US3689608A - Process for forming a nonwoven web - Google Patents

Process for forming a nonwoven web Download PDF

Info

Publication number
US3689608A
US3689608A US48825A US3689608DA US3689608A US 3689608 A US3689608 A US 3689608A US 48825 A US48825 A US 48825A US 3689608D A US3689608D A US 3689608DA US 3689608 A US3689608 A US 3689608A
Authority
US
United States
Prior art keywords
web
target plate
charge
current
ion gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US48825A
Inventor
Herbert John Hollberg
John Edward Owens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Application granted granted Critical
Publication of US3689608A publication Critical patent/US3689608A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/11Flash-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes

Definitions

  • ABSTRACT v Continuation of Ser. No. 735 889 June 10 A process for. spreading, electrostatlcally charging, 1968 abandoned whlch a a and forwarding a fibrous web concomitantly formed part of June 4 with a vapor blast.
  • the web is charged by passing it No. 3,387,326. 7 through a highly ionized zone created by a corona discharge between an ion gun and a target plate.
  • This invention concerns a novel and useful process for charging fibrous webs in an electrostatic field and depositing the webs uniformly in overlapping layers on a moving surface to form a nonwoven sheet.
  • the process described and claimed herein is particularly useful in charging webs of a continuous fibrillated strand described in U.S. Pat. No. 3,081,519 to Blades and White.
  • This web is prepared by flash extrusion of a solution of crystallizable polymer.
  • the strand is formed by extruding a homogeneous solution of a fiber-forming polymer dissolved in a liquid.
  • the solution at a temperature above the normal boiling point of the solvent and at autogeneous or greater pressure, is extruded into a medium of lower temperature and substantially lower pressure.
  • the vaporizing liquid within the extrudate forms bubbles, breaks through confining walls, and cools the extrudate, causing solidification of the polymer.
  • the resulting fibrous web is a multifibrous yarn-like strand having an internal fine structure or morphology which may be characterized as a 3-dimensional integral plexus consisting of a multitude of essentially longitudinally extended interconnecting, random-length fibrous filaments, hereafter referred to as film-fibrils.
  • film-fibrils have the form of thin ribbons with an average thickness less than about 4 microns.
  • the filmfibril elements often found as aggregates, intermittently unite and separate at irregular intervals called tiepoints" in various places throughout the width, length, and thickness of the strand to form an integral 3-dimensional plexus.
  • the film-fibrils are often rolled or folded about the principal film-fibril axis, giving the appearance of a fibrous material when examined without magnification.
  • the strand comprising a 3-dimensional network of film-fibril elements is referred to as a plexifilament.
  • the plexifilaments are unitary, i.e. the strands are one continuous piece of polymer, and the elements which constitute the strand are interconnected. They can be produced in essentially endless lengths in deniers as low as or as high as 100,000 or even higher.
  • the plexifilament of Blades and White may be collected in the form of a nonwoven fibrous sheet and may be consolidated by cold or hot calendering to provide useful sheet products. These products and the process for making them are described in Steuber U.S. Pat. No. 3,169,899.
  • This patent describes an electrostatic device for promoting attraction of the strand to a collecting belt. The device is very satisfactory for preparing nonwoven fibrous sheets with exceptional strength.
  • improvements are needed to provide a high degree of dispersion and uniformity in sheets destined for certain uses. These improvements are needed particularly when the sheet is to be used in printing papers, book covers and wall coverings. It has been discovered that the requirements for aerodynamic stability of the fine fibril network and'the requirements for uniform electrostatic charging are somewhat in opposition to each other. These requirements must therefore be carefully matched for production of uniform sheets.
  • the purpose of the present invention is to provide an improved aerodynamic and electrostatic process for spreading and charging a plexifilament strand and for depositing the strand in the form of a nonwoven sheet with a high degree of dispersion and uniformity.
  • the flash spinning, spreading, and depositing operations are conducted in a closed chamber to provide a uniform high dielectric atmosphere.
  • a freshly spun plexifilament strand and the accompanying expanding solvent gas are directed from the spinneret to a spreading zone created by a baffle or other confining surface whereby the plexifilament strand is opened into a wide configuration.
  • the spread strand is passed in a path of advance directly from the spreading means into a highly ionized zone created by corona discharge in the atmosphere between an ion gun and a flat target plate.
  • the electric potential between the ion gun and target plate is sufficient to generate a current flow to deposit a charge on the spread strand which is preferably to percent of the maximum sustainable peak charge, but is low enough to avoid disruptive spark discharge or secondary corona discharge between the thin trailing edge of the target plate and the strand.
  • the target plate is placed immediately adjacent to the mechanical spreading means in such manner that the vapor blast from the spinneret guides the web to provide brushing contact with the target.
  • the surface of the target plate is of planar construction, particularly in the area just upstream of the trailing edge.
  • the target plate terminates in a thin trailing edge to provide uniform but minimum aerodynamic turbulence at this point during operation.
  • the ion gun is a structure supporting a plurality of charging needles disposed across the path of advance.
  • the gun is placed opposite the target and mounted in a manner that permits circulation of vapor around it, since during operation the confined gases tend to flow toward the path of advance over the top of the gun.
  • the face and the top of the gun housing are smooth and shaped to minimize aerodynamic turbulence.
  • the needles are aimed at points which are uniformly spaced from the trailing edge of the target plate by a technique described hereinafter.
  • the spread and charged fibrous web is then deposited on a continuously moving surface, electrically discharged and collected by conventional means such as windup in a roll.
  • FIG. 3 is an elevation showing the relative positions of the ion gun, rotary baffle and target plate of FIG. 2, the spinneret nozzle being removed for clarity.
  • FIG. 4 is an enlarged partially sectioned fragmentary view of FIG. 2, showing the relationship of the conducting needles to the target electrode.
  • FIG. 5 is a partial cross-sectional schematic elevation illustrating a shrouded spinning orifice useful in separating the plexifilament as spun.
  • FIG. 6 is an enlarged partially sectioned front elevation of the shrouded opening orifice and target plate of FIG. 5.
  • FIG. 7 is a curve wherein web charge, percent peak web charge, and belt current are plotted as ordinate vs. ion gun current as abscissa.
  • FIG. 8 is a series of curves wherein web charge is plotted as ordinate vs. target plate current as abscissa.
  • a spinneret device 10 connected to a source of polymer dissolved in an organic solvent is shown.
  • Polymer solution 12 under pressure is fed through spinning orifice 14 into web forming chamber 16.
  • the extrudate from spinning orifice 14 is a plexifilament 7. Due to the pressure drop at spinning orifice 14 vaporization of solvent creates a vapor blast which, by virtue of impingement upon baffle 18 concomitantly with plexifilament 7, generally follows the path of advance of the plexifilament 7 from spinning orifice 14 to collecting surface 9, thereby creating a flow pattern within chamber 16 as indicated by the arrows.
  • Baffle 18 is oscillatably mounted and is powered to oscillate by means not shown. While oscillation of the baffle is not essential, it is preferred for the preparation of wide sheets.
  • target plate 20 and ion gun 22 are disposed on opposite sides of the path of advance of the plexifilament web 7 and downstream from the web forming and mechanical separating devices.
  • Target plate 20 is connected to ground by wire 24 and microarnmeter 26 which indicates target plate current.
  • Ion gun 22 contains multiple needles 25, one of which is shown in FIG. 1. Each needle 25 of ion gun 22 is connected to a negative D.C. source 35 through resistor 19. Each of the resistors is connected to the source of power through conductor 21.
  • Millameter 23 serves to measure ion gun current.
  • a negative D.C. source in the range of from 45 to 70 kilovolts may be used.
  • Target plate 20 is so disposed that the vapor blast originating at spinning orifice l4 and the air flow pattern in Chamber 16 carries plexifilament web 7 in brushing contact with its charging surface. After passing through an ionized charging zone created by a corona discharge between ion gun 22 and target plate 20, the charged plexifilament web 7 is deposited on collecting surface 9.
  • the surface illustrated is a continuous belt forwarded by drive rolls 36. The belt is given an opposite charge to that imposed on web 7 by means of D.C. source 37 which is connected to the collecting apparatus through milliameter 29 and lead 27.
  • FIGS. 2-6 Alternate apparatus embodiments useful in the practice of the invention are shown schematically in FIGS. 2-6.
  • the extrudate from orifice 14 is carried around the curved surface of a lobed baffle 18 into brushing contact with the surface of an annular target electrode 20'.
  • Baffle 18' is continuously rotated to impart oscillatory movement to the network of film fibril material as it is deflected from the lobed surface.
  • Annular target electrode 20' is coupled, for rotary movement about baffle 18' by means of ring 50 and pinion gear 52 attached to driven shaft 54.
  • Target electrode 20 is connected to lead 24 through a contacting carbon brush 56.
  • Ion gun 22' is U-shaped and is connected to a negative D.C. source through lead 24.
  • FIG. 3 shows the arrangement of U-shaped ion gun 22 opposite annular target electrode 20' with the baffle 18 centered within the electrode. Needles 25 are arranged in the lower tubular portion of the ion gun 22 such that the axes of the needles are generally perpendicular to the surface of target electrode 20 (FIG. 4).
  • FIGS. 5 and 6 An alternative mechanical spreading arrangement is illustrated in FIGS. 5 and 6 where spinning orifice 14 is surrounded by a shroud 15 having a stepped slot 17 therethrough.
  • the plexifilament on extrusion tends to open and follow the stepped contour of slot 17.
  • the extrudate can be impinged on a fixed or moving baffle or directed along the path of advance without baffling (as shown) when the shrouded orifice is employed to spread the web.
  • Other shapes for slot 17 may be successfully employed as for example, a bell or a conical shape.
  • Positioning of ion gun 22 is important to obtain maximum charging efficiency and also to avoid web bunching and flicking which are detrimental to sheet uniformity.
  • Bunching is a small pileup which occurs when a web passing down a target plate is slowed by pinning forces. Flicking occurs when fast moving web hits this bundle and flips it away from the target plate, sometimes resulting in hangup on the needle point 25 and always discharging the web unevenly.
  • a short distance between needlepoint 25 and target plate 20 provides a relatively low voltage requirement to produce a given target plate current, close spacing can only be tolerated if web flicking and bunching is held to a minimum.
  • the problems are particularly acute in the production of sheets from plexifilamentary structures due to the fluffy nature of the plexifilament which makes it particularly susceptible to irregularities caused by non-uniform aerodynamic or electrostatic patterns.
  • baffle or spinneret shroud helps to spread and thereby dissipate the vapor blast that flashes from the spinneret.
  • a high velocity vapor stream at the collecting surface otherwise disarranges deposited webs and causes them to roll.
  • a smooth pattern of vapor flow within chamber 16 is important to assist in the orderly forwarding of plexifilament 7 along its path of advance from spinning orifice 14 to collecting surface 9 while avoiding interference with the plexifilament at the collecting surface.
  • Equipment shapes to promote these aerodynamic desirata are important for efficient and high speed operation. For instance the targets 20, 20' shown in FIGS.
  • a thin layer 58 of epoxy resin at the outer edge of the target electrode 20' as illustrated in FIG. 4 is useful in reducing secondary ionization at the edge of the target electrode by eliminating a sharp conductive edge.
  • Use of a resistor 19 in series with each needle has been found to provide needle-to-needle current uniformity important in the production of uniform sheet products especially when operating at a low current per needle. Operation below about microamperes per needle is desirable when using an ion gun with resistors separating each needle from the current source.
  • the position of needles 25 with reference to target plate 20 is important for efficient operation. It will be apparent that the clearance between the needle points and plate 20 should be as small as efficient operation will permit. Generally a clearance of from about 0.4 to about 2 inches (1 to 5 cm.) is satisfactory although this will vary with the design and capacity of the particular equipment. It has been found convenient in adjusting positioning of gun 22 opposite to target plate 20 to create a carbon black deposit on target plate 20 by spraying powdered carbon black into the operating area between the plate and the gun. An oval pattern is outlined by carbon deposits opposite each needle indicating the area of electrostatic influence of each needle under the particular conditions employed. Such a pattern of carbon deposit 13 is shown in FIG. 6.
  • the patterns laid down by single points are centered the same distance apart as the needles, are oval shaped, and have a height of about 2.5 cm. and a width of about 0.6 cm. Smoothest operation of the equipment with uniform laydown occurs when the above-mentioned test patterns are centered at a distance between onehalf in. (1.3 cm.) and three-fourths in. (1.9 cm.) from the bottom edge of the target. Placement of the ion gun at a point further upstream results in pinning or clinging of the web to the target plate because of field concentration between the already charged fiber and the thin edge. This results in bunching for an instant, an uneven discharge across the web width, and a falling free of the bunched web to give a nonuniform sheet.
  • the web charge curve is very abrupt as will be demonstrated hereinafter, making the process more difficult to control.
  • the ion gun is aimed too near the trailing edge of the target plate, secondary ionization will develop at the edge of the target plate providing positively charged ions which will discharge the web unevenly. The web will then collapse and give a ropey strand which in turn gives a nonuniform sheet. In addition the discharged web will not pin well to the belt because it has lost most of its charge.
  • the target plate In general the target plate must be of such dimensions that in cooperation with the vapor blast, it will guide the mechanically opened web into the electrostatic charging zone, which zone must be sufficiently removed from possible interfering grounded structures such as spinneret 10 or baffle 18 so that shorting out of the gun does not occur.
  • the two critical electrostatic requirements placed upon the laydown surface are:
  • That an intense electric field can emanate from or be transmitted through the laydown surface toward the approaching fibers.
  • ion density is determined primarily by the value of corona current.
  • Web charging results from impingement of ions onto the fibers as the ions move toward the grounded target electrode. Approximately 10-15 percent of the total corona current is carried away as charge on the fibers because the projected web area is small compared to the cross-section of the ion stream.
  • the optimum web charge for a given combination of apparatus, polymer and solvent may be determined by considering the relationship of target plate current versus web charge. Three relationships are shown in FIG. 8 for two different ion guns, the equipment being otherwise identical, where one gun is operated during two different polymer flow rates. In each instance the clearance between the points of needles 25 and target plate is 1.5 inches. Other dimensional and operational variations for each of curves A, B and C are listed in Table I below, where polymer flow rate is in pounds per hour and target aim is the distance in inches from a point on target plate 20 directly opposite the point of needle to the bottom edge of target plate 20.
  • the necessary data are obtained from spinning experiments wherein the electric potential (in kilovolts) between ion gun and neutral ground is increased incrementally, and the target plate current (observed at 26 in microamperes) and the web charge (in microcoulombs/gram) are determined and recorded. Web charges are determined by collecting the web after it leaves the target plate and before it reaches the collecting belt for a given period of time in a Faraday pail. The potential relative to ground to which the pail rises during the collecting period is measured by an electrostatic voltmeter (e.g. Rawson type 518, Rawson Electrical Instruments Co., Cambridge, Mass).
  • an electrostatic voltmeter e.g. Rawson type 518, Rawson Electrical Instruments Co., Cambridge, Mass.
  • a high quality capacitor is connected across the input terminals of the voltmeter to provide an on-scale deflection of the voltmeter corresponding to the accumulated charge.
  • This value of capacitance is normally substantially larger than the total other capacitances in the metering circuit. From the well known relationship between voltage, charge and capacitance, the charge collected per gram is calculated as follows:
  • the process and apparatus of this invention are particularly useful for flash-spinning in a solvent laden atmosphere. It is desirable to spin into an atmosphere containing less than 30 percent air (more than 70 percent gaseous solvent). Spinning of this type must be done with polymer/solvent combinations that separate rapidly on cooling. It is then possible to spin into a closed chamber and have adequate solidification and crystallization of the fiber structure.
  • a solution of linear polyethylene and trichlorofluoromethane (Freon-ll of Du Pont) may be spun into a closed chamber, whereupon the web is spread by a baffle or shroud, is charged electrostatically, and is deposited on a moving belt. The gaseous solvent may then be recovered by compression and condensation without difficulty. In the open ventilated cells previously used this would have been much more difficult because of the large amount of air present.
  • EXAMPLE A plexifilament of linear polyethylene was spun from a solution containing 12.5 percent-i 0.3 percent linear polyethylene by weight, and 87.5 percent i 0.3 percent trichlorofluoromethane (Freon-l l and 1,750 ppm of an antioxidant (Irganox No. 1010).
  • the solution was pumped continuously through a pipeline to a single spinneret pack.
  • the solution was delivered to the spinneret pack at a temperature above the boiling point and at a pressure close to the critical pressure of the solvent.
  • the solution was spun through a spinneret of the type shown in FIGS. 2, 3 and 4 at a rate equivalent to 35.0 35.8 lbs/hour of polymer.
  • the solvent evaporated and a plexifilament was formed.
  • This plexifilament was spread and directed downward into a vertical path by passage over the rotary baffle 18.
  • the combined action of the expanding solvent gas and the curved surface of the baffle spread the plexifilament into a wide web.
  • This web then traversed annular target plate 20.
  • the target plate outer diameter was 19.0 cm. and the inner diameter was 14.0 cm.
  • the outer trailing edge of the target plate comprised a bead of non conductive epoxy resin set into the rim of the target plate as shown in FIG. 4.
  • the bead width in the plane of the target face was 0.32 cm.
  • the web was directed downward across the trailing edge 58 and continued toward a continuously moving collecting belt of wire mesh traveling at 60 ft./min.
  • the spread web was exposed to the ionized atmosphere between negatively charged ion gun 22 and target plate 20' during passage and thereby collected a negative charge.
  • the ion gun was a U-shaped device having 24 needles spaced 0.95 cm. apart. In this experiment the needles were attached directly to a common power source and no resistors were used in the needle connections.
  • the curved portion of the U-shaped ion gun was semi-circular and concentric with the annular target plate.
  • the needle points were located opposite the target plate 1.43 cm. from the outer edge (including 0.32 cm of epoxy rim and 1.11 cm. of metal). The needle points were 1.59 cm. from the target plate surface.
  • the collecting belt was either positively charged or was neutral (grounded), depending upon the particular test items. A number of test conditions were studied and are recorded in Table II.
  • the spinneret pack included a letdown chamber and a letdown orifice upstream of the final orifice 14.
  • the letdown orifice was 0.035 inch (0.889 mm.) in diameter and passed through a land 0.025 inch thick (0.635 mm.).
  • the letdown chamber volume was 24 emf.
  • the final orifice was 0.030 inch (0.762 mm.) in diameter and the land for the final orifice was 0.25 inch (0.635 mm).
  • the solution was provided to the letdown orifice at a temperature of l85.5C. and a pressure of 1,750 1,800 psig (123.5 to 127.0 kg./cm.
  • the solution passed then through the letdown orifice into the letdown chamber, which was maintained at a pressure of 1,050 psig. Finally, the solution passed from the spinneret orifice into a cylindrical tunnel (not shown) in the conical end of the spinneret pack.
  • the tunnel was concentric with the orifice hole. The tunnel diameter was 0.188 inch (0.478 cm.) and the length was 0.188 inch (0.478 cm.).
  • the spinneret pack was located with the orifice 13 inches (33.0 cm.) above the belt. The bottom of the target plate was 2.7 inches (6.86 cm.) below the orifice.
  • the Freon concentration in the closed chamber surrounding the spinneret pack was about 93 to 96 percent by volume, the remainder being mostly air.
  • the charged web was collected on the moving belt and was consolidated by passage under a roll at the end of the belt which provided a pressure of about 34 lbs/linear inch (6.1 kg./cm.).
  • the roll diameter was 9.65 inches (24.5 cm.).
  • the roll temperature was about 55C.
  • Baffle 18 as shown in FIG. 3 contains three lobed fillet portions. As the baffle turned about its axis, these lobed portions diverted the plexifilaments either to the left or right of the center line, providing an oscillating motion in the strand. The fibrous strand was therefore deposited in oscillating fashion on the belt in multidirectional over-lapping layers.
  • the belt was forwarded at a speed of ft./min. and the baffle turned at a speed of 1,400 revolutions/min; consequently several multidirectional layers were collected at each point along the length of the sheet at its center of width. In a commercial operation sheet of much greater width may be obtained by depositing overlapping layers of plexifilaments from many spinnerets on a single belt.
  • the annular target plate 20' was adapted to rotate at a speed of 2.3 revolutions/min. about an axis concentric with the rotating baffle axis.
  • the target plate was provided with a wicking device (not shown) which coated the surface of the target with Zelec U.N. lubricant, a conductive liquid which was beneficial for maintaining a uniform conductive path to ground during the test.
  • the target plate was grounded through conductor 24.
  • a microammeter was provided between a power pack and U-shaped ion gun 22.
  • a microammeter was provided between the conductive collecting belt and either ground potential or a positive DC source.
  • 1, is the belt current in microamperes, Wis the weight in grams of fiber passing between the ion gun and target plate per second, Q is the charge expressed in microcoulombs per gram.
  • Table II shows the width of the deposited swath and the range in width with ion gun currents from 100 up to about 500 microamperes.
  • the sheet width was measured outside the spinning enclosure over a period of time and the maximum and minimum values were recorded.
  • the width of the sheet included all of the deposited web regardless of thickness. In Table II no range is shown when the width varies less than 0.5 inch.
  • the basis weight averages for the sheets reported in Table II were obtained from circular samples eachl inch (2.54 cm.) in diameter. The samples were cut from approximately the center of the collected sheet width. In each case the basis weight average was determined from 120 samples in three rows of 40, the samples in each row being taken 6 inches (15.24 cm.) apart along the length of the sheet. The rows were 3 inches (7.62 cm.) apart in the cross-sheet direction.
  • the uniformity of the swath was determined both by swath width uniformity in the deposited sheet and by visual observation of the network midway between target plate and collecting belt. Uniformity was satisfactory for ion gun currents of 100 to 325 microamperes. With still higher ion gun currents the fiber appeared to be non-uniformly distributed in the swath. Also under conditions of ion gun current greater than 325 microamperes a continuous spark discharge occurred between the target plate trailing edge and the fiber which had already left the edge. This was readily observed by darkening the spinning cell. These observations are recorded in Table II. It is believed that this lightning or spark discharge is responsible for a loss in fiber charge. A discharge of lesser significance occurs at lower ion gun currents usually in the form of an even glow from the trailing edge of the target when viewed in the dark. All of these discharges from the target plate edge are termed secondary corona.
  • FIG. 7 is a curve plotted from the data of Table II for items with zero belt potential.
  • the abscissa indicates the ion gun current as measured by a microammeter in the negative DC power supply to the ion gun.
  • Three ordinates dimensions are shown on the figure.
  • One of these is belt current.
  • the belt current was the current measured by the microammeter 29 between the belt structure and positive DC source 37 as shown in FIG. 1 or it was the current measured by microammeter 29 directly to ground when the belt was not charged.
  • Other parameters which were derived from belt current are shown in FIG. 7. These are Web Charge, as determined by the formula already described and Percent Peak Web Charge.
  • the peak web charge is identified by Point l2I in FIG. 7. It will be obvious that Point 121 indicates not the maximum charge recorded, but the maximum sustainable charge.
  • the measured belt current fluctuates when measurements are taken over a period of time. It is believed that the fluctuations are due to differences in web charge which is brought to the belt by the plexifilament material. A high charge is carried to the belt when the amount of lightning discharge is low. Such conditions are represented by the upper curve marked moderate secondary corona. If a greater amount of lightning discharge occurs while the belt current is being measured the current levels indicated by the lower curve will occur. In practice of course the charge level for conditions to the right of Point 121 oscillates randomly between the upper and lower curve. For the purpose of clarity the peak charge is identified as the maximum sustainable charge as represented by Point 121. The percent of peak charge at any operating condition is determined by dividing the given charge by the peak charge and multiplying the resulting fraction by 100. The charge level is calculated from belt current by use of the formulas already described.
  • Example I By comparison of the swath width and standard deviation values of Table II with the curves of FIG. 7, one may determine optimum operating conditions for the process.
  • the process of Example I In order to achieve maximum swath width while still obtaining low standard deviation in basis weight (Items 40 to l2I of Table II) the process of Example I must be operated at conditions represented in FIG. 7 by ion gun currents between 225 and 325 microamperes. In this operating range the fiber accumulated a charge of 6.75 to 9.00 microcoulombs per gram which is to percent of the maximum sustainable charge for the system operating with belt at ground potential.
  • the process of the invention may be operated with a conductive target plate having either a non-conductive trailing edge as in the example, or a conductive trailing edge.
  • a target plate that has a conductive trailing edge lightning occurs at a lower current level than for a plate having an insulated trailing edge.
  • Charging curves obtained with a target plate having conductive trailing edge are depicted in FIG. 8. While this target plate is very satisfactory, the target plate with an insulated rim is preferred, since a higher peak charge may be obtained. This follows from the fact that there is no longer a conductive sharp edge to permit high field concentration between the plexifilament web and the target plate edge or between the ion gun and the target plate edge. Higher charge levels are beneficial for obtaining greater spreading of the network. Of course when operating the target plate with a non-conductive edge, one should be especially careful to operate under conditions on the left side of the charging curve depicted in FIG. 7. In this way lightning is avoided and a higher peak charge is obtained than can be obtained with a conductive edge.
  • the target plate should be kept clean during operation, and efficient conductive paths to ground should be maintained.
  • the target plate can be provided with a scraper to remove deposits at a point outside of the corona discharge area.
  • the target plate should have a smooth surface to avoid field concentrations at pits or points.
  • the surface may be coated with a liquid conditioning material supplied through a wick. Because of the importance of a clean, smooth surface, the target plate should preferably be pre-conditioned by lapping with an abrasive material such as a 500 grit abrasive cloth before use in the spinning apparatus.
  • trailing edge of the plate be flat. While the flat edge is illustrated to be either straight or circular, other edge shapes may be used, provided aerodynamic and electrostatic non-uniformity is avoided.
  • a fixed or oscillating baffle is suitable as is a shrouded spinneret device or combination of shroud and baffle.
  • Arrangement of the mechanical opening means and target plate in such manner as to prevent recycling vapors from lifting the web away from the plate during its advance is particularly desirable. While the system illustrated shows the imposition of a negative charge on the web while it travels its path of advance, and a positive charge on the collecting surface, these polarities may be reversed.
  • a process comprising: flash extruding a solution of organic polymeric material intoa gaseous atmosphere to form a plexifilamentary web; spreading the web; passing the spread web through an ionized zone created by a corona current between a multi-point ion gun and a grounded target electrode to charge the web, said web being passed in brushing contact with said target electrode, said ion gun being connected to an electric potential for initiating and maintaining said current; maintaining said current at a level for depositing a charge on said web of from about 75-100 percent of a peak charge, said level being below that level for producing said peak charge and depositing the web on a moving collecting surface located below said gun and said electrode.

Abstract

A process for spreading, electrostatically charging, and forwarding a fibrous web concomitantly formed with a vapor blast. The web is charged by passing it through a highly ionized zone created by a corona discharge between an ion gun and a target plate. The electrical potential between the ion gun and target plate causes current to flow which is sufficient to deposit a charge on the web which is preferably 75 to 100 percent of the maximum sustainable charge, but low enough to avoid loss of web charge through secondary corona discharge between the target plate and the web.

Description

United States Patent Hollberg et al. Sept. 5, 1972 541 PROCESS FOR FORMING A [56] References Cited NONWOVEN WEB UNITED STATES PATENTS [72] Inventors: Herbert John Hollberg, Richmond,
v John Edward Owens, Hockes- 3,081,519 3/ 1963 Blades et al. ..264/5 i D l. 2,810,426 10/1957 Till et al. ..264/24 2,048,651 7/1936 Norton ..264/D[G. 75 [731 Asslgnw Nemours and 2,336,745 10/1943 Manning ..264/DIG. 75
pany, Wilmington, Del. 22 Filed; June 10, 7 Primary Examiner-Robert F. White Assistant Examiner-W. E. Hoag PP Attorney-Howard P. West, Jr.
Related US. Application Data [57] ABSTRACT v [63] Continuation of Ser. No. 735 889 June 10 A process for. spreading, electrostatlcally charging, 1968 abandoned whlch a a and forwarding a fibrous web concomitantly formed part of June 4 with a vapor blast. The web is charged by passing it No. 3,387,326. 7 through a highly ionized zone created by a corona discharge between an ion gun and a target plate. The
[52] U.S.Cl. ..264/24, 28/72.12, 28/76, electrical potential between the ion gun and target 264/53264/ 121 plate causes current to flow which is sufficient to. [51] ll'lt. Cl. ..D04h 3/03 I deposit a charge on the web which s preferably 75 to Fleld of Search 53, percent of the maximum ustainable charge but 18/8 E, 8 W, 8 B; 28/72 .12-, 76
low enough to "avoid loss of web charge through secondary corona discharge between the'target plate and the web.
5 Claims, 8 Drawing Figures PA'IENTEMEP'BM O 3.689.808
snztnuia I ll/l/ll/l/l/fl/l ll/ I TO SOLVENT RECOVERY POLYMER SOLUTION SUPPLY HERBERT JOHN HOLLBER'G JOHN EDWARD OWENS BY 1 Mai ATTORNEY PATENTEDSEP T972 3. 689 .608 SHEET 3 or 5 0 I20 I40 I60 I80 200 220 TARGET PLATE CURRENT INVENTORS HERBERT JOHN HOLLBERG JOHN EDWARD OWENS BY NW ATTORNEY PROCESS FOR FORMING A NONWOVEN WEB CROSS REFERENCES TO RELATED APPLICATIONS This application is a continuation of U.S. application Ser. No. 735,889, filed June 10, 1968 and now abandoned, which is a continuation-in-part of U.S. application Ser. No. 372,623, filed June 4, 1964 now U.S. Pat. No. 3,387,326.
BACKGROUND OF THE INVENTION This invention concerns a novel and useful process for charging fibrous webs in an electrostatic field and depositing the webs uniformly in overlapping layers on a moving surface to form a nonwoven sheet.
The process described and claimed herein is particularly useful in charging webs of a continuous fibrillated strand described in U.S. Pat. No. 3,081,519 to Blades and White. This web is prepared by flash extrusion of a solution of crystallizable polymer. In the flash extrusion process the strand is formed by extruding a homogeneous solution of a fiber-forming polymer dissolved in a liquid. The solution, at a temperature above the normal boiling point of the solvent and at autogeneous or greater pressure, is extruded into a medium of lower temperature and substantially lower pressure. The vaporizing liquid within the extrudate forms bubbles, breaks through confining walls, and cools the extrudate, causing solidification of the polymer.
The resulting fibrous web is a multifibrous yarn-like strand having an internal fine structure or morphology which may be characterized as a 3-dimensional integral plexus consisting of a multitude of essentially longitudinally extended interconnecting, random-length fibrous filaments, hereafter referred to as film-fibrils. These film-fibrils have the form of thin ribbons with an average thickness less than about 4 microns. The filmfibril elements often found as aggregates, intermittently unite and separate at irregular intervals called tiepoints" in various places throughout the width, length, and thickness of the strand to form an integral 3-dimensional plexus. The film-fibrils are often rolled or folded about the principal film-fibril axis, giving the appearance of a fibrous material when examined without magnification. The strand comprising a 3-dimensional network of film-fibril elements is referred to as a plexifilament. The plexifilaments are unitary, i.e. the strands are one continuous piece of polymer, and the elements which constitute the strand are interconnected. They can be produced in essentially endless lengths in deniers as low as or as high as 100,000 or even higher.
The plexifilament of Blades and White may be collected in the form of a nonwoven fibrous sheet and may be consolidated by cold or hot calendering to provide useful sheet products. These products and the process for making them are described in Steuber U.S. Pat. No. 3,169,899. This patent describes an electrostatic device for promoting attraction of the strand to a collecting belt. The device is very satisfactory for preparing nonwoven fibrous sheets with exceptional strength. However, in further developing the process, it has become evident that improvements are needed to provide a high degree of dispersion and uniformity in sheets destined for certain uses. These improvements are needed particularly when the sheet is to be used in printing papers, book covers and wall coverings. It has been discovered that the requirements for aerodynamic stability of the fine fibril network and'the requirements for uniform electrostatic charging are somewhat in opposition to each other. These requirements must therefore be carefully matched for production of uniform sheets.
SUMMARY OF THE INVENTION The purpose of the present invention is to provide an improved aerodynamic and electrostatic process for spreading and charging a plexifilament strand and for depositing the strand in the form of a nonwoven sheet with a high degree of dispersion and uniformity.
In the process of the invention the flash spinning, spreading, and depositing operations are conducted in a closed chamber to provide a uniform high dielectric atmosphere. A freshly spun plexifilament strand and the accompanying expanding solvent gas are directed from the spinneret to a spreading zone created by a baffle or other confining surface whereby the plexifilament strand is opened into a wide configuration. The spread strand is passed in a path of advance directly from the spreading means into a highly ionized zone created by corona discharge in the atmosphere between an ion gun and a flat target plate. The electric potential between the ion gun and target plate is sufficient to generate a current flow to deposit a charge on the spread strand which is preferably to percent of the maximum sustainable peak charge, but is low enough to avoid disruptive spark discharge or secondary corona discharge between the thin trailing edge of the target plate and the strand. The target plate is placed immediately adjacent to the mechanical spreading means in such manner that the vapor blast from the spinneret guides the web to provide brushing contact with the target. The surface of the target plate is of planar construction, particularly in the area just upstream of the trailing edge. The target plate terminates in a thin trailing edge to provide uniform but minimum aerodynamic turbulence at this point during operation. The ion gun is a structure supporting a plurality of charging needles disposed across the path of advance. The gun is placed opposite the target and mounted in a manner that permits circulation of vapor around it, since during operation the confined gases tend to flow toward the path of advance over the top of the gun. Preferably the face and the top of the gun housing are smooth and shaped to minimize aerodynamic turbulence. The needles are aimed at points which are uniformly spaced from the trailing edge of the target plate by a technique described hereinafter. The spread and charged fibrous web is then deposited on a continuously moving surface, electrically discharged and collected by conventional means such as windup in a roll.
BRIEF DESCRIPTION OF THE DRAWINGS of another apparatus embodiment useful in the practice of the invention.
FIG. 3 is an elevation showing the relative positions of the ion gun, rotary baffle and target plate of FIG. 2, the spinneret nozzle being removed for clarity.
FIG. 4 is an enlarged partially sectioned fragmentary view of FIG. 2, showing the relationship of the conducting needles to the target electrode.
FIG. 5 is a partial cross-sectional schematic elevation illustrating a shrouded spinning orifice useful in separating the plexifilament as spun.
FIG. 6 is an enlarged partially sectioned front elevation of the shrouded opening orifice and target plate of FIG. 5.
FIG. 7 is a curve wherein web charge, percent peak web charge, and belt current are plotted as ordinate vs. ion gun current as abscissa.
FIG. 8 is a series of curves wherein web charge is plotted as ordinate vs. target plate current as abscissa.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS Referring to FIG. 1, a spinneret device 10, connected to a source of polymer dissolved in an organic solvent is shown. Polymer solution 12 under pressure is fed through spinning orifice 14 into web forming chamber 16. The extrudate from spinning orifice 14 is a plexifilament 7. Due to the pressure drop at spinning orifice 14 vaporization of solvent creates a vapor blast which, by virtue of impingement upon baffle 18 concomitantly with plexifilament 7, generally follows the path of advance of the plexifilament 7 from spinning orifice 14 to collecting surface 9, thereby creating a flow pattern within chamber 16 as indicated by the arrows. Baffle 18 is oscillatably mounted and is powered to oscillate by means not shown. While oscillation of the baffle is not essential, it is preferred for the preparation of wide sheets.
As shown target plate 20 and ion gun 22 are disposed on opposite sides of the path of advance of the plexifilament web 7 and downstream from the web forming and mechanical separating devices. Target plate 20 is connected to ground by wire 24 and microarnmeter 26 which indicates target plate current. Ion gun 22 contains multiple needles 25, one of which is shown in FIG. 1. Each needle 25 of ion gun 22 is connected to a negative D.C. source 35 through resistor 19. Each of the resistors is connected to the source of power through conductor 21. Millameter 23 serves to measure ion gun current. A negative D.C. source in the range of from 45 to 70 kilovolts may be used. Target plate 20 is so disposed that the vapor blast originating at spinning orifice l4 and the air flow pattern in Chamber 16 carries plexifilament web 7 in brushing contact with its charging surface. After passing through an ionized charging zone created by a corona discharge between ion gun 22 and target plate 20, the charged plexifilament web 7 is deposited on collecting surface 9. The surface illustrated is a continuous belt forwarded by drive rolls 36. The belt is given an opposite charge to that imposed on web 7 by means of D.C. source 37 which is connected to the collecting apparatus through milliameter 29 and lead 27. Due to the opposite polarity between web 7 and surface'9 the web in its arranged condition clings to the surface as sheet 38 with sufficient force to overcome the disruptive influences of whatever vapor blast may reach this area. Surface 9 carries sheet 38 past compacting roll 44 and feeds the sheet out of chamber 16 through port 39 where it is collected on windup roll 42. Flexible elements 40 across port 39 assist in the retention of vapor within chamber 16. Roller seals or labyrinth seals may also be used. A conventionalsolvent recovery unit 43 may be beneficially employed to improve economic operation.
Alternate apparatus embodiments useful in the practice of the invention are shown schematically in FIGS. 2-6. Referring to FIG. 2, the extrudate from orifice 14 is carried around the curved surface of a lobed baffle 18 into brushing contact with the surface of an annular target electrode 20'. Baffle 18' is continuously rotated to impart oscillatory movement to the network of film fibril material as it is deflected from the lobed surface. Annular target electrode 20' is coupled, for rotary movement about baffle 18' by means of ring 50 and pinion gear 52 attached to driven shaft 54. Target electrode 20 is connected to lead 24 through a contacting carbon brush 56. Ion gun 22' is U-shaped and is connected to a negative D.C. source through lead 24. FIG. 3 shows the arrangement of U-shaped ion gun 22 opposite annular target electrode 20' with the baffle 18 centered within the electrode. Needles 25 are arranged in the lower tubular portion of the ion gun 22 such that the axes of the needles are generally perpendicular to the surface of target electrode 20 (FIG. 4).
An alternative mechanical spreading arrangement is illustrated in FIGS. 5 and 6 where spinning orifice 14 is surrounded by a shroud 15 having a stepped slot 17 therethrough. The plexifilament on extrusion tends to open and follow the stepped contour of slot 17. The extrudate can be impinged on a fixed or moving baffle or directed along the path of advance without baffling (as shown) when the shrouded orifice is employed to spread the web. Other shapes for slot 17 may be successfully employed as for example, a bell or a conical shape. Positioning of ion gun 22 is important to obtain maximum charging efficiency and also to avoid web bunching and flicking which are detrimental to sheet uniformity. Bunching is a small pileup which occurs when a web passing down a target plate is slowed by pinning forces. Flicking occurs when fast moving web hits this bundle and flips it away from the target plate, sometimes resulting in hangup on the needle point 25 and always discharging the web unevenly. Thus, although a short distance between needlepoint 25 and target plate 20 provides a relatively low voltage requirement to produce a given target plate current, close spacing can only be tolerated if web flicking and bunching is held to a minimum. The problems are particularly acute in the production of sheets from plexifilamentary structures due to the fluffy nature of the plexifilament which makes it particularly susceptible to irregularities caused by non-uniform aerodynamic or electrostatic patterns. Use of a baffle or spinneret shroud helps to spread and thereby dissipate the vapor blast that flashes from the spinneret. A high velocity vapor stream at the collecting surface otherwise disarranges deposited webs and causes them to roll. Thus a smooth pattern of vapor flow within chamber 16 is important to assist in the orderly forwarding of plexifilament 7 along its path of advance from spinning orifice 14 to collecting surface 9 while avoiding interference with the plexifilament at the collecting surface. Equipment shapes to promote these aerodynamic desirata are important for efficient and high speed operation. For instance the targets 20, 20' shown in FIGS. 1 and 4 terminate in a thin edge, and the target surface is planar just upstream of the edge, such a shape being important to promote smooth vapor flow despite the electrical discharge known to be associated with sharp edges. A thin layer 58 of epoxy resin at the outer edge of the target electrode 20' as illustrated in FIG. 4 is useful in reducing secondary ionization at the edge of the target electrode by eliminating a sharp conductive edge. Use of a resistor 19 in series with each needle has been found to provide needle-to-needle current uniformity important in the production of uniform sheet products especially when operating at a low current per needle. Operation below about microamperes per needle is desirable when using an ion gun with resistors separating each needle from the current source. With needle separation of about three-eighths inches in an ion gun of this type, between about 6 and 8 microamperes per needle is used for depositing a linear polyethylene plexifilarnent. The ion gun with a resistor in series with each needle provides a high impedance circuit to each needle point so that normal fluctuations in the effective dynamic resistance of corona discharge have little effect on emitted current. In a typical ion gun/target configuration the effective dynamic resistance of corona discharge is about 60 megohms, whereas the resistance 19 placed in series with each point is typically 600 megohms. Use of the resistors makes the needle-toneedle current variations much less sensitive to such factors as point/target spacing, point wear, point contamination, and point-to-point spacing.
The position of needles 25 with reference to target plate 20 is important for efficient operation. It will be apparent that the clearance between the needle points and plate 20 should be as small as efficient operation will permit. Generally a clearance of from about 0.4 to about 2 inches (1 to 5 cm.) is satisfactory although this will vary with the design and capacity of the particular equipment. It has been found convenient in adjusting positioning of gun 22 opposite to target plate 20 to create a carbon black deposit on target plate 20 by spraying powdered carbon black into the operating area between the plate and the gun. An oval pattern is outlined by carbon deposits opposite each needle indicating the area of electrostatic influence of each needle under the particular conditions employed. Such a pattern of carbon deposit 13 is shown in FIG. 6. The patterns laid down by single points are centered the same distance apart as the needles, are oval shaped, and have a height of about 2.5 cm. and a width of about 0.6 cm. Smoothest operation of the equipment with uniform laydown occurs when the above-mentioned test patterns are centered at a distance between onehalf in. (1.3 cm.) and three-fourths in. (1.9 cm.) from the bottom edge of the target. Placement of the ion gun at a point further upstream results in pinning or clinging of the web to the target plate because of field concentration between the already charged fiber and the thin edge. This results in bunching for an instant, an uneven discharge across the web width, and a falling free of the bunched web to give a nonuniform sheet. In addition, when the gun is aimed further upstream on the target plate, the web charge curve is very abrupt as will be demonstrated hereinafter, making the process more difficult to control. On the other hand if the ion gun is aimed too near the trailing edge of the target plate, secondary ionization will develop at the edge of the target plate providing positively charged ions which will discharge the web unevenly. The web will then collapse and give a ropey strand which in turn gives a nonuniform sheet. In addition the discharged web will not pin well to the belt because it has lost most of its charge. In general the target plate must be of such dimensions that in cooperation with the vapor blast, it will guide the mechanically opened web into the electrostatic charging zone, which zone must be sufficiently removed from possible interfering grounded structures such as spinneret 10 or baffle 18 so that shorting out of the gun does not occur.
In general, in providing field-assisted laydown of plexifilament 7, three methods may be used to produce strong electrostatic pinning forces on the charged fibers:
1. Use of a conductive laydown roll or belt, insulated from ground and raised to a high potential (e.g., KV).
2. Use of a semiconductive laydown belt, in contact with a stationary electrode to which a high potential is connected.
3. Use of a porous woven belt of insulating material in contact with an electrode to which a high potential is connected.
The two critical electrostatic requirements placed upon the laydown surface are:
1. That an intense electric field can emanate from or be transmitted through the laydown surface toward the approaching fibers.
2. That the current produced by neutralization of charged fibers at the laydown surface have a path to ground. In the case of method 3 above, the path is through the interstices of the woven belt, wherein vapor is made conductive as a result of ionization occurring at the laydown surface.
Two requirements for effective charging are a high density of ions of a single polarity and a high electric field intensity in the vicinity of the fibers. For a given ion gun-target plate geometry, ion density is determined primarily by the value of corona current. Web charging results from impingement of ions onto the fibers as the ions move toward the grounded target electrode. Approximately 10-15 percent of the total corona current is carried away as charge on the fibers because the projected web area is small compared to the cross-section of the ion stream. To place the highest charge on a given mass of web it is necessary to have the fibers close to the target electrode so that the field force lines from the charges on the fiber are directed preferentially toward ground, This directionality of field force in effect reduces the field force component that tends to repel additional ions and prevent them from depositing on the fiber surface. Very little charge is lost through web contact with the target electrode surface. The negative ions impinge on the side of the fibers away from ground, and conductivity of the fibers is too low to leak much of the charge to the target. In addition, it is probable that a thin layer of solvent vapor lubricates the target, keeping most of the fibers out of direct contact with it.
The optimum web charge for a given combination of apparatus, polymer and solvent may be determined by considering the relationship of target plate current versus web charge. Three relationships are shown in FIG. 8 for two different ion guns, the equipment being otherwise identical, where one gun is operated during two different polymer flow rates. In each instance the clearance between the points of needles 25 and target plate is 1.5 inches. Other dimensional and operational variations for each of curves A, B and C are listed in Table I below, where polymer flow rate is in pounds per hour and target aim is the distance in inches from a point on target plate 20 directly opposite the point of needle to the bottom edge of target plate 20.
The necessary data are obtained from spinning experiments wherein the electric potential (in kilovolts) between ion gun and neutral ground is increased incrementally, and the target plate current (observed at 26 in microamperes) and the web charge (in microcoulombs/gram) are determined and recorded. Web charges are determined by collecting the web after it leaves the target plate and before it reaches the collecting belt for a given period of time in a Faraday pail. The potential relative to ground to which the pail rises during the collecting period is measured by an electrostatic voltmeter (e.g. Rawson type 518, Rawson Electrical Instruments Co., Cambridge, Mass). A high quality capacitor is connected across the input terminals of the voltmeter to provide an on-scale deflection of the voltmeter corresponding to the accumulated charge. This value of capacitance is normally substantially larger than the total other capacitances in the metering circuit. From the well known relationship between voltage, charge and capacitance, the charge collected per gram is calculated as follows:
where:
q =web charge level, microcoulombs/gm C capacitance, microfarads V= indicated voltage, volts t =sampling time, seconds W=throughput of the web gm/sec From a consideration of the curves it will be noted that increasing web charge is obtained with increasing target plate current (obtained by increasing potential) until a peak is reached. Thereafter secondary ionization becomes significant and it becomes then increasingly difficult to retain a charge on the web. Secondary ionization is characterized by a glow discharge at the trailing edge of the target plate between the target plate and film-fibrils as they leave the target plate. For uniform web formation it is preferred to operate at a voltage between ion gun and neutral ground that will provide a web charge between about percent and percent of peak value under non-secondary ionization conditions. The sharp peak of curve A is typical of the condition wherein needles 25 are aimed too far upstream from the edge of target plate 20. Under these conditions it is relatively difficult to maintain a constant charge on successive portions'of the web and across the width of the web. Much more satisfactory control is obtained in situations such as those shown in curves B and C. In all of the curves A, B and C increasing the target plate current above the peak charge level for the web has detrimental effects in that the web tends to pin or cling to the target plate resulting in bunching and flicking which are detrimental to the sheet uniformity. This occurs because of secondary ionization which causes non-uniform loss of charge, uneven collapse, and uneven laydown, the plexifilament 7 tending to roll during laydown if it is not properly electrostatically held to the collecting belt. This causes a sheet of poor uniformity and rope-like fiber bundles appear in the sheet.
It is to be noted that very high charge levels are obtained on plexifilamentary webs compared to solid fibers melt-spun at the same corona current level. For example, one can obtain a charge of 5 microcoulombs/gram on linear polyethylene plexifilament with only microamperes of current with a 25 point gun (6 microamps per corona point). Typical melt spun fibers such as those described in US. Pat. No. 3,341,394 to Kinney require a current of 50 to 75 microamperes/point to obtain charges at this level.
The process and apparatus of this invention are particularly useful for flash-spinning in a solvent laden atmosphere. It is desirable to spin into an atmosphere containing less than 30 percent air (more than 70 percent gaseous solvent). Spinning of this type must be done with polymer/solvent combinations that separate rapidly on cooling. It is then possible to spin into a closed chamber and have adequate solidification and crystallization of the fiber structure. Thus, a solution of linear polyethylene and trichlorofluoromethane (Freon-ll of Du Pont) may be spun into a closed chamber, whereupon the web is spread by a baffle or shroud, is charged electrostatically, and is deposited on a moving belt. The gaseous solvent may then be recovered by compression and condensation without difficulty. In the open ventilated cells previously used this would have been much more difficult because of the large amount of air present.
EXAMPLE A plexifilament of linear polyethylene was spun from a solution containing 12.5 percent-i 0.3 percent linear polyethylene by weight, and 87.5 percent i 0.3 percent trichlorofluoromethane (Freon-l l and 1,750 ppm of an antioxidant (Irganox No. 1010). The solution was pumped continuously through a pipeline to a single spinneret pack. The solution was delivered to the spinneret pack at a temperature above the boiling point and at a pressure close to the critical pressure of the solvent. The solution was spun through a spinneret of the type shown in FIGS. 2, 3 and 4 at a rate equivalent to 35.0 35.8 lbs/hour of polymer. As the solution passed in a horizontal direction through orifice 14' into the atmosphere of the enclosure, the solvent evaporated and a plexifilament was formed. This plexifilament was spread and directed downward into a vertical path by passage over the rotary baffle 18. At the same time the combined action of the expanding solvent gas and the curved surface of the baffle spread the plexifilament into a wide web. This web then traversed annular target plate 20. The target plate outer diameter was 19.0 cm. and the inner diameter was 14.0 cm. The outer trailing edge of the target plate comprised a bead of non conductive epoxy resin set into the rim of the target plate as shown in FIG. 4. The bead width in the plane of the target face was 0.32 cm. The web was directed downward across the trailing edge 58 and continued toward a continuously moving collecting belt of wire mesh traveling at 60 ft./min.
The spread web was exposed to the ionized atmosphere between negatively charged ion gun 22 and target plate 20' during passage and thereby collected a negative charge. The ion gun was a U-shaped device having 24 needles spaced 0.95 cm. apart. In this experiment the needles were attached directly to a common power source and no resistors were used in the needle connections. The curved portion of the U-shaped ion gun was semi-circular and concentric with the annular target plate. The needle points were located opposite the target plate 1.43 cm. from the outer edge (including 0.32 cm of epoxy rim and 1.11 cm. of metal). The needle points were 1.59 cm. from the target plate surface. The collecting belt was either positively charged or was neutral (grounded), depending upon the particular test items. A number of test conditions were studied and are recorded in Table II.
The spinneret pack included a letdown chamber and a letdown orifice upstream of the final orifice 14. The letdown orifice was 0.035 inch (0.889 mm.) in diameter and passed through a land 0.025 inch thick (0.635 mm.). The letdown chamber volume was 24 emf. The final orifice was 0.030 inch (0.762 mm.) in diameter and the land for the final orifice was 0.25 inch (0.635 mm). The solution was provided to the letdown orifice at a temperature of l85.5C. and a pressure of 1,750 1,800 psig (123.5 to 127.0 kg./cm. It passed then through the letdown orifice into the letdown chamber, which was maintained at a pressure of 1,050 psig. Finally, the solution passed from the spinneret orifice into a cylindrical tunnel (not shown) in the conical end of the spinneret pack. The tunnel was concentric with the orifice hole. The tunnel diameter was 0.188 inch (0.478 cm.) and the length was 0.188 inch (0.478 cm.). The spinneret pack was located with the orifice 13 inches (33.0 cm.) above the belt. The bottom of the target plate was 2.7 inches (6.86 cm.) below the orifice.
During the spinning operation the Freon concentration in the closed chamber surrounding the spinneret pack was about 93 to 96 percent by volume, the remainder being mostly air. The charged web was collected on the moving belt and was consolidated by passage under a roll at the end of the belt which provided a pressure of about 34 lbs/linear inch (6.1 kg./cm.). The roll diameter was 9.65 inches (24.5 cm.). The roll temperature was about 55C.
Baffle 18 as shown in FIG. 3 contains three lobed fillet portions. As the baffle turned about its axis, these lobed portions diverted the plexifilaments either to the left or right of the center line, providing an oscillating motion in the strand. The fibrous strand was therefore deposited in oscillating fashion on the belt in multidirectional over-lapping layers. The belt was forwarded at a speed of ft./min. and the baffle turned at a speed of 1,400 revolutions/min; consequently several multidirectional layers were collected at each point along the length of the sheet at its center of width. In a commercial operation sheet of much greater width may be obtained by depositing overlapping layers of plexifilaments from many spinnerets on a single belt.
The annular target plate 20' was adapted to rotate at a speed of 2.3 revolutions/min. about an axis concentric with the rotating baffle axis. The target plate was provided with a wicking device (not shown) which coated the surface of the target with Zelec U.N. lubricant, a conductive liquid which was beneficial for maintaining a uniform conductive path to ground during the test. The target plate was grounded through conductor 24. A microammeter was provided between a power pack and U-shaped ion gun 22. In addition, a microammeter was provided between the conductive collecting belt and either ground potential or a positive DC source.
In this series of experiments the spinneret pack of FIGS. 2 to 4 was located over a moving belt similar to the one shown in FIG. 1. The belt current measured by microammeter 29 was used to indicate extent of fiber charging. Some of the test items were run with no applied voltage on the belt and others were run with 15 kilovolts positive potential applied (oppositely charged relative to fiber). In either case the belt mechanism was electrically insulated from ground except for the path through microammeter 29 or through both microammeter 29 and positive direct current source 37. It has been found that substantially all of the current flowing from the ion gun is collected by either the target plate or by the collecting belt; thus where 1,, equals the ion gun current, 1,, equals target plate current to ground, and 1,, equals belt current to ground. The charge on the fibers was calculated from the belt current I,, and the polymer flow rate W by means of the equation:
wherein 1,, is the belt current in microamperes, Wis the weight in grams of fiber passing between the ion gun and target plate per second, Q is the charge expressed in microcoulombs per gram.
The data from this series of experiments are reported in Table II. The various items in Table II are listed in order of increasing ion gun current. The suffix letters A to V indicate the chronologic order, A being first and V being last. It has been found that this order is important in cases where the target plate accidentally becomes coated with polymer residues. These residues may form a hard varnish which in turn tends to change the conductivity of the target plate or tends to promote the formation of high current densities in pin-point areas or cavities on the target plate. This in turn causes spark discharge, low web charge level, and low belt current. A comparison of Items 10A and 11V shows that this condition was avoided. In addition the data in Table II indicate that the current from collecting belt to ground was substantially the same with or without belt potential applied. Compare, for example A with 9B or 8U with 11V.
Now considering the effect of various ion gun current levels on quality of the deposited sheet, Table II shows the width of the deposited swath and the range in width with ion gun currents from 100 up to about 500 microamperes. The sheet width was measured outside the spinning enclosure over a period of time and the maximum and minimum values were recorded. The width of the sheet included all of the deposited web regardless of thickness. In Table II no range is shown when the width varies less than 0.5 inch.
The basis weight averages for the sheets reported in Table II were obtained from circular samples eachl inch (2.54 cm.) in diameter. The samples were cut from approximately the center of the collected sheet width. In each case the basis weight average was determined from 120 samples in three rows of 40, the samples in each row being taken 6 inches (15.24 cm.) apart along the length of the sheet. The rows were 3 inches (7.62 cm.) apart in the cross-sheet direction.
The basis weight uniformity was established by calculation of standard deviation 0' defined by the formu- 2 (X -X) N: n
where Y average basis weight in oz./yd.
X individual basis weight in oz./yd.
n number of samples and Z (X 1?? the summation of the square of the differences between X and X.
The data recorded in Table II showthat the standard deviations were at a minimum with Items 3E through 12I (ion gun current 200 to 325 microamperes). In this same range the maximum sustainable swath width was between 18 and 21 inches (45.8 and 53.2 cm.). In multiple spinneret operations the highest possible swath widths are most desirable since less equipment is required. For this reason in this example Items 4Q through 121 are especiallypreferred (ion gun currents 225 to 325 microamperes and swath widths 19.5 to 21 inches (49.6 to 53.2 cm.). In the discussion of FIG. 7 which follows it will be shown that Items Q through I were obtained under charging conditions which give 75 to 100 percent of the maximum sustainable charge (peakcharge).
The uniformity of the swath was determined both by swath width uniformity in the deposited sheet and by visual observation of the network midway between target plate and collecting belt. Uniformity was satisfactory for ion gun currents of 100 to 325 microamperes. With still higher ion gun currents the fiber appeared to be non-uniformly distributed in the swath. Also under conditions of ion gun current greater than 325 microamperes a continuous spark discharge occurred between the target plate trailing edge and the fiber which had already left the edge. This was readily observed by darkening the spinning cell. These observations are recorded in Table II. It is believed that this lightning or spark discharge is responsible for a loss in fiber charge. A discharge of lesser significance occurs at lower ion gun currents usually in the form of an even glow from the trailing edge of the target when viewed in the dark. All of these discharges from the target plate edge are termed secondary corona.
FIG. 7 is a curve plotted from the data of Table II for items with zero belt potential.
In FIG. 7, the abscissa indicates the ion gun current as measured by a microammeter in the negative DC power supply to the ion gun. Three ordinates dimensions are shown on the figure. One of these is belt current. The belt current was the current measured by the microammeter 29 between the belt structure and positive DC source 37 as shown in FIG. 1 or it was the current measured by microammeter 29 directly to ground when the belt was not charged. Other parameters which were derived from belt current are shown in FIG. 7. These are Web Charge, as determined by the formula already described and Percent Peak Web Charge. The peak web charge is identified by Point l2I in FIG. 7. It will be obvious that Point 121 indicates not the maximum charge recorded, but the maximum sustainable charge. For operating conditions to the right of Point I the measured belt current fluctuates when measurements are taken over a period of time. It is believed that the fluctuations are due to differences in web charge which is brought to the belt by the plexifilament material. A high charge is carried to the belt when the amount of lightning discharge is low. Such conditions are represented by the upper curve marked moderate secondary corona. If a greater amount of lightning discharge occurs while the belt current is being measured the current levels indicated by the lower curve will occur. In practice of course the charge level for conditions to the right of Point 121 oscillates randomly between the upper and lower curve. For the purpose of clarity the peak charge is identified as the maximum sustainable charge as represented by Point 121. The percent of peak charge at any operating condition is determined by dividing the given charge by the peak charge and multiplying the resulting fraction by 100. The charge level is calculated from belt current by use of the formulas already described.
By comparison of the swath width and standard deviation values of Table II with the curves of FIG. 7, one may determine optimum operating conditions for the process. In order to achieve maximum swath width while still obtaining low standard deviation in basis weight (Items 40 to l2I of Table II) the process of Example I must be operated at conditions represented in FIG. 7 by ion gun currents between 225 and 325 microamperes. In this operating range the fiber accumulated a charge of 6.75 to 9.00 microcoulombs per gram which is to percent of the maximum sustainable charge for the system operating with belt at ground potential. I
The process of the invention may be operated with a conductive target plate having either a non-conductive trailing edge as in the example, or a conductive trailing edge. In operating with a target plate that has a conductive trailing edge, lightning occurs at a lower current level than for a plate having an insulated trailing edge.
TABLE II Ion Gun Belt target Sheet weight, ozJyd. Current, Current, lightning Swath micro- Potential, micro- Potential, flashes/ width, Standard Item amperes kilovolts amperes kilovolts min. inches Average deviation,
1C 100 20 1 0 0 1.46 .202 150 -23. 5 O 0 17 1.29 .160 200 26. 5 27 0 0 18 1.15 .142 225 28 30 0 0 19.5 1.10 .142 250 29 33.5 0 0 19.5 1.07 .121 275 30.5 36 0 0 20 1.03 I21 300 32 39 0 6 20.5 1.00 12B 300 32 39 0 6 20.5 .97 115 300 -32.5 39 0 2 20.5 .99 111 300 32 40. 5 +15 20 1.04 I25 300 -31.5 40 415 0 20 .98 W 325 33 40 0 21 .96 12:1 350 34 33-41 0 21 1.02 .169 375 35 29-41 0 13-20 1.10 1 400 35. 5 24-33 0 16. 5-19 1.15 425 --36. 5 25-35 0 16-20 1. 2e 200 450 37. 5 25-35 0 16-19 1. 29 240 475 38 25-35 0 16-20 1. 23 241 500 40 25-35 0 14-19 1. 31 75 1 Almost continuous. 2 Continuous.
Charging curves obtained with a target plate having conductive trailing edge are depicted in FIG. 8. While this target plate is very satisfactory, the target plate with an insulated rim is preferred, since a higher peak charge may be obtained. This follows from the fact that there is no longer a conductive sharp edge to permit high field concentration between the plexifilament web and the target plate edge or between the ion gun and the target plate edge. Higher charge levels are beneficial for obtaining greater spreading of the network. Of course when operating the target plate with a non-conductive edge, one should be especially careful to operate under conditions on the left side of the charging curve depicted in FIG. 7. In this way lightning is avoided and a higher peak charge is obtained than can be obtained with a conductive edge.
It should be noted that the target plate should be kept clean during operation, and efficient conductive paths to ground should be maintained. The target plate can be provided with a scraper to remove deposits at a point outside of the corona discharge area. The target plate should have a smooth surface to avoid field concentrations at pits or points. For example, the surface may be coated with a liquid conditioning material supplied through a wick. Because of the importance of a clean, smooth surface, the target plate should preferably be pre-conditioned by lapping with an abrasive material such as a 500 grit abrasive cloth before use in the spinning apparatus.
While the present invention has been described with particular reference to the formation of sheet products solved and the particular extrusion equipment is not critical. Some suggested alternatives may be found in US. Pat. No. 3,081,519 to Blades and White dated Mar. 19, i963. While the target plate has been described as presenting a flat" surface to the path of advance of the web and the ion gun, plate curvatures and other constructions which do not interfere with the smooth flow of gases and the mechanically opened web across the target plate may be used. It is important for avoiding turbulence as the web leaves the target plate,
that the trailing edge of the plate be flat. While the flat edge is illustrated to be either straight or circular, other edge shapes may be used, provided aerodynamic and electrostatic non-uniformity is avoided.
Mechanical separation of the elements of the web may be accomplished in any manner. A fixed or oscillating baffle is suitable as is a shrouded spinneret device or combination of shroud and baffle. Arrangement of the mechanical opening means and target plate in such manner as to prevent recycling vapors from lifting the web away from the plate during its advance is particularly desirable. While the system illustrated shows the imposition of a negative charge on the web while it travels its path of advance, and a positive charge on the collecting surface, these polarities may be reversed.
What is claimed is:
1. A process comprising: flash extruding a solution of organic polymeric material intoa gaseous atmosphere to form a plexifilamentary web; spreading the web; passing the spread web through an ionized zone created by a corona current between a multi-point ion gun and a grounded target electrode to charge the web, said web being passed in brushing contact with said target electrode, said ion gun being connected to an electric potential for initiating and maintaining said current; maintaining said current at a level for depositing a charge on said web of from about 75-100 percent of a peak charge, said level being below that level for producing said peak charge and depositing the web on a moving collecting surface located below said gun and said electrode.
2. The process of claim 1 wherein said gaseous atmosphere is at least about percent gaseous solvent, the remainder being air.
3. The process of claim 2 wherein said gaseous solvent is trichlorofluoromethane.
4. The process of claim 1 including the step of applying a potential on said collecting surface which is opposite in polarity to the charge on the web.
5. The process of claim 1, said current being maintained at a level of from about 225-325 microamperes.

Claims (4)

  1. 2. The process of claim 1 wherein said gaseous atmosphere is at least about 70 percent gaseous solvent, the remainder being air.
  2. 3. The process of claim 2 wherein said gaseous solvent is trichlorofluoromethane.
  3. 4. The process of claim 1 including the step of applying a potential on said collecting surface which is opposite in polarity to the charge on the web.
  4. 5. The process of claim 1, said current being maintained at a level of from about 225- 325 microamperes.
US48825A 1964-06-04 1970-06-10 Process for forming a nonwoven web Expired - Lifetime US3689608A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US372623A US3387326A (en) 1964-06-04 1964-06-04 Apparatus for charging and spreading a web
US4882570A 1970-06-10 1970-06-10

Publications (1)

Publication Number Publication Date
US3689608A true US3689608A (en) 1972-09-05

Family

ID=26726566

Family Applications (2)

Application Number Title Priority Date Filing Date
US372623A Expired - Lifetime US3387326A (en) 1964-06-04 1964-06-04 Apparatus for charging and spreading a web
US48825A Expired - Lifetime US3689608A (en) 1964-06-04 1970-06-10 Process for forming a nonwoven web

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US372623A Expired - Lifetime US3387326A (en) 1964-06-04 1964-06-04 Apparatus for charging and spreading a web

Country Status (6)

Country Link
US (2) US3387326A (en)
BE (1) BE684440A (en)
CH (1) CH457348A (en)
GB (1) GB1087410A (en)
LU (1) LU51600A1 (en)
NL (2) NL6605752A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967118A (en) * 1975-04-29 1976-06-29 Monsanto Company Method and apparatus for charging a bundle of filaments
US4009508A (en) * 1975-04-30 1977-03-01 Monsanto Company Method for forwarding and charging a bundle of filaments
US4143196A (en) * 1970-06-29 1979-03-06 Bayer Aktiengesellschaft Fibre fleece of electrostatically spun fibres and methods of making same
US4145388A (en) * 1977-11-09 1979-03-20 Haggar Company Method of manufacturing garments
EP0010756A1 (en) * 1978-10-31 1980-05-14 E.I. Du Pont De Nemours And Company Process for preparing a nonwoven web and apparatus for carrying out said process
US4537733A (en) * 1983-10-31 1985-08-27 E. I. Du Pont De Nemours And Company Nonwoven fiber-sheet process
US4810440A (en) * 1986-06-26 1989-03-07 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for pre-expanding thermoplastic resin particles
WO1990014202A1 (en) * 1989-05-15 1990-11-29 E.I. Du Pont De Nemours And Company Process for molding target electrode used in the application of electrostatic charge to a fibrous structure
US5102738A (en) * 1990-11-01 1992-04-07 Kimberly-Clark Corporation High hydrohead fibrous porous web with improved retentive absorption and acquision rate
US5112690A (en) * 1990-11-01 1992-05-12 Kimberly-Clark Corporation Low hydrohead fibrous porous web with improved retentive wettability
US5225018A (en) * 1989-11-08 1993-07-06 Fiberweb North America, Inc. Method and apparatus for providing uniformly distributed filaments from a spun filament bundle and spunbonded fabric obtained therefrom
US5227103A (en) * 1990-02-07 1993-07-13 E. I. Du Pont De Nemours And Company High speed insulated conductors
US5296172A (en) * 1992-07-31 1994-03-22 E. I. Du Pont De Nemours And Company Electrostatic field enhancing process and apparatus for improved web pinning
US5397413A (en) * 1992-04-10 1995-03-14 Fiberweb North America, Inc. Apparatus and method for producing a web of thermoplastic filaments
WO1996021055A1 (en) * 1994-12-30 1996-07-11 E.I. Du Pont De Nemours And Company Corona charging of flash spun plexifilamentary film-fibril webs in poor charging environments
US5558830A (en) * 1994-12-02 1996-09-24 E. I. Du Pont De Nemours And Company Wand purging for electrostatic charging system in flash spinning process
WO1997049846A1 (en) * 1996-06-27 1997-12-31 E.I. Du Pont De Nemours And Company Spinneret for flash-spinning
US20020046656A1 (en) * 2000-09-05 2002-04-25 Benson James D. Filter structure with two or more layers of fine fiber having extended useful service life
US20030010002A1 (en) * 2000-09-05 2003-01-16 Johnson Bruce A. Mist filtration arrangement utilizing fine fiber layer in contact with media having a pleated construction and floor method
US20030233735A1 (en) * 2002-06-15 2003-12-25 Kimberly-Clark Worldwide, Inc. Use of a pulsating power supply for electrostatic charging of nonwovens
US6673136B2 (en) 2000-09-05 2004-01-06 Donaldson Company, Inc. Air filtration arrangements having fluted media constructions and methods
US6709623B2 (en) 2000-12-22 2004-03-23 Kimberly-Clark Worldwide, Inc. Process of and apparatus for making a nonwoven web
US20040061253A1 (en) * 2001-01-10 2004-04-01 James Kleinmeyer Electro spinning of submicron diameter polymer filaments
US20040060269A1 (en) * 2000-09-05 2004-04-01 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US6716274B2 (en) 2000-09-05 2004-04-06 Donaldson Company, Inc. Air filter assembly for filtering an air stream to remove particulate matter entrained in the stream
US20040070118A1 (en) * 2000-12-20 2004-04-15 Wolfgang Czado Method for electrostatic spinning of polymers to obtain nanofibers and microfibers
US6740142B2 (en) 2000-09-05 2004-05-25 Donaldson Company, Inc. Industrial bag house elements
US20040116018A1 (en) * 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Method of making fibers, nonwoven fabrics, porous films and foams that include skin treatment additives
US6800117B2 (en) 2000-09-05 2004-10-05 Donaldson Company, Inc. Filtration arrangement utilizing pleated construction and method
US20040226443A1 (en) * 2000-09-05 2004-11-18 Donaldson Company, Inc. Methods for filtering air for a gas turbine system
US20050082723A1 (en) * 2003-10-16 2005-04-21 Brock Thomas W. Method and apparatus for the production of nonwoven web materials
US20050087287A1 (en) * 2003-10-27 2005-04-28 Lennon Eric E. Method and apparatus for the production of nonwoven web materials
US20050087288A1 (en) * 2003-10-27 2005-04-28 Haynes Bryan D. Method and apparatus for production of nonwoven webs
US20050224999A1 (en) * 2004-04-08 2005-10-13 Research Triangle Institute Electrospinning in a controlled gaseous environment
DE19650607B4 (en) * 1996-12-06 2006-03-30 Zimmer Ag Method and device for spreading filaments in nonwoven production
US20060117730A1 (en) * 2000-09-05 2006-06-08 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US20070042069A1 (en) * 2005-08-17 2007-02-22 Armantrout Jack E Fiber charging apparatus
US20070283808A1 (en) * 2001-05-31 2007-12-13 Donaldson Company, Inc. Air filter with fine fiber and spun bonded media
US20090162468A1 (en) * 2006-04-07 2009-06-25 Victor Barinov Controlled Electrospinning of Fibers
US7582247B2 (en) 2005-08-17 2009-09-01 E. I. Du Pont De Nemours And Company Electroblowing fiber spinning process
US20100001438A1 (en) * 2006-07-21 2010-01-07 Hirose Seishi Kabushiki Kaisha Process for producing microfiber assembly
US20110018174A1 (en) * 2009-07-22 2011-01-27 Adra Smith Baca Electrospinning Process and Apparatus for Aligned Fiber Production
US11384452B2 (en) * 2017-10-19 2022-07-12 Innovative Mechanical Engineering Technologies B.V. Electrospinning device and method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3456156A (en) * 1967-04-06 1969-07-15 Du Pont Apparatus for applying an electrostatic charge to fibrous material
US3535588A (en) * 1967-04-06 1970-10-20 Du Pont Apparatus for charging fibrous material
US3578739A (en) * 1969-05-13 1971-05-18 Du Pont Apparatus for applying electrostatic charge to fibrous structure
US3593074A (en) * 1969-12-22 1971-07-13 Du Pont Apparatus and process
US3860369A (en) * 1972-11-02 1975-01-14 Du Pont Apparatus for making non-woven fibrous sheet
US4316716A (en) * 1976-08-16 1982-02-23 The Goodyear Tire & Rubber Company Apparatus for producing large diameter spun filaments
US4702947A (en) * 1986-04-01 1987-10-27 Pall Corporation Fibrous structure and method of manufacture
US4968238A (en) * 1989-09-22 1990-11-06 E. I. Du Pont De Nemours And Company Apparatus for making a non-woven sheet
US5045248A (en) * 1989-09-22 1991-09-03 E. I. Du Pont De Nemours And Company Process for making a non-woven sheet
US5123983A (en) * 1990-08-24 1992-06-23 E. I. Du Pont De Nemours And Company Gas management system for closely-spaced laydown jets
ES2090334T3 (en) * 1991-05-10 1996-10-16 Du Pont APPARATUS TO FORM A NON-WOVEN FIBER SHEET.
US6455619B1 (en) * 1993-03-26 2002-09-24 E. I. Dupont De Nemours And Company Process for improving electrostatic charging of plexifilaments
US5643525A (en) * 1993-03-26 1997-07-01 E. I. Du Pont De Nemours And Company Process for improving electrostatic charging of plexifilaments
US5656203A (en) * 1994-07-29 1997-08-12 E. I. Du Pont De Nemours And Company Electrically conductive ceramics with oxides of Al, Cr, and Mg
EP0950744B1 (en) * 1998-04-17 2004-03-03 Polymer Group, Inc. Improvements in the production of nonwoven webs using electrostatically charge conveyor belt
US20060012084A1 (en) * 2004-07-13 2006-01-19 Armantrout Jack E Electroblowing web formation process
US7585451B2 (en) * 2004-12-27 2009-09-08 E.I. Du Pont De Nemours And Company Electroblowing web formation process
US8808608B2 (en) * 2004-12-27 2014-08-19 E I Du Pont De Nemours And Company Electroblowing web formation process
CN114232212A (en) * 2021-12-13 2022-03-25 厦门当盛新材料有限公司 Flash spinning equipment based on multi-dimensional steering plate and spinning method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2048651A (en) * 1933-06-23 1936-07-21 Massachusetts Inst Technology Method of and apparatus for producing fibrous or filamentary material
US2336745A (en) * 1941-12-20 1943-12-14 Fred W Manning Method and apparatus for making unwoven and composite fabrics
US2810426A (en) * 1953-12-24 1957-10-22 American Viscose Corp Reticulated webs and method and apparatus for their production
US3081519A (en) * 1962-01-31 1963-03-19 Fibrillated strand

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US692631A (en) * 1899-10-06 1902-02-04 Charles S Farquhar Apparatus for electrically dispersing fluids.
US2185417A (en) * 1937-06-25 1940-01-02 Jr Charles L Norton Method of and apparatus for forming fibrous material
US2636216A (en) * 1948-10-23 1953-04-28 Huebner Company Method and means of producing threads or filaments electrically
US3277526A (en) * 1964-06-01 1966-10-11 Du Pont Flash spinning apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2048651A (en) * 1933-06-23 1936-07-21 Massachusetts Inst Technology Method of and apparatus for producing fibrous or filamentary material
US2336745A (en) * 1941-12-20 1943-12-14 Fred W Manning Method and apparatus for making unwoven and composite fabrics
US2810426A (en) * 1953-12-24 1957-10-22 American Viscose Corp Reticulated webs and method and apparatus for their production
US3081519A (en) * 1962-01-31 1963-03-19 Fibrillated strand

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143196A (en) * 1970-06-29 1979-03-06 Bayer Aktiengesellschaft Fibre fleece of electrostatically spun fibres and methods of making same
US3967118A (en) * 1975-04-29 1976-06-29 Monsanto Company Method and apparatus for charging a bundle of filaments
JPS51133581A (en) * 1975-04-29 1976-11-19 Monsanto Co Method and apparatus for charging electrostatic current to filament tow
JPS5428508B2 (en) * 1975-04-29 1979-09-17
US4009508A (en) * 1975-04-30 1977-03-01 Monsanto Company Method for forwarding and charging a bundle of filaments
US4145388A (en) * 1977-11-09 1979-03-20 Haggar Company Method of manufacturing garments
EP0010756A1 (en) * 1978-10-31 1980-05-14 E.I. Du Pont De Nemours And Company Process for preparing a nonwoven web and apparatus for carrying out said process
US4537733A (en) * 1983-10-31 1985-08-27 E. I. Du Pont De Nemours And Company Nonwoven fiber-sheet process
US4810440A (en) * 1986-06-26 1989-03-07 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for pre-expanding thermoplastic resin particles
WO1990014202A1 (en) * 1989-05-15 1990-11-29 E.I. Du Pont De Nemours And Company Process for molding target electrode used in the application of electrostatic charge to a fibrous structure
US5225018A (en) * 1989-11-08 1993-07-06 Fiberweb North America, Inc. Method and apparatus for providing uniformly distributed filaments from a spun filament bundle and spunbonded fabric obtained therefrom
US5227103A (en) * 1990-02-07 1993-07-13 E. I. Du Pont De Nemours And Company High speed insulated conductors
US5102738A (en) * 1990-11-01 1992-04-07 Kimberly-Clark Corporation High hydrohead fibrous porous web with improved retentive absorption and acquision rate
US5112690A (en) * 1990-11-01 1992-05-12 Kimberly-Clark Corporation Low hydrohead fibrous porous web with improved retentive wettability
US5397413A (en) * 1992-04-10 1995-03-14 Fiberweb North America, Inc. Apparatus and method for producing a web of thermoplastic filaments
US5296172A (en) * 1992-07-31 1994-03-22 E. I. Du Pont De Nemours And Company Electrostatic field enhancing process and apparatus for improved web pinning
US5558830A (en) * 1994-12-02 1996-09-24 E. I. Du Pont De Nemours And Company Wand purging for electrostatic charging system in flash spinning process
US5750152A (en) * 1994-12-02 1998-05-12 E. I. Du Pont De Nemours And Company Wand purging for electrostatic charging system in flash spinning apparatus
WO1996021055A1 (en) * 1994-12-30 1996-07-11 E.I. Du Pont De Nemours And Company Corona charging of flash spun plexifilamentary film-fibril webs in poor charging environments
US5643524A (en) * 1994-12-30 1997-07-01 E. I. Du Pont De Nemours And Company Corona charging of flash spun plexifilamentary film-fibril webs in poor charging environments
WO1997049846A1 (en) * 1996-06-27 1997-12-31 E.I. Du Pont De Nemours And Company Spinneret for flash-spinning
US5788993A (en) * 1996-06-27 1998-08-04 E. I. Du Pont De Nemours And Company Spinneret with slotted outlet
DE19650607B4 (en) * 1996-12-06 2006-03-30 Zimmer Ag Method and device for spreading filaments in nonwoven production
US6974490B2 (en) 2000-09-05 2005-12-13 Donaldson Company, Inc. Air filtration arrangements having fluted media constructions and methods
US9718012B2 (en) 2000-09-05 2017-08-01 Donaldson Company, Inc. Fine fiber media layer
US6673136B2 (en) 2000-09-05 2004-01-06 Donaldson Company, Inc. Air filtration arrangements having fluted media constructions and methods
US8118901B2 (en) 2000-09-05 2012-02-21 Donaldson Company, Inc. Fine fiber media layer
US20080110822A1 (en) * 2000-09-05 2008-05-15 Donaldson Company, Inc. Fine fiber media layer
US20040060269A1 (en) * 2000-09-05 2004-04-01 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US6716274B2 (en) 2000-09-05 2004-04-06 Donaldson Company, Inc. Air filter assembly for filtering an air stream to remove particulate matter entrained in the stream
US8366797B2 (en) 2000-09-05 2013-02-05 Donaldson Company, Inc. Fine fiber media layer
US6740142B2 (en) 2000-09-05 2004-05-25 Donaldson Company, Inc. Industrial bag house elements
US6743273B2 (en) 2000-09-05 2004-06-01 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US6746517B2 (en) 2000-09-05 2004-06-08 Donaldson Company, Inc. Filter structure with two or more layers of fine fiber having extended useful service life
US20080010959A1 (en) * 2000-09-05 2008-01-17 Donaldson Company, Inc. Air filtration arrangements having fluted media constructions and methods
US20040187454A1 (en) * 2000-09-05 2004-09-30 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US6800117B2 (en) 2000-09-05 2004-10-05 Donaldson Company, Inc. Filtration arrangement utilizing pleated construction and method
US20040200354A1 (en) * 2000-09-05 2004-10-14 Donaldson Company, Inc. Filtration arrangement utilizing pleated construction and method
US20040226443A1 (en) * 2000-09-05 2004-11-18 Donaldson Company, Inc. Methods for filtering air for a gas turbine system
US6875256B2 (en) 2000-09-05 2005-04-05 Donaldson Company, Inc. Methods for filtering air for a gas turbine system
US7318853B2 (en) 2000-09-05 2008-01-15 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US7318852B2 (en) 2000-09-05 2008-01-15 Donaldson Company, Inc. Bag house filter with fine fiber and spun bonded media
US10967315B2 (en) 2000-09-05 2021-04-06 Donaldson Company, Inc. Fine fiber media layer
US20050183405A1 (en) * 2000-09-05 2005-08-25 Donaldson Company, Inc. Air filtration arrangements having fluted media construction and methods
US10272374B2 (en) 2000-09-05 2019-04-30 Donaldson Company, Inc. Fine fiber media layer
US6955775B2 (en) 2000-09-05 2005-10-18 Donaldson Company, Inc. Process if making fine fiber material
US20030010002A1 (en) * 2000-09-05 2003-01-16 Johnson Bruce A. Mist filtration arrangement utilizing fine fiber layer in contact with media having a pleated construction and floor method
US6994742B2 (en) 2000-09-05 2006-02-07 Donaldson Company, Inc. Filtration arrangement utilizing pleated construction and method
US8029588B2 (en) 2000-09-05 2011-10-04 Donaldson Company, Inc. Fine fiber media layer
US20020046656A1 (en) * 2000-09-05 2002-04-25 Benson James D. Filter structure with two or more layers of fine fiber having extended useful service life
US20060117730A1 (en) * 2000-09-05 2006-06-08 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US7070640B2 (en) 2000-09-05 2006-07-04 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US20070271891A1 (en) * 2000-09-05 2007-11-29 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US7090712B2 (en) 2000-09-05 2006-08-15 Donaldson Company, Inc. Air filtration arrangements having fluted media construction and methods
US7090715B2 (en) 2000-09-05 2006-08-15 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US20060196359A1 (en) * 2000-09-05 2006-09-07 Donaldson Company, Inc. Air filtration arrangements having fluted media constructions and methods
US7115150B2 (en) 2000-09-05 2006-10-03 Donaldson Company, Inc. Mist filtration arrangement utilizing fine fiber layer in contact with media having a pleated construction and floor filter method
US20070012007A1 (en) * 2000-09-05 2007-01-18 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US7179317B2 (en) 2000-09-05 2007-02-20 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US8709118B2 (en) 2000-09-05 2014-04-29 Donaldson Company, Inc. Fine fiber media layer
US7270692B2 (en) 2000-09-05 2007-09-18 Donaldson Company, Inc. Air filtration arrangements having fluted media constructions and methods
US7270693B2 (en) 2000-09-05 2007-09-18 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US8512431B2 (en) 2000-09-05 2013-08-20 Donaldson Company, Inc. Fine fiber media layer
US20070271883A1 (en) * 2000-09-05 2007-11-29 Donaldson Company, Inc. Bag house filter with fine fiber and spun bonded media
US20040070118A1 (en) * 2000-12-20 2004-04-15 Wolfgang Czado Method for electrostatic spinning of polymers to obtain nanofibers and microfibers
US6709623B2 (en) 2000-12-22 2004-03-23 Kimberly-Clark Worldwide, Inc. Process of and apparatus for making a nonwoven web
US7086846B2 (en) * 2001-01-10 2006-08-08 The United States Of America As Represented By The Secretary Of The Army Electro spinning of submicron diameter polymer filaments
US20040061253A1 (en) * 2001-01-10 2004-04-01 James Kleinmeyer Electro spinning of submicron diameter polymer filaments
US20070283808A1 (en) * 2001-05-31 2007-12-13 Donaldson Company, Inc. Air filter with fine fiber and spun bonded media
US7316723B2 (en) 2001-05-31 2008-01-08 Donaldson Company, Inc. Air filter with fine fiber and spun bonded media
US20030233735A1 (en) * 2002-06-15 2003-12-25 Kimberly-Clark Worldwide, Inc. Use of a pulsating power supply for electrostatic charging of nonwovens
US7488441B2 (en) 2002-06-15 2009-02-10 Kimberly-Clark Worldwide, Inc. Use of a pulsating power supply for electrostatic charging of nonwovens
US20040116018A1 (en) * 2002-12-17 2004-06-17 Kimberly-Clark Worldwide, Inc. Method of making fibers, nonwoven fabrics, porous films and foams that include skin treatment additives
US20050082723A1 (en) * 2003-10-16 2005-04-21 Brock Thomas W. Method and apparatus for the production of nonwoven web materials
US7504060B2 (en) 2003-10-16 2009-03-17 Kimberly-Clark Worldwide, Inc. Method and apparatus for the production of nonwoven web materials
US20050087287A1 (en) * 2003-10-27 2005-04-28 Lennon Eric E. Method and apparatus for the production of nonwoven web materials
US20050087288A1 (en) * 2003-10-27 2005-04-28 Haynes Bryan D. Method and apparatus for production of nonwoven webs
US8333918B2 (en) 2003-10-27 2012-12-18 Kimberly-Clark Worldwide, Inc. Method for the production of nonwoven web materials
US20080063741A1 (en) * 2004-04-08 2008-03-13 Research Triangle Insitute Electrospinning in a controlled gaseous environment
US20050224999A1 (en) * 2004-04-08 2005-10-13 Research Triangle Institute Electrospinning in a controlled gaseous environment
WO2005099308A3 (en) * 2004-04-08 2006-02-23 Anthony L Andrady Electrospinning in a controlled gaseous environment
US8052407B2 (en) 2004-04-08 2011-11-08 Research Triangle Institute Electrospinning in a controlled gaseous environment
US8632721B2 (en) 2004-04-08 2014-01-21 Research Triangle Institute Electrospinning in a controlled gaseous environment
US7297305B2 (en) 2004-04-08 2007-11-20 Research Triangle Institute Electrospinning in a controlled gaseous environment
US20070042069A1 (en) * 2005-08-17 2007-02-22 Armantrout Jack E Fiber charging apparatus
US7465159B2 (en) 2005-08-17 2008-12-16 E.I. Du Pont De Nemours And Company Fiber charging apparatus
US7582247B2 (en) 2005-08-17 2009-09-01 E. I. Du Pont De Nemours And Company Electroblowing fiber spinning process
US8342831B2 (en) 2006-04-07 2013-01-01 Victor Barinov Controlled electrospinning of fibers
US20090162468A1 (en) * 2006-04-07 2009-06-25 Victor Barinov Controlled Electrospinning of Fibers
US20100001438A1 (en) * 2006-07-21 2010-01-07 Hirose Seishi Kabushiki Kaisha Process for producing microfiber assembly
US8211352B2 (en) * 2009-07-22 2012-07-03 Corning Incorporated Electrospinning process for aligned fiber production
US20110018174A1 (en) * 2009-07-22 2011-01-27 Adra Smith Baca Electrospinning Process and Apparatus for Aligned Fiber Production
US11384452B2 (en) * 2017-10-19 2022-07-12 Innovative Mechanical Engineering Technologies B.V. Electrospinning device and method

Also Published As

Publication number Publication date
GB1087410A (en) 1967-10-18
BE684440A (en) 1967-01-03
CH457348A (en) 1968-06-15
NL6605752A (en) 1967-01-25
US3387326A (en) 1968-06-11
LU51600A1 (en) 1966-09-20
NL6607065A (en) 1967-11-24

Similar Documents

Publication Publication Date Title
US3689608A (en) Process for forming a nonwoven web
US3851023A (en) Process for forming a web
US3860369A (en) Apparatus for making non-woven fibrous sheet
EP0635077B1 (en) Apparatus and method for producing a web of thermoplastic filaments
US3578739A (en) Apparatus for applying electrostatic charge to fibrous structure
US2273105A (en) Method and apparatus for the production of artificial structures
US2349950A (en) Method and apparatus for spinning
US2160962A (en) Method and apparatus for spinning
US2158415A (en) Method of producing artificial fibers
US3565979A (en) Flash spinning
JPH0140141B2 (en)
US3319309A (en) Charged web collecting apparatus
EP1432861B1 (en) Apparatus and method for producing a nonwoven web of filaments
JP5318527B2 (en) Nonwoven fabric manufacturing equipment
US3497918A (en) Apparatus for making a nonwoven fibrous sheet
US3593074A (en) Apparatus and process
US3296678A (en) Method and apparatus for producing nonwoven webs
US5123983A (en) Gas management system for closely-spaced laydown jets
US3456156A (en) Apparatus for applying an electrostatic charge to fibrous material
US3481005A (en) Machine for forming nonwoven webs
US3655305A (en) Electrostatic repelling cylinders for filament flyback control
US3340429A (en) Apparatus adapted to apply an electrostatic charge to moving fibrous elements
US3535588A (en) Apparatus for charging fibrous material
US5045248A (en) Process for making a non-woven sheet
JP3417629B2 (en) Ground electrode of corona discharge generator