred co-catalytic additional salt is zinc halide. In general, at least about 5% w. alkali metal salt should be contained in the mixture.
  • the alkali metal halide functions to reduce markedly the solubility of hydrocarbon in the salt melt, thus providing a mixture which can easily be separated from the hydrocarbon feed and products, as for example, by phase separation.
  • the pres ent process requires the use of an amount of molten salt mixture in excess of that required for stoichiometric reaction with the non-hydrocarbon elements of the heteroatom components in the feed, i.e., greatly in excess of that required for reaction with nitrogen, oxygen and sulfur in the feed.
  • the invention lies in the catalytic eifect of the salt and not in the stoichiometric reactions which concurrently occur.
  • the process is carried out in the presence of hydrogen at elevated temperatures and pressures and is characterized by very short reaction contact time.
  • Run number N-ll illustrates that the absence of cadmium halide leads to thermal cracking only (note the negative hydrogen consumption denoting a positive hydrogen production) with little or no removal of sulfur, nitrogen or reaction contact time is very short. In general, a contact 10 metals.
  • contact time is meant the time in which the feed and molten salt catalyst are .in contact in the reaction zone. Longer contact time may, of course, be used depending, inter alia, upon the specific nature of the feed (i.e., boiling range, hetero-atom and metallic impurities), the degree of conversion desired and the temperature and contact efliciency of the specific reactor system employed.
  • excess hydrogen is usually recovered, at least in part, from the reaction zone efiluent and recycled to the reaction zone together with additional makeup hydrogen.
  • Pure hydrogen is not required and any suitable hydrogen-containing gas which is predominantly hydrogen can be used.
  • hydrogen-rich gas containing on the order of about 70% v. or more hydrogen which is obtained from a catalytic reforming process can be used.
  • molten salt catalyst Various methods of contacting the hydrocarbon feed with the molten salt catalyst may be employed.
  • One simple method comprises merely passing the hydrocarbon into a molten salt bath.
  • Various types of reactors may be used as will readily occur to those skilled in the art. Reactors employing a dispersed gas/liquid system have been found suitable. Reactors employing concurrent plugflow of the fluid (molten salt, hydrogen and hydrocarbon feed) with a high degree of gas-liquid and liquid-liquid contacting are especially useful.
  • the process may be operated continuously or batchwise but is most efliciently and desirably conducted continuously in a short contact time plug-flow reactor system.
  • the process of the invention is a process useful for that purpose.
  • the process may be employed, for example, under mild conditions to remove metals and hetero-atom impurities making a product suitable for further more conventional processing.
  • the process is capable of extensive cracking directly (as shown in Example H) and may be so employed. Various combinations of such operation may be chosen depending on individual requirements.
  • a process for the conversion of heavy hydrocarbon fractions having at least 50% boiling above about 450 F. comprising contacting the fraction with a molten salt mixture consisting essentially of cadmium chloride, cadmium bromide, or cadmium iodide dissolved in the alkali metal chloride, bromide or iodide corresponding to the cadmium salt in the presence of added hydrogen at elevated temperatures and pressures resulting in net hydrogen consumption.

Abstract

A PROCESS FOR CONVERSION OF HEAVY HYDROCARBON FRACTIONS CONTAINING HETERO-ATOM IMPURITIES COMPRISING CONTACTING THE FRACTIONS IN THE PRESENCE OF HYDROGEN, AT ELEVATED TEMPERATURE AND PRESSURE WITH A MOLTEN SALT COMPRISING CADMIUM HALIDES, AN ALKALI METAL HALIDE AND OPTIONALLY ONE OR MORE ADDITIONAL SALTS AS DILUENTS OR CO-CATALYSTS.

Description

United States Patent 3,679,577 MOLTEN SALT HYDROFINING PROCESS Charles F. Wantland, Pasadena, Tex., Frank E. Juge, Jr., Maitland, Fla., and William H. Hinds, Houston, Tex., assignors to Shell Oil Company, New York, N.Y. No Drawing. Filed Nov. 29, 1968, Ser. No. 780,256 Int. Cl. C10g 13/08, 23/02, 29/12 US. Cl. 208-408 Claims ABSTRACT OF THE DISCLOSURE A process for conversion of heavy hydrocarbon fractions containing hetero-atom impurities comprising contacting the fractions in the presence of hydrogen, at elevated temperature and pressure with a molten salt comprising cadmium halides, an alkali metal halide and optionally one or more additional salts as diluents or cocatalysts.
BACKGROUND OF THE INVENTION Field of the invention This invention relates to a process for hydrofining heavy petroleum oils using a molten salt catalyst mixture comprising cadmium halide, an alkali metal halide and optionally other metal salts as diluents and/ or co-catalysts.
Description of the prior art A steadily increasing demand for distillate petroleum products and decreasing supply of crude oils of low residue content provides increasing incentive for processes which upgrade high-boiling residual polynuclear hydrocarbon stocks. There are available large quantities of naphthenic, aromatic or mixed based crudes from which some distillate products are recoverably by traditional means. However, the residual fraction, in which is concentrated relatively large quantities of materials containing sulfur, oxygen, nitrogen, and organo-metallic compounds must be disposed of. In the past, low-value stocks have been used for industrial and marine fuels but the supply exceeds demand. Moreover, air pollution restrictions imposed on many industrial areas prevent the use of these high sulfur and nitrogen fuels.
Current technology for upgrading these fuels, such as thermal cracking, catalytic cracking, and catalytic hydrogenation are less than satisfactory. Cracking or hydrogenation is relatively costly when applied to residual stocks due to rapid catalyst deactivation by the high content of contaminants and catalyst poisons found in residues.
The use of molten salt catalytic systems has long been recognized as a method to obviate many of the difiiculties encountered in more conventional refining techniques. In the main, previous work has concentrated on the use of molten caustics, such as sodium hydroxide, for example U.S. 3,051,645, issued August 1962. More recently, acidic molten salt systems, such as zinc chloride, have been proposed for hydrocarcking (Gorin et al., US. 3,355,376, issued November 1967). Use of a molten salt catalyst offers many advantages over conventional heterogeneous catalyst systems as, for example, continual renewal of catalyst surface, close temperature control by better and more uniform heat transfer and the possibility of continuous removal and relatively easy handling of contaminants, such as metals, which seriously interfere with catalyst performance in conventional heterogeneous phase catalytic systems.
The use of acidic salt systems also presents a number of problems. The salt must have reasonably high catalytic activity and the ability to retain activity without sub- "ice stantial decline over a period of use. The hydrocarbons and salt should be easily separated and the salt should be easily regenerated or otherwise restored for reuse after contamination or deactivation.
Th solubility of heavy hydrocarbons in some molten salt systems makes separation difficult. This feature alone is a serious economic deterrent to proposed molten salt hydroconversion processes and represents a major drawback of such systems.
We have now invented a process for hydrofining and/ or cracking heavy petroleum oils using a molten salt mixture possessing the required characteristics and advantages enumerated above. By hydrofining is meant, within the context of the present invention, hydrogenation, desulfurization, denitrification, and metals removal.
SUMMARY OF THE INVENTION The process of the invention in broad aspect comprises contacting heavy petroleum fractions with a molten salt mixture or solution comprising cadmium halide and other metal halides as later specified, in the presence of hydrogen at elevated temperature and pressure.
The heavy petroleum fraction feed to the present process may be any high boiling hydrocarbon oil at least about 50% by volume of which boils above about 450 F. Though lighter hydrocarbons can, in principle, be processed, the present process is most advantageous for treatment of oils containing materials which cannot be distilled in commercial equipment without extensive cracking, e. g., residual materials and hydrocarbon oils, containing asphaltenes, resins and the like. The process finds its greatest utility in the treatment of stocks containing appreciable amounts of hetero-atoms and/or metals. It is, therefore, particularly useful for the treatment of reduced crudes, pitch, vacuum residues, cracked gas oils, residues, and the like which cannot otherwise be deeply flashed without excessive carryover of metal contaminants. In addition, certain crude petroleum oils which contain only small amounts of gasoline and kerosene boiling-range hydrocarbons and which have been topped to remove lighter components may also be processed. Certain petroleum crude oils from tar sands and oils from shale or coal thus may be processed.
The metal salt catalyst of the invention comprises cadmium halide (chloride, bromide or iodide) which is mixed with and dissolved in alkali metal halides. Examples of suitable alkali metal halides are halides (chlorides, bromides, or iodides) of lithium, sodium, and potassium. additional metal salts as diluents or co-catalysts as, for example, any mineral acid salt of metals of Group I, H, HI, IV-B, VI-B, VII-B, and VIH of the Periodic Table of Elements. The preferred co-catalytic additional salt is zinc halide. In general, at least about 5% w. alkali metal salt should be contained in the mixture. The alkali metal halide functions to reduce markedly the solubility of hydrocarbon in the salt melt, thus providing a mixture which can easily be separated from the hydrocarbon feed and products, as for example, by phase separation. The pres ent process requires the use of an amount of molten salt mixture in excess of that required for stoichiometric reaction with the non-hydrocarbon elements of the heteroatom components in the feed, i.e., greatly in excess of that required for reaction with nitrogen, oxygen and sulfur in the feed. The invention lies in the catalytic eifect of the salt and not in the stoichiometric reactions which concurrently occur. The use of a relatively large excess of salt, relative to feed, characterizes one of the distinctions of the present process over previously known process for hydrogenation of hydrocarbonaceous material, such as coal, by impregnation of the material to be hydrogenated with a small quantity of metallic salt.
The process is carried out in the presence of hydrogen at elevated temperatures and pressures and is characterized by very short reaction contact time.
Temperatures in the range of about 650-850 F. are used and preferably in the range from about 750-810 F. Hydrogen pressures of between about SOD-5,000 p.s.i.g. shouldbe used-the total pressure depending, inter alia, upon the purity of the hydrogen used. It is an especially noteworthy characteristic of the present invention that shown in Table I. From these data it can be seen that the salt mixtures containing cadmium halides eifectively increase API gravity (indicating lower molecular weight), reduce the sulfur and nitrogen content of the feed, remove vanadium, and increase hydrogen content of the products. Run number N-ll illustrates that the absence of cadmium halide leads to thermal cracking only (note the negative hydrogen consumption denoting a positive hydrogen production) with little or no removal of sulfur, nitrogen or reaction contact time is very short. In general, a contact 10 metals.
TABLE I.MOLTEN SALT REACTIONS Run Number Feed N-7 N-8 N-9 N-10 N-ll C dI2 (31.2) CdClz (80.0) CdIz 71.3) CdBrz (65. 4) L101 (45. 5 (Pmmt W9 K01 (2o. K1 E28. 7 NaBl a4. 6 nor 54. 53 Temp., F... 5100' s00 566 Pressure, p 2, 000 2, 000 2, 000 2, 000 2, 000 WHSV feed/gm salt/hr. 0. 31 0. 19 0. 18 0. 23 0. 22 Hzloil (mole) 16. 6 16. 6 16. 6 l6. 6 16. 6 Conversion, percent w.
00-4 39. 6 19. 0 24. 9 33. 7 23. 7 H; consumption, s.e.f.lbb1 667 254 519 -428 API at 60 F 22. 9 34. 4 28. 0 31. 32. 7 28. 4 Sulfur, percent w 1. 82 1. 09 1. 31 1. 02 0. 95 1. 44 Tot N, p.p.rn 1. 500 950 1,400 900 1,200 1, 500 Metals, (p.p.m.) V V 5) V 5) V 5) V 5) V (11) 1 5 ppm. is the analytical senstlvity. time of between about 1.0 to 10 seconds is suflicient to EXAMPLE II V obtain the desired results. By contact time is meant the time in which the feed and molten salt catalyst are .in contact in the reaction zone. Longer contact time may, of course, be used depending, inter alia, upon the specific nature of the feed (i.e., boiling range, hetero-atom and metallic impurities), the degree of conversion desired and the temperature and contact efliciency of the specific reactor system employed.
. As inother hydroconversion processes, excess hydrogen is usually recovered, at least in part, from the reaction zone efiluent and recycled to the reaction zone together with additional makeup hydrogen. Pure hydrogen is not required and any suitable hydrogen-containing gas which is predominantly hydrogen can be used. For example, hydrogen-rich gas containing on the order of about 70% v. or more hydrogen which is obtained from a catalytic reforming process can be used.
Various methods of contacting the hydrocarbon feed with the molten salt catalyst may be employed. One simple method comprises merely passing the hydrocarbon into a molten salt bath. Various types of reactors may be used as will readily occur to those skilled in the art. Reactors employing a dispersed gas/liquid system have been found suitable. Reactors employing concurrent plugflow of the fluid (molten salt, hydrogen and hydrocarbon feed) with a high degree of gas-liquid and liquid-liquid contacting are especially useful. The process may be operated continuously or batchwise but is most efliciently and desirably conducted continuously in a short contact time plug-flow reactor system.
The following examples serve to further illustrate the practice and advantage of the invention and are not to be construed as limitations thereof.
'7 EXAMPLE I 'metal halide eificiently reduces hydrocarbon solubility.
Salt composition, operating conditions and results are The following experiments illustrate the hydrocracking potential of a molten salt system containing cadmium halide and zinc halide as co-catalysts. A Straight Run Residue (properties shown in Table II) was hydrocracked TABLE II Run Feed N-22 4 N-23 znBn (80.0) ZnBr (80.0) Salt composition, (percent w.) CdB1'2 (15.0) NaBr (5.0) NaBr (20.0) Operating conditions:
Suliur, percent w 1. 82 0. 14 0. 42 Nitrogen, p.p.m.w 1, 500 25 72 Vanadium, p.p.m 15 7 5 As these data show, the salt melt containing cadmium bromide produced significantly better sulfur and nitrogen removal and was more effective in reducing heavy (900 F. plus) boiling-range materialat these conditions down to 1.6% w. basis feed.
These examples illustrate the potential of the process of the invention. Many ways of utilizing this process in conversion catalysts), and large amounts of heavy fractions boiling above 900 F. is an increasing economic necessity. The process of the invention is a process useful for that purpose. The process may be employed, for example, under mild conditions to remove metals and hetero-atom impurities making a product suitable for further more conventional processing. On the other hand, the process is capable of extensive cracking directly (as shown in Example H) and may be so employed. Various combinations of such operation may be chosen depending on individual requirements.
We claim as our invention:
1. A process for the conversion of heavy hydrocarbon fractions having at least 50% boiling above about 450 F. comprising contacting the fraction with a molten salt mixture consisting essentially of cadmium chloride, cadmium bromide, or cadmium iodide dissolved in the alkali metal chloride, bromide or iodide corresponding to the cadmium salt in the presence of added hydrogen at elevated temperatures and pressures resulting in net hydrogen consumption.
2. The process of claim 1 wherein the mixture contains additional salt selected from the group of zinc chloride, zinc bromide, and zinc iodide.
3. The process of claim -1 wherein the temperature is in a range from about 650 to 850 F. and hydrogen pressure is in the range of 500-6000 p.s.i.g.
References Cited UNITED STATES PATENTS 2,749,288 6/1956 Watkins 208l25 2,987,468 6/1961 Chervenak 208-213 3,355,376 11/1967 Gorin et al 20810 3,371,049 2/1968 Gorin et al. 252-413 DELBERT E. GANTZ, Primary Examiner G. E. SCHMITKONS, Assistant Examiner U.S. CL X.R.
US780256A 1968-11-29 1968-11-29 Molten salt hydrofining process Expired - Lifetime US3679577A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78025668A 1968-11-29 1968-11-29

Publications (1)

Publication Number Publication Date
US3679577A true US3679577A (en) 1972-07-25

Family

ID=25119069

Family Applications (1)

Application Number Title Priority Date Filing Date
US780256A Expired - Lifetime US3679577A (en) 1968-11-29 1968-11-29 Molten salt hydrofining process

Country Status (1)

Country Link
US (1) US3679577A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901790A (en) * 1972-12-22 1975-08-26 Exxon Research Engineering Co Catalytic hydrocracking with a mixture of metal halide and anhydrous protonic acid
US3966582A (en) * 1974-10-07 1976-06-29 Clean Energy Corporation Solubilization and reaction of coal and like carbonaceous feedstocks to hydrocarbons and apparatus therefor
US3966583A (en) * 1974-10-07 1976-06-29 Clean Energy Corporation Coal treatment process and apparatus
US3979332A (en) * 1975-02-03 1976-09-07 Shell Oil Company High temperature methanation with molten salt-based catalyst systems
US4045461A (en) * 1975-02-03 1977-08-30 Shell Oil Company High temperature methanation with molten salt-based catalyst systems
US4051015A (en) * 1976-06-11 1977-09-27 Exxon Research & Engineering Co. Hydroconversion of heavy hydrocarbons using copper chloride catalyst
US4092236A (en) * 1976-08-30 1978-05-30 Rockwell International Corporation Molten salt hydroconversion process
US4132628A (en) * 1977-08-12 1979-01-02 Continental Oil Company Method for recovering hydrocarbons from molten metal halides
US4247385A (en) * 1979-09-26 1981-01-27 Conoco, Inc. Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst
US4504378A (en) * 1983-02-18 1985-03-12 Marathon Oil Company Sodium tetrachloroaluminate catalyzed process for the molecular weight reduction of liquid hydrocarbons
US4752380A (en) * 1986-09-23 1988-06-21 Union Oil Company Of California Arsenic removal from shale oil by chloride addition
US5338442A (en) * 1989-09-22 1994-08-16 Exxon Research & Engineering Co. Process for converting and upgrading organic resource materials in aqueous environments
US20030229583A1 (en) * 2001-02-15 2003-12-11 Sandra Cotten Methods of coordinating products and service demonstrations
US20050145538A1 (en) * 2003-12-19 2005-07-07 Wellington Scott L. Systems and methods of producing a crude product
US20050148487A1 (en) * 2003-12-19 2005-07-07 Brownscombe Thomas F. Method of decomposing polymer
WO2005063932A2 (en) * 2003-12-19 2005-07-14 Shell Internationale Research Maatschappij B.V. Systems and methods of producing a crude product
US20050167324A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20060006556A1 (en) * 2004-07-08 2006-01-12 Chen Hung Y Gas supply device by gasifying burnable liquid
US20070012595A1 (en) * 2003-12-19 2007-01-18 Brownscombe Thomas F Methods for producing a total product in the presence of sulfur
US7678264B2 (en) 2005-04-11 2010-03-16 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
US7749374B2 (en) 2006-10-06 2010-07-06 Shell Oil Company Methods for producing a crude product
US7918992B2 (en) 2005-04-11 2011-04-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
WO2019099795A1 (en) * 2017-11-16 2019-05-23 The Regents Of The University Of California Simultaneous reaction and separation of chemicals

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901790A (en) * 1972-12-22 1975-08-26 Exxon Research Engineering Co Catalytic hydrocracking with a mixture of metal halide and anhydrous protonic acid
US3966582A (en) * 1974-10-07 1976-06-29 Clean Energy Corporation Solubilization and reaction of coal and like carbonaceous feedstocks to hydrocarbons and apparatus therefor
US3966583A (en) * 1974-10-07 1976-06-29 Clean Energy Corporation Coal treatment process and apparatus
US3979332A (en) * 1975-02-03 1976-09-07 Shell Oil Company High temperature methanation with molten salt-based catalyst systems
US4045461A (en) * 1975-02-03 1977-08-30 Shell Oil Company High temperature methanation with molten salt-based catalyst systems
US4051015A (en) * 1976-06-11 1977-09-27 Exxon Research & Engineering Co. Hydroconversion of heavy hydrocarbons using copper chloride catalyst
US4092236A (en) * 1976-08-30 1978-05-30 Rockwell International Corporation Molten salt hydroconversion process
US4132628A (en) * 1977-08-12 1979-01-02 Continental Oil Company Method for recovering hydrocarbons from molten metal halides
US4247385A (en) * 1979-09-26 1981-01-27 Conoco, Inc. Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst
US4504378A (en) * 1983-02-18 1985-03-12 Marathon Oil Company Sodium tetrachloroaluminate catalyzed process for the molecular weight reduction of liquid hydrocarbons
US4752380A (en) * 1986-09-23 1988-06-21 Union Oil Company Of California Arsenic removal from shale oil by chloride addition
US5338442A (en) * 1989-09-22 1994-08-16 Exxon Research & Engineering Co. Process for converting and upgrading organic resource materials in aqueous environments
US20030229583A1 (en) * 2001-02-15 2003-12-11 Sandra Cotten Methods of coordinating products and service demonstrations
US7674370B2 (en) 2003-12-19 2010-03-09 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7811445B2 (en) 2003-12-19 2010-10-12 Shell Oil Company Systems and methods of producing a crude product
US20050148487A1 (en) * 2003-12-19 2005-07-07 Brownscombe Thomas F. Method of decomposing polymer
WO2005063932A2 (en) * 2003-12-19 2005-07-14 Shell Internationale Research Maatschappij B.V. Systems and methods of producing a crude product
US20050167324A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050167321A1 (en) * 2003-12-19 2005-08-04 Wellington Scott L. Systems and methods of producing a crude product
US20050170952A1 (en) * 2003-12-19 2005-08-04 Wellington Scott L. Systems and methods of producing a crude product
US20050167323A1 (en) * 2003-12-19 2005-08-04 Wellington Scott L. Systems and methods of producing a crude product
WO2005063932A3 (en) * 2003-12-19 2005-12-22 Shell Oil Co Systems and methods of producing a crude product
US20070012595A1 (en) * 2003-12-19 2007-01-18 Brownscombe Thomas F Methods for producing a total product in the presence of sulfur
US7402547B2 (en) 2003-12-19 2008-07-22 Shell Oil Company Systems and methods of producing a crude product
US7413646B2 (en) 2003-12-19 2008-08-19 Shell Oil Company Systems and methods of producing a crude product
US7416653B2 (en) 2003-12-19 2008-08-26 Shell Oil Company Systems and methods of producing a crude product
EA010396B1 (en) * 2003-12-19 2008-08-29 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. A crude product of oil production and a method for treating thereof
US20080245702A1 (en) * 2003-12-19 2008-10-09 Scott Lee Wellington Systems and methods of producing a crude product
US20080272027A1 (en) * 2003-12-19 2008-11-06 Scott Lee Wellington Systems and methods of producing a crude product
US7534342B2 (en) 2003-12-19 2009-05-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7588681B2 (en) 2003-12-19 2009-09-15 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7591941B2 (en) 2003-12-19 2009-09-22 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7615196B2 (en) 2003-12-19 2009-11-10 Shell Oil Company Systems for producing a crude product
US7625481B2 (en) 2003-12-19 2009-12-01 Shell Oil Company Systems and methods of producing a crude product
US7628908B2 (en) 2003-12-19 2009-12-08 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7648625B2 (en) 2003-12-19 2010-01-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20050145538A1 (en) * 2003-12-19 2005-07-07 Wellington Scott L. Systems and methods of producing a crude product
US7674368B2 (en) 2003-12-19 2010-03-09 Shell Oil Company Systems, methods, and catalysts for producing a crude product
CN1894379B (en) * 2003-12-19 2010-04-14 国际壳牌研究有限公司 Systems and methods for producing a crude product
US7736490B2 (en) 2003-12-19 2010-06-15 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
US7763160B2 (en) 2003-12-19 2010-07-27 Shell Oil Company Systems and methods of producing a crude product
US7780844B2 (en) 2003-12-19 2010-08-24 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8663453B2 (en) 2003-12-19 2014-03-04 Shell Oil Company Crude product composition
US7807046B2 (en) 2003-12-19 2010-10-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20050145537A1 (en) * 2003-12-19 2005-07-07 Wellington Scott L. Systems and methods of producing a crude product
US7828958B2 (en) 2003-12-19 2010-11-09 Shell Oil Company Systems and methods of producing a crude product
US7837863B2 (en) 2003-12-19 2010-11-23 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7854833B2 (en) 2003-12-19 2010-12-21 Shell Oil Company Systems and methods of producing a crude product
US7879223B2 (en) 2003-12-19 2011-02-01 Shell Oil Company Systems and methods of producing a crude product
US8613851B2 (en) 2003-12-19 2013-12-24 Shell Oil Company Crude product composition
US8608938B2 (en) 2003-12-19 2013-12-17 Shell Oil Company Crude product composition
US7955499B2 (en) 2003-12-19 2011-06-07 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7959797B2 (en) 2003-12-19 2011-06-14 Shell Oil Company Systems and methods of producing a crude product
US7959796B2 (en) 2003-12-19 2011-06-14 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20110192762A1 (en) * 2003-12-19 2011-08-11 Scott Lee Wellington Crude product composition
US8025794B2 (en) 2003-12-19 2011-09-27 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8025791B2 (en) 2003-12-19 2011-09-27 Shell Oil Company Systems and methods of producing a crude product
US8070937B2 (en) 2003-12-19 2011-12-06 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8070936B2 (en) 2003-12-19 2011-12-06 Shell Oil Company Systems and methods of producing a crude product
US8163166B2 (en) 2003-12-19 2012-04-24 Shell Oil Company Systems and methods of producing a crude product
US8241489B2 (en) 2003-12-19 2012-08-14 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8268164B2 (en) 2003-12-19 2012-09-18 Shell Oil Company Systems and methods of producing a crude product
US8394254B2 (en) 2003-12-19 2013-03-12 Shell Oil Company Crude product composition
US8475651B2 (en) 2003-12-19 2013-07-02 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8608946B2 (en) 2003-12-19 2013-12-17 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8506794B2 (en) 2003-12-19 2013-08-13 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20060006556A1 (en) * 2004-07-08 2006-01-12 Chen Hung Y Gas supply device by gasifying burnable liquid
US8481450B2 (en) 2005-04-11 2013-07-09 Shell Oil Company Catalysts for producing a crude product
US7918992B2 (en) 2005-04-11 2011-04-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7678264B2 (en) 2005-04-11 2010-03-16 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7749374B2 (en) 2006-10-06 2010-07-06 Shell Oil Company Methods for producing a crude product
WO2019099795A1 (en) * 2017-11-16 2019-05-23 The Regents Of The University Of California Simultaneous reaction and separation of chemicals
US11814285B2 (en) 2017-11-16 2023-11-14 The Regents Of The University Of California Simultaneous reaction and separation of chemicals

Similar Documents

Publication Publication Date Title
US3679577A (en) Molten salt hydrofining process
US3501396A (en) Hydrodesulfurization of asphaltene-containing black oil
US3558474A (en) Slurry process for hydrorefining petroleum crude oil
US3254017A (en) Process for hydrocracking heavy oils in two stages
US3859199A (en) Hydrodesulfurization of asphaltene-containing black oil
US3915842A (en) Catalytic conversion of hydrocarbon mixtures
US2771401A (en) Desulfurization of crude oil and crude oil fractions
US3231488A (en) Process for hydrorefining heavy hydrocarbon charge stocks and catalyst therefor
US5244565A (en) Integrated process for the production of distillate hydrocarbon
US3732155A (en) Two-stage hydrodesulfurization process with hydrogen addition in the first stage
US3338819A (en) Integral hydrocracking-hydrotreating process
US3306845A (en) Multistage hydrofining process
US3617483A (en) Hydrocracking process
US3269958A (en) Hydrorefining of petroleum crude oil and catalyst therefor
US3294678A (en) Process for deasphaltening heavy petroleum crude oil
US3622499A (en) Catalytic slurry process for black oil conversion with hydrogen and ammonia
GB2091758A (en) Process for upgrading hydrocarbonaceous oils
US3617526A (en) Hydrodesulfurization of a vacuum gas oil and vacuum residuum
US3249530A (en) Hydrorefining of petroleum crude oil
US3847795A (en) Hydrocracking high molecular weight hydrocarbons containing sulfur and nitrogen compounds
US4457830A (en) Petroleum hydroconversion using acid precipitation of preasphaltenes in resid recycle
NO126919B (en)
US3622503A (en) Hydrogen transfer agents for slurry processing of hydrocarbonaceous black oils
US3036968A (en) Removal of metals and nitrogen from hydrocarbon feed stocks
US3268437A (en) Hydrocracking of nitrogen containing hydrocarbon oils for the preparation of middle oils