US3693623A - Photocoagulation means and method for depilation - Google Patents

Photocoagulation means and method for depilation Download PDF

Info

Publication number
US3693623A
US3693623A US92598A US3693623DA US3693623A US 3693623 A US3693623 A US 3693623A US 92598 A US92598 A US 92598A US 3693623D A US3693623D A US 3693623DA US 3693623 A US3693623 A US 3693623A
Authority
US
United States
Prior art keywords
light
energy
conduit
follicle
hair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US92598A
Inventor
Richard A Harte
Edwin A Amstutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gregory System Inc
Original Assignee
Gregory System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gregory System Inc filed Critical Gregory System Inc
Application granted granted Critical
Publication of US3693623A publication Critical patent/US3693623A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D26/00Hair-singeing apparatus; Apparatus for removing superfluous hair, e.g. tweezers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00476Hair follicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B2018/1807Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using light other than laser radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light

Definitions

  • ABSTRACT Continuation-impart 0f March Depilation is effected by use of light energy of a 1970, abandofledselected frequency band concentrated into a flexible fiber small enough to enter the region of the follicle.
  • 123/3031, 128/355, 128/398 This effects photocoagulation tissue in a limited region [51 1 int.
  • A61l' d t rmined the placement of the fiber [58] Field Of Search ..l23/303.l, 398, 303.18, 355
  • This invention relates to depilation by photocoagulation means and methods and in particular to the use of light energy to destroy hair.
  • the ruby laser provided to be acceptable for the purpose of welding detached retinas, and other uses for laser coagulation have been suggested, including the epilation of hair by destruction of vascular papilla which feeds the germinal hair cells at the base of the follicle.
  • Literature sources provide some indices to be used in determining threshold levels of coagulation of human and animal tissues using light energy. This data is available, primarily for the vascular and pigmented connective tissues of the retina. As Table 1 below indicates (1) F A LEsperance Jr. and G.R. Kelly, The Threshold of the Retina to Damage by Argon Laser Radiation" Arch. Ophthal. Vol. 81, April 1969, 588 reported the determination of threshold levels of photocoagulation in the rabbit and monkey retina, using argon gas lasers whose output energy was contained in several lines between 4,579 angstroms and 5,145 angstroms in the blue-green portion of the spectrum.
  • a Xenon flash lamp used in this invention was a black body radiator with peak energy at about 4,000 angstroms and much of its energy below 5500 angstroms.
  • peak energy at about 4,000 angstroms and much of its energy below 5500 angstroms.
  • the threshold level was determined to be 4 joules per square centimeter as compared with his values of 2 to 6 joules per square centimeter for green laser light.
  • the pulse lengths of the Gerraets'study with Xenon arc lamps were varied from microseconds to 30 milliseconds.
  • Table 1 A summary of the data of both studies is given in Table 1 below along with comparative data on the measured performance of a model built in accordance with the present invention?"
  • the present inventors determined that maximum efficiency for coupling to hemoglobin with minimum absorption in surrounding tissue could be accomplished by utilizing blue-green light of from 530-560 nanometer wave length. They, therefore suggested a doubled neodymium laser with spectrum output at 5 30 nm.
  • FIG. 1 is a schematic view, partially in block diagram of a Xenon arc photoepilator, showing in section view the probe as inserted into a follicle;
  • FIG. 2 is a view in perspective, partly diagrammatic of a linear flash lamp device as used in accordance with the invention.
  • FIG. 3 is an enlarged fragmentary view in elevation and in section of the needle inserted into the hair follicle.
  • photocoagulation is accomplished by transmitting pulsed light energy from an arc source to terminate in the region of a hair root follicle with just enough energy in a very short pulse to destroy the life processes in the hair.
  • specific absorption of green light energy by hemoglobin may be effected to photocoagulate the blood vessel structure nourishing the hair root without significant absorption in other non-pigmented tissues at or near the hair follicle.
  • High energy light bursts may be obtained from gas discharge lamps 5 such as Mercury, Xenon, Argon, etc. Flash durations may be controlled by conventional pulsed power supplies 6, initiated at any desired instant by means of a switch 7, for example.
  • Various spectral qualities can be obtained from available gas discharge lamps by employing different gases, pressures, optical filters, etc.
  • lamp 5 is a high peak power pulsed Xenon arc source producing peak powers in excess of 30 kilowatts when an operator closes switch 7, which might be a foot pedal trigger.
  • the lamp produces a flash of intense visible radiation in less than a few milliseconds. Because this duration is less than the Chronaxie" for pain fibers, there is no sensation created by the energy in the body.
  • the flash pulse may be obtained from a bank of storage capacitors which delivers up to 660 joules in less than a three millisecond period. These capacitors are recharged within one second, and ready to deliver the next pulse.
  • a spherical mirror or lens 8 of high optical speed (f/0.5) collimates the light in rays 9.
  • the collimated light is focused by a lens system 10 as shown by rays 11 to be concentrated at the end of a flexible conduit 12 which, for example, is a single glass fiber 100 microns in diameter.
  • a flexible steel sheath 14 or other surgical tubing may encompass the light conduit 12 to confine light and protect the fiber 12.
  • the steel sheath 14 is covered with polyvinyl chloride.
  • the ends of the fiber are carefully ground and polished to permit the maximum light energy to escape. Overall the probes may be about 48 to 60 inches long with transmission losses that should approximate no greater than about 60 percent.
  • a stainless steel hollow needle or stainless steel tubing 17 of typically 125 to 200 microns in diameter and about 2 mm. to 4 mm. in length held in a holder 16 similar to a hypodermic syringe.
  • This structure serves to introduce the fiber near the root 18 of hair 19 under the skin surface 20.
  • the needle 17 serves the function of preventing escape of light energy at any other point than the terminal end 15 of fiber 12 to thereby concentrate all the energy at a known position in the vicinity of hair follicle 21. to thereby depilate the hair without damage to other surrounding tissue.
  • the drawing shows various features out of size proportion in order to show the details and the particular mode of depilation provided by this invention.
  • the light energy from are lamp 5 may be further selected or confined to a particular waveband such as that provided by a double neodymium selective output laser, by introduction of selective filter 22.
  • a particular waveband such as that provided by a double neodymium selective output laser
  • selective filter 22 for example, light energy entering fiber 12 may be confined to green light of approximately 530 millimicron wavelength. This wavelength provides for specific absorption of the bulk of the photo energy by hemoglobin, resulting in photocoagulation of the blood vessel structure 23 in the vicinity of follicle 21 that nourishes the hair root with minimal absorption in other non-pigmented tissues at or near the hair follicle.
  • Ultraviolet energy at about 280 millimicrons wavelength could also be used for maximum absorption in the protein materials at the hair root 18.
  • the amount of photo energy to be supplied by the arc lamp source for effective use in hair depilation without sensing pain or incurring significant damage to surrounding tissue is of the order of 20 to I00 joules per square centimeter at the proximal end ofa micron diameter fiber which would give about 5 to 30 joules per square centimeter at the distal end of the fiber.
  • This energy is a function of the light intensity and pulse duration, both of which may be varied to provide the optimum energy output at the follicle, but the time duration is preferably less than 3 milliseconds.
  • Another embodiment comprises a linear flash lamp having an arc length greater than 10 millimeters, preferably in the order of 40 millimeters. it provides for direct takeoff by a fiber optic cable located close to the exterior of the lamp, the takeoff being from approximately the center of the arc. Energy control may be ob tained by regulating the distance of the cable end from the arc.
  • This embodiment does not require an extensive optical system as described in the first embodiment and thus it has been found that this type of lamp has a relatively long lifetime and gives a higher energy output at a not much greater energy input.
  • This embodiment (see FIG. 2) comprises a linear flash lamp having two electrodes 111 and 112 located a substantial distance apart in an envelope 113.
  • the electrodes 111 and 112 should be at least 10 millimeters apart; for example, one such lamp on the market has an arc length of 39 millimeters. The distance should be contrasted with the short arcs heretofore used, where the arc length was in the nature of 1 mil limeter.
  • the envelope 113 is also preferably very slender, typically cylindrical, and in the nature of a capillary tube. A typical diameter for such a lamp 110 is 5 millimeters, as contrasted with the 25 millimeter diameter of typical short are lamps a feature which made it impossible to get very close to the are or to get very good control of the location.
  • a pulsed power supply 114 is connected to the linear flash lamp, any suitable pulsing means being used.
  • the lamp 110 may be held in place by suitable supports 115 secured to a base 116.
  • this embodiment employs an optical fiber type of cable 12th, which may comprise a single glass fiber 121 typitheir lengths approximating no more than 50 per cent.
  • a handle 126 is provided for use of the operator.
  • the input end 124 of the fiber optic cable l2l lies closely adjacent the flash lamp 110.
  • a constant energy input of about 300 joules is a typical amount with the linear flash lamp 310, and this contrasts with the somewhat lower 60 to 200 joules, a variable amount, used in a short-arc lamp of this type.
  • Optics such as lenses are not required in this device, and it is noted that the energy output is greater than 0.6 millijoules as compared with an output less than 0.1 millijoule in a short are having an input of up to 200 joules. Thus, a much greater efiiciency and energy output are obtained.
  • the needle 125 in use for photoepilation, is inserted individually into each hair follicle, as shown in FIG. 3, operating on the principle of selective damage to hair papilla and blood supply, so that it does not affect the surrounding cells.
  • the device is lightweight and portable, and no realignment is required between uses. It may, for example, have a 5-foot cable and the probe may be 5 or 7 mils in diameter.
  • the harmless (to all but the hair papilla and their blood supply) high intensity light enables longer treatment sessions, and treatment of special problem areas.
  • the selective absorption prevents scarring, and there are no hot probes to cause discomfort, so that inflammation and swelling are minimized.
  • an advantage of the I photoepilation technique over the thermolysis technique is the distance the needle must penetrate into the skin into the hair follicle in order to destroy it.
  • the needle need only penetrate the skin into the follicle a small distance, approximately one-sixteenth inch, whereas the use of the thermolysis technique requires the placement of the needle down near the root of the follicle in order to properly treat the hair. Therefore, the light transmitting means in photoepilation need only be inserted a small distance into the follicle to destroy the hair. Thus there is less chance of accidentally damaging the surrounding tissue along with a further reduction in pain utilizing the photoepilation technique.
  • the apparance in a modified form of this embodiment, is exactly the same except at the output end, where in place of a needle there is merely a blunt end.
  • the fiber optics cable is somewhat larger, for example, about one-eighth inch in diameter and contains several thousand individual smalldiameter fibers. Otherwise the structure is unchanged. As a result, over 20 millijoules of energy can be trum and is capable of coagulating retinal blood vessels.
  • the method of epilation comprising in combination the steps of a. Producing a pulse of high energy light by electronilight radiation,
  • Depilation apparatus for depilationby photocoagulation in a limited region about a hair root comprising in combination,
  • a high energy gaseous medium light source including electrical means for producing therein short intense pulses of light
  • a single fiber conduit formed from fiberoptic material positioned to transmit light energy from said source to said region with a polished end for inserting into the follicle for releasing the transmitted light energy in said body tissue, and
  • said locating means comprises a needle having a cavity therein for receiving a portion, of said conduit at the terminating end. .5"
  • Apparatus as defined in claim 10 including a lens system for focusing said collimated light to be concentrated at the end of said flexible conduit.
  • Apparatus as defined in claim 8 further comprising means for producing light energy from said pulse to provide light in a specific range of the spectrum.
  • Apparatus as claimed in claim 8 limited to produce light flashes ofless than 3 milliseconds in duratron.
  • Apparatus as claimed in claim 16 adapted to produce a series of successive flashes at approximately 1 second intervals.
  • Photoepilation comprising producing pulses primarily of blue-green high-energy light in a gaseous medium across an are longer than the millimeters
  • Photoepilation according to claim 18 wherein the energy input is approximately 300 joules and the output is greater than 0.6 millijoules.

Abstract

Depilation is effected by use of light energy of a selected frequency band concentrated into a flexible fiber small enough to enter the region of the follicle. This effects photocoagulation tissue in a limited region determined by the placement of the fiber.

Description

350 3611 7 Ell H United States Pal Harte et al. 5] Sept. 26, 1972 [54] PHOTOCOAGULATION MEANS AND [56] References Cited 4 METHOD FOR DEPILATION UNITED STATES PATENTS [72] Inventors: Richard A. Harte, Redwood City;
Edwin A, Amstutz Santa Clara, l 1/1970 Meyer 128/398 bOth Of Calif. 3,471,215 10/1969 snitzel' 128/398 X Assignee: g y y Inc. Houston Tex- 3,327,712 6/1967 Kaufrnan et al. 128/393 I Filed! 1970 Primary Examiner-Lawrence W. Trapp [2!] Appl NM 92598 Attorney-Laurence R. Brown i Related U.S. Application Data 57 ABSTRACT Continuation-impart 0f March Depilation is effected by use of light energy of a 1970, abandofledselected frequency band concentrated into a flexible fiber small enough to enter the region of the follicle. "123/3031, 128/355, 128/398 This effects photocoagulation tissue in a limited region [51 1 int. "A61l' d t rmined the placement of the fiber [58] Field Of Search ..l23/303.l, 398, 303.18, 355
20 Claims, 3 Drawing Figures XENO N AF C PULSE D POWER SUPPLY -'SHEET 1 UF 2 XENOIN AFC POWER SUPPLY 7 K PULSED INVENTORS Richard Hay-Tc, Edwin AmSt vdiz ATTORNEY PATEMEfisms m2 SHEET 2 OF 2 INVENTOR RICHARD A HARTE ED IN A. AMSTU ATTORNEY PHOTOCOAGULATION MEANS AND METHOD FOR DEPILATION This application is a continuation-in-part of the copending abandoned application Ser. No. 23,921 filed Mar. 30, 1970. I
This invention relates to depilation by photocoagulation means and methods and in particular to the use of light energy to destroy hair.
BACKGROUND OF THE INVENTION It is desirable to introduce means and methods for removing unwanted body hair painlessly. In the conventional state of the art, processes where electrolysis by either galvanic current electrochemical or high frequency diathermy techniques are employed, thermal coagulation of the tissues at the hair root takes place. These techniques, however, are not painless and are difficult to administer and gauge. Thus, expert operators must be available to determine dosage and conditions for use of these methods.
Light has been used, historically in the treatment of a number of medical problems, but until the advent of the laser, its use as a coagulator of local tissues was not widespread.
Zeiss of Germany has manufactured a Xenon arc lamp device to coagulate retinal tissue in the case of detached retina, but this was a very large, cumbersome, inefficient and costly device.
The ruby laser provided to be acceptable for the purpose of welding detached retinas, and other uses for laser coagulation have been suggested, including the epilation of hair by destruction of vascular papilla which feeds the germinal hair cells at the base of the follicle.
bed. In order to have effective absorption, enormous energy must be delivered because of the mismatch, and this degree of energy was sufficient to destroy the glass fiber probes.
Literature sources provide some indices to be used in determining threshold levels of coagulation of human and animal tissues using light energy. This data is available, primarily for the vascular and pigmented connective tissues of the retina. As Table 1 below indicates (1) F A LEsperance Jr. and G.R. Kelly, The Threshold of the Retina to Damage by Argon Laser Radiation" Arch. Ophthal. Vol. 81, April 1969, 588 reported the determination of threshold levels of photocoagulation in the rabbit and monkey retina, using argon gas lasers whose output energy was contained in several lines between 4,579 angstroms and 5,145 angstroms in the blue-green portion of the spectrum. For comparitive purposes it should be noted that a Xenon flash lamp used in this invention was a black body radiator with peak energy at about 4,000 angstroms and much of its energy below 5500 angstroms. Thus, the comparison between these sources, in regard to biological effects, is quite reasonable.
The general levels for threshold effect, as determined by visual si n of tissue coagulation, proved to be on the order of 2 to 6 joules per square centimeter. LEsperance reported that in an earlier study done with Xenon light by WJ. Gerraets, W.T. Ham, R.C. Wil-- liams Jr., H.A. Mueller, J. Burkhart, D. Guerry, and J .J Vos, Laser vs light coagular; A Funduscopic and Histological Study of Chonoretinal Injury as a function of exposure time. Fed. Proceedings Vol. 24, No. 1, Part III, Jan-Feb. 1965, the threshold level was determined to be 4 joules per square centimeter as compared with his values of 2 to 6 joules per square centimeter for green laser light. The pulse lengths of the Gerraets'study with Xenon arc lamps were varied from microseconds to 30 milliseconds. A summary of the data of both studies is given in Table 1 below along with comparative data on the measured performance of a model built in accordance with the present invention?" In a report following a careful measurement program of blood and tissue absorption, the present inventors determined that maximum efficiency for coupling to hemoglobin with minimum absorption in surrounding tissue could be accomplished by utilizing blue-green light of from 530-560 nanometer wave length. They, therefore suggested a doubled neodymium laser with spectrum output at 5 30 nm.
It is accordingly an object of the present invention to provide painless, simple to administer means and method of photocoagulation of tissue useful in depi1ation, and the like.
The invention, together with other objectives, features and advantages is described hereinafter with reference to the embodiments set forth in the accompanying drawings.
DRAWINGS FIG. 1 is a schematic view, partially in block diagram of a Xenon arc photoepilator, showing in section view the probe as inserted into a follicle;
FIG. 2 is a view in perspective, partly diagrammatic of a linear flash lamp device as used in accordance with the invention, and
FIG. 3 is an enlarged fragmentary view in elevation and in section of the needle inserted into the hair follicle.
Therefore, in accordance with one embodiment (see FIG. 1), photocoagulation is accomplished by transmitting pulsed light energy from an arc source to terminate in the region of a hair root follicle with just enough energy in a very short pulse to destroy the life processes in the hair. In accordance with some other r 3 aspects of the invention, specific absorption of green light energy by hemoglobin may be effected to photocoagulate the blood vessel structure nourishing the hair root without significant absorption in other non-pigmented tissues at or near the hair follicle.
High energy light bursts may be obtained from gas discharge lamps 5 such as Mercury, Xenon, Argon, etc. Flash durations may be controlled by conventional pulsed power supplies 6, initiated at any desired instant by means of a switch 7, for example. Various spectral qualities can be obtained from available gas discharge lamps by employing different gases, pressures, optical filters, etc.
Typically, lamp 5 is a high peak power pulsed Xenon arc source producing peak powers in excess of 30 kilowatts when an operator closes switch 7, which might be a foot pedal trigger. The lamp produces a flash of intense visible radiation in less than a few milliseconds. Because this duration is less than the Chronaxie" for pain fibers, there is no sensation created by the energy in the body.
The flash pulse may be obtained from a bank of storage capacitors which delivers up to 660 joules in less than a three millisecond period. These capacitors are recharged within one second, and ready to deliver the next pulse.
A spherical mirror or lens 8 of high optical speed (f/0.5) collimates the light in rays 9. The collimated light is focused by a lens system 10 as shown by rays 11 to be concentrated at the end of a flexible conduit 12 which, for example, is a single glass fiber 100 microns in diameter. A flexible steel sheath 14 or other surgical tubing may encompass the light conduit 12 to confine light and protect the fiber 12. Preferably, the steel sheath 14 is covered with polyvinyl chloride.
The ends of the fiber are carefully ground and polished to permit the maximum light energy to escape. Overall the probes may be about 48 to 60 inches long with transmission losses that should approximate no greater than about 60 percent.
At the terminal or distal tip end 15 of fiber 12, where the light energy escapes, is a stainless steel hollow needle or stainless steel tubing 17 of typically 125 to 200 microns in diameter and about 2 mm. to 4 mm. in length held in a holder 16 similar to a hypodermic syringe. This structure serves to introduce the fiber near the root 18 of hair 19 under the skin surface 20. The needle 17 serves the function of preventing escape of light energy at any other point than the terminal end 15 of fiber 12 to thereby concentrate all the energy at a known position in the vicinity of hair follicle 21. to thereby depilate the hair without damage to other surrounding tissue. The drawing shows various features out of size proportion in order to show the details and the particular mode of depilation provided by this invention.
In order to further selectively protect the adjoining tissue about the hair root 18, the light energy from are lamp 5 may be further selected or confined to a particular waveband such as that provided by a double neodymium selective output laser, by introduction of selective filter 22. Thus, for example, light energy entering fiber 12 may be confined to green light of approximately 530 millimicron wavelength. This wavelength provides for specific absorption of the bulk of the photo energy by hemoglobin, resulting in photocoagulation of the blood vessel structure 23 in the vicinity of follicle 21 that nourishes the hair root with minimal absorption in other non-pigmented tissues at or near the hair follicle. Ultraviolet energy at about 280 millimicrons wavelength could also be used for maximum absorption in the protein materials at the hair root 18.
It has been found that the amount of photo energy to be supplied by the arc lamp source for effective use in hair depilation without sensing pain or incurring significant damage to surrounding tissue is of the order of 20 to I00 joules per square centimeter at the proximal end ofa micron diameter fiber which would give about 5 to 30 joules per square centimeter at the distal end of the fiber. Several successive flashes one second apart may be administered. This energy is a function of the light intensity and pulse duration, both of which may be varied to provide the optimum energy output at the follicle, but the time duration is preferably less than 3 milliseconds.
In laboratory experiments with humans, in photoepilation, it has been shown that 68 percent of the hairs release well under such conditions, with hair roots often showing a matchstick" effect of burnt or shrivelled appearance. Biopsies showed no more than slight irritation in any case after such epilation and there were no reports of pain at the flash or afterwards. The surrounding tissue was not damaged.
Accordingly, the photocoagulation means and method afforded by this embodiment results in a simple practical improvement over prior art depilation techniques.
Another embodiment comprises a linear flash lamp having an arc length greater than 10 millimeters, preferably in the order of 40 millimeters. it provides for direct takeoff by a fiber optic cable located close to the exterior of the lamp, the takeoff being from approximately the center of the arc. Energy control may be ob tained by regulating the distance of the cable end from the arc.
This embodiment does not require an extensive optical system as described in the first embodiment and thus it has been found that this type of lamp has a relatively long lifetime and gives a higher energy output at a not much greater energy input.
This embodiment (see FIG. 2) comprises a linear flash lamp having two electrodes 111 and 112 located a substantial distance apart in an envelope 113. The electrodes 111 and 112 should be at least 10 millimeters apart; for example, one such lamp on the market has an arc length of 39 millimeters. The distance should be contrasted with the short arcs heretofore used, where the arc length was in the nature of 1 mil limeter. The envelope 113 is also preferably very slender, typically cylindrical, and in the nature of a capillary tube. A typical diameter for such a lamp 110 is 5 millimeters, as contrasted with the 25 millimeter diameter of typical short are lamps a feature which made it impossible to get very close to the are or to get very good control of the location.
A pulsed power supply 114 is connected to the linear flash lamp, any suitable pulsing means being used. The lamp 110 may be held in place by suitable supports 115 secured to a base 116.
In conjunction with the linear flash lamp 110, this embodiment employs an optical fiber type of cable 12th, which may comprise a single glass fiber 121 typitheir lengths approximating no more than 50 per cent.
Near the outlet end of needle 125, a handle 126 is provided for use of the operator. The input end 124 of the fiber optic cable l2l lies closely adjacent the flash lamp 110.
A constant energy input of about 300 joules is a typical amount with the linear flash lamp 310, and this contrasts with the somewhat lower 60 to 200 joules, a variable amount, used in a short-arc lamp of this type.
Optics such as lenses are not required in this device, and it is noted that the energy output is greater than 0.6 millijoules as compared with an output less than 0.1 millijoule in a short are having an input of up to 200 joules. Thus, a much greater efiiciency and energy output are obtained.
in use for photoepilation, the needle 125 is inserted individually into each hair follicle, as shown in FIG. 3, operating on the principle of selective damage to hair papilla and blood supply, so that it does not affect the surrounding cells. The device is lightweight and portable, and no realignment is required between uses. It may, for example, have a 5-foot cable and the probe may be 5 or 7 mils in diameter. The harmless (to all but the hair papilla and their blood supply) high intensity light enables longer treatment sessions, and treatment of special problem areas. The selective absorption prevents scarring, and there are no hot probes to cause discomfort, so that inflammation and swelling are minimized.
It should be noted that an advantage of the I photoepilation technique over the thermolysis technique is the distance the needle must penetrate into the skin into the hair follicle in order to destroy it. Using the photoepilation technique the needle need only penetrate the skin into the follicle a small distance, approximately one-sixteenth inch, whereas the use of the thermolysis technique requires the placement of the needle down near the root of the follicle in order to properly treat the hair. Therefore, the light transmitting means in photoepilation need only be inserted a small distance into the follicle to destroy the hair. Thus there is less chance of accidentally damaging the surrounding tissue along with a further reduction in pain utilizing the photoepilation technique.
in a modified form of this embodiment, the apparance is exactly the same except at the output end, where in place of a needle there is merely a blunt end. In this instance, the fiber optics cable is somewhat larger, for example, about one-eighth inch in diameter and contains several thousand individual smalldiameter fibers. Otherwise the structure is unchanged. As a result, over 20 millijoules of energy can be trum and is capable of coagulating retinal blood vessels.
10 What is claimed is;
1. The method of epilation, comprising in combination the steps of a. Producing a pulse of high energy light by electronilight radiation,
b. Positioning a flexible thin single fiber conduit formed from fiberoptic material capable of transmitting said light energy from the gaseous media so that the input end of said conduit collects intense light from said high energy light and the output end of said conduit is positioned in a hair follicle, and
c. Transmitting said pulse of light energy in said conduit with enough energy passed through said conduit to said hair follicle to cause photocoagulation of body tissue in the vicinity of said region at an intensity killing the hair.
2. The method defined in claim 1, including the additional step of limiting the frequency of the light energy to a predetermined bandwidth.
3. The method defined in claim 2, including the additional step of producing light of a wavelength in the green region of the light spectrum that is specifically absorbed by hemoglobin, thereby selectively photocoagulating the blood vessel structure about the region with the light energy becoming significantly absorbed in other nonpigmented tissues near the region. 7
v 4. The method defined in claim 2, including the additional step of limiting the light energy supplied to the follicle to less than 3 millijoules.
' 5. The method defined in claim 1 including the step of limiting the light pulse to less than 3 milliseconds in duration.
6. The method as defined in claim 1 including the step of successively flashing said light energy a plurality of times at approximately 1 second intervals.
7. The method defined in claim 1, including locating the output end of said conduit only partly within said hair follicle.
8. Depilation apparatus for depilationby photocoagulation in a limited region about a hair root comprising in combination,
a. A high energy gaseous medium light source including electrical means for producing therein short intense pulses of light,
b. A single fiber conduit formed from fiberoptic material positioned to transmit light energy from said source to said region with a polished end for inserting into the follicle for releasing the transmitted light energy in said body tissue, and
c. Means for locating said polished output end of said conduit in the follicle.
9. Apparatus as claimed in claim 8, wherein said locating means comprises a needle having a cavity therein for receiving a portion, of said conduit at the terminating end. .5"
cally triggering a gaseous media to produce visible 10. Apparatus as defined in claim 8 wherein said light energy producing means further comprises a spherical lens of high optical speed which eollimates said light in rays.
11. Apparatus as defined in claim 10, including a lens system for focusing said collimated light to be concentrated at the end of said flexible conduit.
12. Apparatus as defined in claim 8, further comprising means for producing light energy from said pulse to provide light in a specific range of the spectrum.
l3. Apparatus as defined in claim 12, wherein said light as provided in the green range of the spectrum.
14. Apparatus as claimed in claim 12, wherein said light is provided having a wave length of approximately 530 nanometers.
15. Apparatus as claimed in claim 8, in which means provides light energy at the end of said conduit to reach said region with approximately one-half to 3 millijoules.
l6. Apparatus as claimed in claim 8 limited to produce light flashes ofless than 3 milliseconds in duratron.
17. Apparatus as claimed in claim 16 adapted to produce a series of successive flashes at approximately 1 second intervals.
18. Photoepilation, comprising producing pulses primarily of blue-green high-energy light in a gaseous medium across an are longer than the millimeters,
transmitting said light through a single fiber optic filament of about 5 to 7 mills thickness directly from an input end adjacent said are to a needle end,
inserting said needle end into a hair follicle, and
transmitting into said follicle the pulses for a time sufficient to coagulate the tissue therein responsible for hair growth.
19. Photoepilation according to claim 18 wherein the energy input is approximately 300 joules and the output is greater than 0.6 millijoules.
20. Photoepilation according to claim 18, wherein in said inserting step said needle is inserted only partly into said hair follicle.

Claims (20)

1. The method of epilation, comprising in combination the steps of a. Producing a pulse of high energy light by electronically triggering a gaseous media to produce visible light radiation, b. Positioning a flexible thin single fiber conduit formed from fiberoptic material capable of transmitting said light energy from the gaseous media so that the input end of said conduit collects intense light from said high energy light and the output end of said conduit is positioned in a hair follicle, and c. Transmitting said pulse of light energy in said conduit with enough energy passed through said conduit to said hair follicle to cause photocoagulation of body tissue in the vicinity of said region at an intensity killing the hair.
2. The method defined in claim 1, including the additional step of limiting the frequency of the light energy to a predetermined bandwidth.
3. The method defined in claim 2, including the additional step of producing light of a wavelength in the green region of the light spectrum that is specifically absorbed by hemoglobin, thereby selectively photocoagulating the blood vessel structure about the region with the light energy becoming significantly absorbed in other nonpigmented tissues near the region.
4. The method defined in claim 2, including the additional step of limiting the light energy supplied to the follicle to less than 3 millijoules.
5. The method defined in claim 1 including the step of limiting the light pulse to less than 3 milliseconds in duration.
6. The method as defined in claim 1 including the step of successively flashing said light energy a plurality of times at approximately 1 second intervals.
7. The method defined in claim 1, including locating the output end of said conduit only partly within said hair follicle.
8. Depilation apparatus for depilation by photocoagulation in a limited region about a hair root comPrising in combination, a. A high energy gaseous medium light source including electrical means for producing therein short intense pulses of light, b. A single fiber conduit formed from fiberoptic material positioned to transmit light energy from said source to said region with a polished end for inserting into the follicle for releasing the transmitted light energy in said body tissue, and c. Means for locating said polished output end of said conduit in the follicle.
9. Apparatus as claimed in claim 8, wherein said locating means comprises a needle having a cavity therein for receiving a portion of said conduit at the terminating end.
10. Apparatus as defined in claim 8 wherein said light energy producing means further comprises a spherical lens of high optical speed which collimates said light in rays.
11. Apparatus as defined in claim 10, including a lens system for focusing said collimated light to be concentrated at the end of said flexible conduit.
12. Apparatus as defined in claim 8, further comprising means for producing light energy from said pulse to provide light in a specific range of the spectrum.
13. Apparatus as defined in claim 12, wherein said light as provided in the green range of the spectrum.
14. Apparatus as claimed in claim 12, wherein said light is provided having a wave length of approximately 530 nanometers.
15. Apparatus as claimed in claim 8, in which means provides light energy at the end of said conduit to reach said region with approximately one-half to 3 millijoules.
16. Apparatus as claimed in claim 8 limited to produce light flashes of less than 3 milliseconds in duration.
17. Apparatus as claimed in claim 16 adapted to produce a series of successive flashes at approximately 1 second intervals.
18. Photoepilation, comprising producing pulses primarily of blue-green high-energy light in a gaseous medium across an arc longer than the millimeters, transmitting said light through a single fiber optic filament of about 5 to 7 mills thickness directly from an input end adjacent said arc to a needle end, inserting said needle end into a hair follicle, and transmitting into said follicle the pulses for a time sufficient to coagulate the tissue therein responsible for hair growth.
19. Photoepilation according to claim 18 wherein the energy input is approximately 300 joules and the output is greater than 0.6 millijoules.
20. Photoepilation according to claim 18, wherein in said inserting step said needle is inserted only partly into said hair follicle.
US92598A 1970-12-25 1970-12-25 Photocoagulation means and method for depilation Expired - Lifetime US3693623A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9259870A 1970-12-25 1970-12-25

Publications (1)

Publication Number Publication Date
US3693623A true US3693623A (en) 1972-09-26

Family

ID=22234039

Family Applications (1)

Application Number Title Priority Date Filing Date
US92598A Expired - Lifetime US3693623A (en) 1970-12-25 1970-12-25 Photocoagulation means and method for depilation

Country Status (1)

Country Link
US (1) US3693623A (en)

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3834391A (en) * 1973-01-19 1974-09-10 Block Carol Ltd Method and apparatus for photoepilation
US4122853A (en) * 1977-03-14 1978-10-31 Spectra-Med Infrared laser photocautery device
US4185633A (en) * 1976-09-07 1980-01-29 Malyshev Boris N Method of surgical treatment using laser emission and apparatus for realizing same
FR2445153A1 (en) * 1978-12-27 1980-07-25 Skovajsa Joseph UV light source for medical use - has optical fibre attached to lamp housing to provide local application of UV radiation
US4299229A (en) * 1979-12-05 1981-11-10 Cavitron Corporation Method of observing the aim or effect of a laser beam on a target
US4311138A (en) * 1980-03-10 1982-01-19 Sugarman Edward D Illuminated hypodermic needle
US4388924A (en) * 1981-05-21 1983-06-21 Weissman Howard R Method for laser depilation
FR2525470A1 (en) * 1982-04-27 1983-10-28 Kreitmair Albert IRRADIATION APPARATUS FOR DENTAL PROSTHESES
JPS6092701A (en) * 1983-09-26 1985-05-24 キヤロル・ブロツク・ミテツド Light dehairing method and apparatus
US4537193A (en) * 1982-10-28 1985-08-27 Hgm, Inc. Laser endocoagulator apparatus
US4567882A (en) * 1982-12-06 1986-02-04 Vanderbilt University Method for locating the illuminated tip of an endotracheal tube
FR2579446A1 (en) * 1985-03-29 1986-10-03 Politzer Eugene Process for removing hair, down and beards by a method which does not use a blade
WO1986005676A1 (en) 1985-03-29 1986-10-09 Politzer Eugene Jim Method and apparatus for shaving the beard
US4617926A (en) * 1982-07-09 1986-10-21 Sutton A Gunilla Depilation device and method
US4658817A (en) * 1985-04-01 1987-04-21 Children's Hospital Medical Center Method and apparatus for transmyocardial revascularization using a laser
US4784132A (en) * 1983-03-25 1988-11-15 Fox Kenneth R Method of and apparatus for laser treatment of body lumens
US4800876A (en) * 1981-12-11 1989-01-31 Fox Kenneth R Method of and apparatus for laser treatment of body lumens
US4848336A (en) * 1981-12-11 1989-07-18 Fox Kenneth R Apparatus for laser treatment of body lumens
US5041108A (en) * 1981-12-11 1991-08-20 Pillco Limited Partnership Method for laser treatment of body lumens
US5182857A (en) * 1989-11-02 1993-02-02 U.S. Philips Corp. Shaving apparatus
US5207673A (en) * 1989-06-09 1993-05-04 Premier Laser Systems, Inc. Fiber optic apparatus for use with medical lasers
WO1993008715A1 (en) * 1991-10-29 1993-05-13 Thermotrex Corporation Hair removal device and method
EP0565331A2 (en) 1992-04-09 1993-10-13 ESC Medical Systems Ltd. Therapeutic electromagnetic treatment
US5280788A (en) * 1991-02-26 1994-01-25 Massachusetts Institute Of Technology Devices and methods for optical diagnosis of tissue
US5300066A (en) * 1990-02-07 1994-04-05 Coherent, Inc. Contact laser delivery system
JPH0636768B2 (en) 1988-05-21 1994-05-18 ヤーマン株式会社 Optical hair removal device
US5320618A (en) * 1990-04-09 1994-06-14 Morgan Gustafsson Device for treatment of undesired skin disfigurements
US5344434A (en) * 1991-12-29 1994-09-06 Technion Research & Development Foundation, Ltd. Apparatus for the photodynamic therapy treatment
US5344418A (en) * 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
US5595568A (en) * 1995-02-01 1997-01-21 The General Hospital Corporation Permanent hair removal using optical pulses
US5606798A (en) * 1991-03-12 1997-03-04 Kelman; Elliot Hair cutting apparatus
US5630811A (en) * 1996-03-25 1997-05-20 Miller; Iain D. Method and apparatus for hair removal
US5632741A (en) * 1995-01-20 1997-05-27 Lucid Technologies, Inc. Epilation system
US5647866A (en) * 1993-11-09 1997-07-15 Zaias; Nardo Method of hair depilation
US5653706A (en) * 1993-07-21 1997-08-05 Lucid Technologies Inc. Dermatological laser treatment system with electronic visualization of the area being treated
EP0788814A2 (en) 1996-02-09 1997-08-13 ESC Medical Systems Ltd. Depilation using pulsed electromagnetic radiaton
US5658323A (en) * 1995-07-12 1997-08-19 Miller; Iain D. Method and apparatus for dermatology treatment
WO1997037602A2 (en) * 1996-04-09 1997-10-16 Cynosure, Inc. Alexandrite laser system for treatment of dermatological specimens
US5683380A (en) * 1995-03-29 1997-11-04 Esc Medical Systems Ltd. Method and apparatus for depilation using pulsed electromagnetic radiation
US5713845A (en) * 1991-10-29 1998-02-03 Thermolase Corporation Laser assisted drug delivery
US5735844A (en) * 1995-02-01 1998-04-07 The General Hospital Corporation Hair removal using optical pulses
US5752949A (en) * 1991-10-29 1998-05-19 Thermolase Corporation Hair removal method
US5752948A (en) * 1991-10-29 1998-05-19 Thermolase Corporation Hair removal method
US5755751A (en) * 1992-10-20 1998-05-26 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US5769844A (en) * 1991-06-26 1998-06-23 Ghaffari; Shahriar Conventional light-pumped high power system for medical applications
US5769840A (en) * 1988-04-19 1998-06-23 Schirmer; Kurt E. Microsurgery using alternating disruptive and thermal laser beam pulses
US5785704A (en) * 1996-07-29 1998-07-28 Mrc Systems Gmbh Method for performing stereotactic laser surgery
AU696920B2 (en) * 1996-09-26 1998-09-24 Ya-Man Ltd. Light depilating apparatus
US5817089A (en) * 1991-10-29 1998-10-06 Thermolase Corporation Skin treatment process using laser
US5836938A (en) * 1995-12-18 1998-11-17 Slatkine; Michael Hair removal with a laser system and waveguide for radial transmission of laser energy
US5843072A (en) * 1996-11-07 1998-12-01 Cynosure, Inc. Method for treatment of unwanted veins and device therefor
US5871480A (en) * 1991-10-29 1999-02-16 Thermolase Corporation Hair removal using photosensitizer and laser
US5871479A (en) * 1996-11-07 1999-02-16 Cynosure, Inc. Alexandrite laser system for hair removal and method therefor
US5876397A (en) * 1984-01-24 1999-03-02 Boston Scientific Corporation Reduction of an arteriosclerotic lesion by selective absorption of electromagnetic energy in a component thereof
US5879376A (en) * 1995-07-12 1999-03-09 Luxar Corporation Method and apparatus for dermatology treatment
US5879346A (en) * 1995-12-18 1999-03-09 Esc Medical Systems, Ltd. Hair removal by selective photothermolysis with an alexandrite laser
WO1999032193A1 (en) 1997-12-23 1999-07-01 Esc Medical Systems Ltd. Apparatus for therapeutic electromagnetic treatment
US5925035A (en) * 1991-10-29 1999-07-20 Thermolase Corporation Hair removal method
US5993440A (en) * 1997-10-16 1999-11-30 Ghassemi; Faramarz Frank Non-invasive laser cutting device and method
US6050990A (en) * 1996-12-05 2000-04-18 Thermolase Corporation Methods and devices for inhibiting hair growth and related skin treatments
US6063074A (en) * 1991-10-29 2000-05-16 Thermolase Corporation Hair removal using a contaminant matched to a laser
US6104959A (en) * 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
US6168590B1 (en) 1997-08-12 2001-01-02 Y-Beam Technologies, Inc. Method for permanent hair removal
US6228075B1 (en) 1996-11-07 2001-05-08 Cynosure, Inc. Alexandrite laser system for hair removal
US6267771B1 (en) 1991-10-29 2001-07-31 Thermotrex Corporation Hair removal device and method
US6273884B1 (en) 1997-05-15 2001-08-14 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment
US6383176B1 (en) 1999-03-15 2002-05-07 Altus Medical, Inc. Hair removal device and method
US20020091377A1 (en) * 2000-01-25 2002-07-11 Anderson R. Rox Method and apparatus for medical treatment utilizing long duration electromagnetic radiation
US6461348B1 (en) 1999-08-27 2002-10-08 Howard S. Bertan Photo-thermal epilation apparatus with advanced energy storage arrangement
US20020161357A1 (en) * 2000-12-28 2002-10-31 Anderson R. Rox Method and apparatus for EMR treatment
US6508813B1 (en) 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US6514243B1 (en) 1992-10-20 2003-02-04 Lumenis Ltd. Method and apparatus for electromagnetic treatment of the skin, including hair depilation
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6558411B1 (en) * 1997-05-15 2003-05-06 Photocure Asa Device for illuminating a defined area
US6569155B1 (en) 1999-03-15 2003-05-27 Altus Medical, Inc. Radiation delivery module and dermal tissue treatment method
US6575964B1 (en) 1998-02-03 2003-06-10 Sciton, Inc. Selective aperture for laser delivery system for providing incision, tissue ablation and coagulation
US20030144713A1 (en) * 1996-04-09 2003-07-31 Cynosure, Inc. Ultra-long flashlamp-excited pulse dye laser for therapy and method therefor
US6605080B1 (en) 1998-03-27 2003-08-12 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
US6613042B1 (en) * 2000-06-30 2003-09-02 Nikolai Tankovich Rainbow laser
US6653618B2 (en) 2000-04-28 2003-11-25 Palomar Medical Technologies, Inc. Contact detecting method and apparatus for an optical radiation handpiece
US20040015156A1 (en) * 1998-12-03 2004-01-22 Vasily David B. Method and apparatus for laser removal of hair
US20040034319A1 (en) * 2002-03-12 2004-02-19 Palomar Medical Technologies, Inc. Method and apparatus for hair growth management
US20040068255A1 (en) * 2002-10-07 2004-04-08 Short Kenneth Lawrence Methods of operating a photo-thermal epilation apparatus
US20040073079A1 (en) * 2002-06-19 2004-04-15 Palomar Medical Technologies, Inc. Method and apparatus for treatment of cutaneous and subcutaneous conditions
US6723090B2 (en) 2001-07-02 2004-04-20 Palomar Medical Technologies, Inc. Fiber laser device for medical/cosmetic procedures
US20040082941A1 (en) * 1999-03-15 2004-04-29 Connors Kevin P. Tissue treatment device and method
US6743221B1 (en) 2001-03-13 2004-06-01 James L. Hobart Laser system and method for treatment of biological tissues
US20040116984A1 (en) * 2002-12-12 2004-06-17 Greg Spooner Method and system for controlled spatially-selective epidermal pigmentation phototherapy with UVA LEDs
US20040143247A1 (en) * 1997-02-05 2004-07-22 Anderson R. Rox Method and apparatus for treating wrinkles in skin using radiation
US20040147986A1 (en) * 2003-01-24 2004-07-29 Baumgardner Jonathan M. Method and apparatus for treating skin disorders using a near black body flashlamp source
US6770069B1 (en) 2001-06-22 2004-08-03 Sciton, Inc. Laser applicator
US20040162549A1 (en) * 2002-11-12 2004-08-19 Palomar Medical Technologies, Inc. Method and apparatus for performing optical dermatology
US20040176824A1 (en) * 2003-03-04 2004-09-09 Weckwerth Mark V. Method and apparatus for the repigmentation of human skin
US20040199227A1 (en) * 2001-11-29 2004-10-07 Altshuler Gregory B. Biostimulation of the oral cavity
US20040236267A1 (en) * 2003-02-28 2004-11-25 Advanced Light Technology, Llc, A Corporation Of The State Of California Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy
FR2862204A1 (en) * 2003-11-13 2005-05-20 Yves Vincent Brottier Epilation apparatus for local cutaneous application, operates by current pulses that generate measuring voltage which is compared to reference voltage to control open or closed state of switch using hysteresis, and to regulate current
US20050180140A1 (en) * 2002-05-07 2005-08-18 George David S. Intense pulsed light devices
US20060111760A1 (en) * 2001-08-10 2006-05-25 Lajos Kemeny Phototherapeutical method and system for the treatment of inflammatory and hyperproliferative disorders of the nasal mucosa
US7118563B2 (en) 2003-02-25 2006-10-10 Spectragenics, Inc. Self-contained, diode-laser-based dermatologic treatment apparatus
US7135033B2 (en) 2002-05-23 2006-11-14 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
WO2006120635A2 (en) 2005-05-12 2006-11-16 Koninklijke Philips Electronics N.V. Hair-growth control device and hair-growth control method
US20070038206A1 (en) * 2004-12-09 2007-02-15 Palomar Medical Technologies, Inc. Photocosmetic device
US7204832B2 (en) 1996-12-02 2007-04-17 Pálomar Medical Technologies, Inc. Cooling system for a photo cosmetic device
US7220254B2 (en) 2003-12-31 2007-05-22 Palomar Medical Technologies, Inc. Dermatological treatment with visualization
US7250045B2 (en) 2003-02-25 2007-07-31 Spectragenics, Inc. Self-contained, eye-safe hair-regrowth-inhibition apparatus and method
US7274155B2 (en) 2001-03-01 2007-09-25 Palomar Medical Technologies, Inc. Flash lamp drive circuit
US20070255265A1 (en) * 2006-04-28 2007-11-01 Davenport Scott A Localized flashlamp skin treatments
US7291140B2 (en) 2003-07-18 2007-11-06 Cutera, Inc. System and method for low average power dermatologic light treatment device
US7326199B2 (en) 2003-12-22 2008-02-05 Cutera, Inc. System and method for flexible architecture for dermatologic treatments utilizing multiple light sources
US7351252B2 (en) 2002-06-19 2008-04-01 Palomar Medical Technologies, Inc. Method and apparatus for photothermal treatment of tissue at depth
US7413567B2 (en) 2003-02-25 2008-08-19 Spectragenics, Inc. Optical sensor and method for identifying the presence of skin
US7452358B2 (en) 1996-01-05 2008-11-18 Thermage, Inc. RF electrode assembly for handpiece
US7452356B2 (en) 2003-02-25 2008-11-18 Tria Beauty, Inc. Eye-safe dermatologic treatment apparatus
US7473251B2 (en) 1996-01-05 2009-01-06 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US7481809B2 (en) 1996-01-05 2009-01-27 Thermage, Inc. Handpiece with RF electrode and non-volatile memory
US20090125006A1 (en) * 2004-02-25 2009-05-14 Spectragenics, Inc. Optical Sensor and Method for Identifying the Presence of Skin
US7540869B2 (en) 2001-12-27 2009-06-02 Palomar Medical Technologies, Inc. Method and apparatus for improved vascular related treatment
US20090248004A1 (en) * 2008-02-28 2009-10-01 Palomar Medical Technologies, Inc. Systems and methods for treatment of soft tissue
US20090254076A1 (en) * 2008-03-17 2009-10-08 Palomar Medical Corporation Method and apparatus for fractional deformation and treatment of tissue
US20090287137A1 (en) * 1996-11-21 2009-11-19 Boston Scientific Corporation Mucosal ablation
US7722600B2 (en) 2003-08-25 2010-05-25 Cutera, Inc. System and method for heating skin using light to provide tissue treatment
US20100145321A1 (en) * 2000-12-28 2010-06-10 Palomar Medical Technologies, Inc. Methods and products for producing lattices of emr-treated islets in tissues, and uses therefor
US20100286673A1 (en) * 2008-03-17 2010-11-11 Palomar Medical Technologies, Inc. Method and apparatus for treatment of tissue
US7837675B2 (en) 2004-07-22 2010-11-23 Shaser, Inc. Method and device for skin treatment with replaceable photosensitive window
US20100298744A1 (en) * 2009-04-30 2010-11-25 Palomar Medical Technologies, Inc. System and method of treating tissue with ultrasound energy
US20110036983A1 (en) * 2007-11-27 2011-02-17 Ford Timothy D F Identification system and method using highly collimated source of electromagnetic radiation
US20110040295A1 (en) * 2003-02-28 2011-02-17 Photometics, Inc. Cancer treatment using selective photo-apoptosis
US7891362B2 (en) 2005-12-23 2011-02-22 Candela Corporation Methods for treating pigmentary and vascular abnormalities in a dermal region
US20110046523A1 (en) * 2009-07-23 2011-02-24 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US7981111B2 (en) 2003-02-25 2011-07-19 Tria Beauty, Inc. Method and apparatus for the treatment of benign pigmented lesions
US20110202115A1 (en) * 2007-01-26 2011-08-18 Panasonic Electric Works Co., Ltd. Hair growth modulation device
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US8226696B1 (en) 1997-06-16 2012-07-24 Ellipse A/S Light pulse generating apparatus and cosmetic and therapeutic phototreatment
US8246611B2 (en) 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
US8268332B2 (en) 2004-04-01 2012-09-18 The General Hospital Corporation Method for dermatological treatment using chromophores
US8277495B2 (en) 2005-01-13 2012-10-02 Candela Corporation Method and apparatus for treating a diseased nail
US8346347B2 (en) 2005-09-15 2013-01-01 Palomar Medical Technologies, Inc. Skin optical characterization device
US8401668B2 (en) 2007-04-19 2013-03-19 Miramar Labs, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US8406894B2 (en) 2007-12-12 2013-03-26 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US8469951B2 (en) 2011-08-01 2013-06-25 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US8685017B2 (en) 1996-01-05 2014-04-01 Thermage, Inc. Method and kit for treatment of tissue
US8688228B2 (en) 2007-04-19 2014-04-01 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US8709003B2 (en) 2003-02-25 2014-04-29 Tria Beauty, Inc. Capacitive sensing method and device for detecting skin
US8870856B2 (en) 2003-08-25 2014-10-28 Cutera, Inc. Method for heating skin using light to provide tissue treatment
US8915906B2 (en) 2003-08-25 2014-12-23 Cutera, Inc. Method for treatment of post-partum abdominal skin redundancy or laxity
US9028536B2 (en) 2006-08-02 2015-05-12 Cynosure, Inc. Picosecond laser apparatus and methods for its operation and use
US9028469B2 (en) 2005-09-28 2015-05-12 Candela Corporation Method of treating cellulite
US9149331B2 (en) 2007-04-19 2015-10-06 Miramar Labs, Inc. Methods and apparatus for reducing sweat production
US9241763B2 (en) 2007-04-19 2016-01-26 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US9687671B2 (en) 2008-04-25 2017-06-27 Channel Investments, Llc Optical sensor and method for identifying the presence of skin and the pigmentation of skin
US9780518B2 (en) 2012-04-18 2017-10-03 Cynosure, Inc. Picosecond laser apparatus and methods for treating target tissues with same
US10245107B2 (en) 2013-03-15 2019-04-02 Cynosure, Inc. Picosecond optical radiation systems and methods of use
US10342617B2 (en) 2003-02-25 2019-07-09 Channel Investments, Llc Phototherapy device thermal control apparatus and method
US10434324B2 (en) 2005-04-22 2019-10-08 Cynosure, Llc Methods and systems for laser treatment using non-uniform output beam
US10463429B2 (en) 2007-04-19 2019-11-05 Miradry, Inc. Methods, devices, and systems for non-invasive delivery of microwave therapy
US10624696B2 (en) 2007-04-19 2020-04-21 Miradry, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US10779885B2 (en) 2013-07-24 2020-09-22 Miradry. Inc. Apparatus and methods for the treatment of tissue using microwave energy
US11418000B2 (en) 2018-02-26 2022-08-16 Cynosure, Llc Q-switched cavity dumped sub-nanosecond laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327712A (en) * 1961-09-15 1967-06-27 Ira H Kaufman Photocoagulation type fiber optical surgical device
US3471215A (en) * 1965-07-16 1969-10-07 American Optical Corp Fiber laser device provided with long flexible energy-directing probe-like structure
US3538919A (en) * 1967-04-07 1970-11-10 Gregory System Inc Depilation by means of laser energy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327712A (en) * 1961-09-15 1967-06-27 Ira H Kaufman Photocoagulation type fiber optical surgical device
US3471215A (en) * 1965-07-16 1969-10-07 American Optical Corp Fiber laser device provided with long flexible energy-directing probe-like structure
US3538919A (en) * 1967-04-07 1970-11-10 Gregory System Inc Depilation by means of laser energy

Cited By (281)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3834391A (en) * 1973-01-19 1974-09-10 Block Carol Ltd Method and apparatus for photoepilation
US4185633A (en) * 1976-09-07 1980-01-29 Malyshev Boris N Method of surgical treatment using laser emission and apparatus for realizing same
US4122853A (en) * 1977-03-14 1978-10-31 Spectra-Med Infrared laser photocautery device
FR2445153A1 (en) * 1978-12-27 1980-07-25 Skovajsa Joseph UV light source for medical use - has optical fibre attached to lamp housing to provide local application of UV radiation
US4299229A (en) * 1979-12-05 1981-11-10 Cavitron Corporation Method of observing the aim or effect of a laser beam on a target
US4311138A (en) * 1980-03-10 1982-01-19 Sugarman Edward D Illuminated hypodermic needle
US4388924A (en) * 1981-05-21 1983-06-21 Weissman Howard R Method for laser depilation
US5041108A (en) * 1981-12-11 1991-08-20 Pillco Limited Partnership Method for laser treatment of body lumens
US4848336A (en) * 1981-12-11 1989-07-18 Fox Kenneth R Apparatus for laser treatment of body lumens
US4800876A (en) * 1981-12-11 1989-01-31 Fox Kenneth R Method of and apparatus for laser treatment of body lumens
FR2525470A1 (en) * 1982-04-27 1983-10-28 Kreitmair Albert IRRADIATION APPARATUS FOR DENTAL PROSTHESES
US4873446A (en) * 1982-04-27 1989-10-10 Albert Kreitmair Device for irradiating denture parts
US4617926A (en) * 1982-07-09 1986-10-21 Sutton A Gunilla Depilation device and method
US4537193A (en) * 1982-10-28 1985-08-27 Hgm, Inc. Laser endocoagulator apparatus
US4567882A (en) * 1982-12-06 1986-02-04 Vanderbilt University Method for locating the illuminated tip of an endotracheal tube
US4784132A (en) * 1983-03-25 1988-11-15 Fox Kenneth R Method of and apparatus for laser treatment of body lumens
JPS6329527B2 (en) * 1983-09-26 1988-06-14 Kyaroru Burotsuku Ltd
US4608978A (en) * 1983-09-26 1986-09-02 Carol Block Limited Method and apparatus for photoepiltion
EP0142671A1 (en) * 1983-09-26 1985-05-29 Carol Block, Ltd. Method and apparatus for photoepilation
JPS6092701A (en) * 1983-09-26 1985-05-24 キヤロル・ブロツク・ミテツド Light dehairing method and apparatus
US5876397A (en) * 1984-01-24 1999-03-02 Boston Scientific Corporation Reduction of an arteriosclerotic lesion by selective absorption of electromagnetic energy in a component thereof
WO1986005676A1 (en) 1985-03-29 1986-10-09 Politzer Eugene Jim Method and apparatus for shaving the beard
FR2579446A1 (en) * 1985-03-29 1986-10-03 Politzer Eugene Process for removing hair, down and beards by a method which does not use a blade
US4819669A (en) * 1985-03-29 1989-04-11 Politzer Eugene J Method and apparatus for shaving the beard
US4658817A (en) * 1985-04-01 1987-04-21 Children's Hospital Medical Center Method and apparatus for transmyocardial revascularization using a laser
US5769840A (en) * 1988-04-19 1998-06-23 Schirmer; Kurt E. Microsurgery using alternating disruptive and thermal laser beam pulses
JPH0636768B2 (en) 1988-05-21 1994-05-18 ヤーマン株式会社 Optical hair removal device
US5207673A (en) * 1989-06-09 1993-05-04 Premier Laser Systems, Inc. Fiber optic apparatus for use with medical lasers
US5182857A (en) * 1989-11-02 1993-02-02 U.S. Philips Corp. Shaving apparatus
US5300066A (en) * 1990-02-07 1994-04-05 Coherent, Inc. Contact laser delivery system
US5320618A (en) * 1990-04-09 1994-06-14 Morgan Gustafsson Device for treatment of undesired skin disfigurements
US5280788A (en) * 1991-02-26 1994-01-25 Massachusetts Institute Of Technology Devices and methods for optical diagnosis of tissue
US5606798A (en) * 1991-03-12 1997-03-04 Kelman; Elliot Hair cutting apparatus
US5769844A (en) * 1991-06-26 1998-06-23 Ghaffari; Shahriar Conventional light-pumped high power system for medical applications
US5226907A (en) * 1991-10-29 1993-07-13 Tankovich Nikolai I Hair removal device and method
US5752948A (en) * 1991-10-29 1998-05-19 Thermolase Corporation Hair removal method
US5871480A (en) * 1991-10-29 1999-02-16 Thermolase Corporation Hair removal using photosensitizer and laser
WO1993008715A1 (en) * 1991-10-29 1993-05-13 Thermotrex Corporation Hair removal device and method
US5925035A (en) * 1991-10-29 1999-07-20 Thermolase Corporation Hair removal method
US5817089A (en) * 1991-10-29 1998-10-06 Thermolase Corporation Skin treatment process using laser
US6036684A (en) * 1991-10-29 2000-03-14 Thermolase Corporation Skin treatment process using laser
US5752949A (en) * 1991-10-29 1998-05-19 Thermolase Corporation Hair removal method
US6267771B1 (en) 1991-10-29 2001-07-31 Thermotrex Corporation Hair removal device and method
US5713845A (en) * 1991-10-29 1998-02-03 Thermolase Corporation Laser assisted drug delivery
US6063074A (en) * 1991-10-29 2000-05-16 Thermolase Corporation Hair removal using a contaminant matched to a laser
US6152917A (en) * 1991-10-29 2000-11-28 Thermolase Corporation Hair removal device
USRE36634E (en) * 1991-12-12 2000-03-28 Ghaffari; Shahriar Optical system for treatment of vascular lesions
US5344418A (en) * 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
US5344434A (en) * 1991-12-29 1994-09-06 Technion Research & Development Foundation, Ltd. Apparatus for the photodynamic therapy treatment
EP0565331B1 (en) * 1992-04-09 2001-01-24 ESC Medical Systems Ltd. Device for therapeutic electromagnetic treatment
EP1078604A2 (en) * 1992-04-09 2001-02-28 ESC Medical Systems Ltd. Device for therapeutic electromagnetic treatment
EP1078605A3 (en) * 1992-04-09 2001-08-08 ESC Medical Systems Ltd. Device for therapeutic electromagnetic treatment
EP1078604A3 (en) * 1992-04-09 2001-08-08 ESC Medical Systems Ltd. Device for therapeutic electromagnetic treatment
EP0565331A2 (en) 1992-04-09 1993-10-13 ESC Medical Systems Ltd. Therapeutic electromagnetic treatment
US7108689B2 (en) 1992-10-20 2006-09-19 Lumenis Ltd Method and apparatus for electromagnetic treatment of the skin, including hair depilation
US5755751A (en) * 1992-10-20 1998-05-26 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US6514243B1 (en) 1992-10-20 2003-02-04 Lumenis Ltd. Method and apparatus for electromagnetic treatment of the skin, including hair depilation
US20030069567A1 (en) * 1992-10-20 2003-04-10 Shimon Eckhouse Method and apparatus for electromagnetic treatment of the skin, including hair depilation
US5860967A (en) * 1993-07-21 1999-01-19 Lucid, Inc. Dermatological laser treatment system with electronic visualization of the area being treated
US5653706A (en) * 1993-07-21 1997-08-05 Lucid Technologies Inc. Dermatological laser treatment system with electronic visualization of the area being treated
US5647866A (en) * 1993-11-09 1997-07-15 Zaias; Nardo Method of hair depilation
WO1998025673A1 (en) * 1995-01-20 1998-06-18 Lucid Technologies, Inc. Epilation system
US5632741A (en) * 1995-01-20 1997-05-27 Lucid Technologies, Inc. Epilation system
EP1230900B1 (en) * 1995-02-01 2004-08-18 The General Hospital Corporation Hair removal apparatus using optical pulses
US5595568A (en) * 1995-02-01 1997-01-21 The General Hospital Corporation Permanent hair removal using optical pulses
US5735844A (en) * 1995-02-01 1998-04-07 The General Hospital Corporation Hair removal using optical pulses
EP0736308A3 (en) * 1995-03-29 1998-06-24 ESC Medical Systems Ltd. Method and apparatus for depilation using pulsed electromagnetic radiation
US5885273A (en) * 1995-03-29 1999-03-23 Esc Medical Systems, Ltd. Method for depilation using pulsed electromagnetic radiation
US5683380A (en) * 1995-03-29 1997-11-04 Esc Medical Systems Ltd. Method and apparatus for depilation using pulsed electromagnetic radiation
US5658323A (en) * 1995-07-12 1997-08-19 Miller; Iain D. Method and apparatus for dermatology treatment
US6027495A (en) * 1995-07-12 2000-02-22 Esc Medical Systems Ltd. Method and apparatus for dermatology treatment
US5879376A (en) * 1995-07-12 1999-03-09 Luxar Corporation Method and apparatus for dermatology treatment
US5879346A (en) * 1995-12-18 1999-03-09 Esc Medical Systems, Ltd. Hair removal by selective photothermolysis with an alexandrite laser
US5836938A (en) * 1995-12-18 1998-11-17 Slatkine; Michael Hair removal with a laser system and waveguide for radial transmission of laser energy
US8685017B2 (en) 1996-01-05 2014-04-01 Thermage, Inc. Method and kit for treatment of tissue
US7481809B2 (en) 1996-01-05 2009-01-27 Thermage, Inc. Handpiece with RF electrode and non-volatile memory
US7473251B2 (en) 1996-01-05 2009-01-06 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US7452358B2 (en) 1996-01-05 2008-11-18 Thermage, Inc. RF electrode assembly for handpiece
EP0788814A3 (en) * 1996-02-09 1999-03-17 ESC Medical Systems Ltd. Depilation using pulsed electromagnetic radiaton
EP0788814A2 (en) 1996-02-09 1997-08-13 ESC Medical Systems Ltd. Depilation using pulsed electromagnetic radiaton
WO1997035526A1 (en) 1996-03-25 1997-10-02 Miller Iain D Method and apparatus for hair removal
US5853407A (en) * 1996-03-25 1998-12-29 Luxar Corporation Method and apparatus for hair removal
US5630811A (en) * 1996-03-25 1997-05-20 Miller; Iain D. Method and apparatus for hair removal
US6610052B2 (en) 1996-04-09 2003-08-26 Cynosure, Inc. Laser system and method for treatment of biologic targets
WO1997037602A3 (en) * 1996-04-09 1997-12-24 Cynosure Inc Alexandrite laser system for treatment of dermatological specimens
US20030144713A1 (en) * 1996-04-09 2003-07-31 Cynosure, Inc. Ultra-long flashlamp-excited pulse dye laser for therapy and method therefor
US7118562B2 (en) 1996-04-09 2006-10-10 Cynosure, Inc. Laser system and method for treatment of biologic targets
WO1997037602A2 (en) * 1996-04-09 1997-10-16 Cynosure, Inc. Alexandrite laser system for treatment of dermatological specimens
US6273883B1 (en) 1996-04-09 2001-08-14 Cynosure, Inc. Alexandrite laser system for treatment of dermatological specimens
US5785704A (en) * 1996-07-29 1998-07-28 Mrc Systems Gmbh Method for performing stereotactic laser surgery
AU696920B2 (en) * 1996-09-26 1998-09-24 Ya-Man Ltd. Light depilating apparatus
US5871479A (en) * 1996-11-07 1999-02-16 Cynosure, Inc. Alexandrite laser system for hair removal and method therefor
US6045548A (en) * 1996-11-07 2000-04-04 Cynosure, Inc. Alexandrite laser system for hair removal and method therefor
US6632218B1 (en) 1996-11-07 2003-10-14 Cynosure, Inc. Alexandrite laser system for hair removal and method therefor
US5843072A (en) * 1996-11-07 1998-12-01 Cynosure, Inc. Method for treatment of unwanted veins and device therefor
US6228075B1 (en) 1996-11-07 2001-05-08 Cynosure, Inc. Alexandrite laser system for hair removal
US20090287137A1 (en) * 1996-11-21 2009-11-19 Boston Scientific Corporation Mucosal ablation
US7431719B2 (en) 1996-12-02 2008-10-07 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US6508813B1 (en) 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US6878144B2 (en) 1996-12-02 2005-04-12 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US20030065314A1 (en) * 1996-12-02 2003-04-03 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US7204832B2 (en) 1996-12-02 2007-04-17 Pálomar Medical Technologies, Inc. Cooling system for a photo cosmetic device
US8328794B2 (en) 1996-12-02 2012-12-11 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US20090137995A1 (en) * 1996-12-02 2009-05-28 Palomar Medical Technologies, Inc. System For Electromagnetic Radiation Dermatology And Head For Use Therewith
US6162211A (en) * 1996-12-05 2000-12-19 Thermolase Corporation Skin enhancement using laser light
US6050990A (en) * 1996-12-05 2000-04-18 Thermolase Corporation Methods and devices for inhibiting hair growth and related skin treatments
US20050256515A1 (en) * 1997-02-05 2005-11-17 Anderson R R Method and apparatus for treating wrinkles in skin using radiation
US20040143247A1 (en) * 1997-02-05 2004-07-22 Anderson R. Rox Method and apparatus for treating wrinkles in skin using radiation
US8002768B1 (en) 1997-05-15 2011-08-23 Palomar Medical Technologies, Inc. Light energy delivery head
US6511475B1 (en) 1997-05-15 2003-01-28 The General Hospital Corporation Heads for dermatology treatment
US20030195494A1 (en) * 1997-05-15 2003-10-16 Altshuler Gregory B. Light energy delivery head
US8109924B2 (en) 1997-05-15 2012-02-07 Palomar Medical Technologies, Inc. Heads for dermatology treatment
US6273884B1 (en) 1997-05-15 2001-08-14 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment
US6663620B2 (en) 1997-05-15 2003-12-16 Palomar Medical Technologies, Inc. Light energy delivery head
US8328796B2 (en) 1997-05-15 2012-12-11 Palomar Medical Technologies, Inc. Light energy delivery head
US7763016B2 (en) 1997-05-15 2010-07-27 Palomar Medical Technologies, Inc. Light energy delivery head
US7935107B2 (en) 1997-05-15 2011-05-03 Palomar Medical Technologies, Inc. Heads for dermatology treatment
US6558411B1 (en) * 1997-05-15 2003-05-06 Photocure Asa Device for illuminating a defined area
US7077840B2 (en) 1997-05-15 2006-07-18 Palomar Medical Technologies, Inc. Heads for dermatology treatment
US6976985B2 (en) 1997-05-15 2005-12-20 Palomar Medical Technologies, Inc. Light energy delivery head
US6974451B2 (en) 1997-05-15 2005-12-13 Palomar Medical Technologies, Inc. Light energy delivery head
US7758621B2 (en) 1997-05-15 2010-07-20 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic EMR treatment on the skin
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US8226696B1 (en) 1997-06-16 2012-07-24 Ellipse A/S Light pulse generating apparatus and cosmetic and therapeutic phototreatment
US8073550B1 (en) 1997-07-31 2011-12-06 Miramar Labs, Inc. Method and apparatus for treating subcutaneous histological features
US6104959A (en) * 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
US8853600B2 (en) 1997-07-31 2014-10-07 Miramar Labs, Inc. Method and apparatus for treating subcutaneous histological features
US8367959B2 (en) 1997-07-31 2013-02-05 Miramar Labs, Inc. Method and apparatus for treating subcutaneous histological features
US9216058B2 (en) 1997-07-31 2015-12-22 Miramar Labs, Inc. Method and apparatus for treating subcutaneous histological features
US6168590B1 (en) 1997-08-12 2001-01-02 Y-Beam Technologies, Inc. Method for permanent hair removal
US5993440A (en) * 1997-10-16 1999-11-30 Ghassemi; Faramarz Frank Non-invasive laser cutting device and method
WO1999032193A1 (en) 1997-12-23 1999-07-01 Esc Medical Systems Ltd. Apparatus for therapeutic electromagnetic treatment
US6575964B1 (en) 1998-02-03 2003-06-10 Sciton, Inc. Selective aperture for laser delivery system for providing incision, tissue ablation and coagulation
US7060061B2 (en) 1998-03-27 2006-06-13 Palomar Medical Technologies, Inc. Method and apparatus for the selective targeting of lipid-rich tissues
US20030199859A1 (en) * 1998-03-27 2003-10-23 Altshuler Gregory B. Method and apparatus for the selective targeting of lipid-rich tissues
US6605080B1 (en) 1998-03-27 2003-08-12 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
US20040034341A1 (en) * 1998-03-27 2004-02-19 Palomar Medical Technologies, Inc. Method and apparatus for the selective targeting of lipid-rich tissues
US7029469B2 (en) 1998-12-03 2006-04-18 Palomar Medical Technologies, Inc. Method and apparatus for laser removal of hair
US20040015156A1 (en) * 1998-12-03 2004-01-22 Vasily David B. Method and apparatus for laser removal of hair
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US20070208326A1 (en) * 1999-03-15 2007-09-06 Connors Kevin P Tissue treatment system
US6485484B1 (en) 1999-03-15 2002-11-26 Altus Medical, Inc. Hair removal device
US7465307B2 (en) 1999-03-15 2008-12-16 Cutera, Inc. Tissue treatment system
US7041094B2 (en) 1999-03-15 2006-05-09 Cutera, Inc. Tissue treatment device and method
US7524328B2 (en) 1999-03-15 2009-04-28 Cutera, Inc. Radiation delivery module and dermal tissue treatment method
US20040082941A1 (en) * 1999-03-15 2004-04-29 Connors Kevin P. Tissue treatment device and method
US20060122585A1 (en) * 1999-03-15 2006-06-08 Acme Medical, Inc. Tissue treatment system
US6383176B1 (en) 1999-03-15 2002-05-07 Altus Medical, Inc. Hair removal device and method
US7618414B2 (en) 1999-03-15 2009-11-17 Cutera, Inc. Tissue treatment system
US6569155B1 (en) 1999-03-15 2003-05-27 Altus Medical, Inc. Radiation delivery module and dermal tissue treatment method
US6719753B1 (en) 1999-08-27 2004-04-13 Howard Stephen Bertan Means and method for energizing a flash lamp
US6461348B1 (en) 1999-08-27 2002-10-08 Howard S. Bertan Photo-thermal epilation apparatus with advanced energy storage arrangement
EP2316372A1 (en) * 2000-01-25 2011-05-04 Palomar Medical Technologies, Inc. Method and apparatus for medical treatment utilizing long duration electromagnetic radiation
US20020091377A1 (en) * 2000-01-25 2002-07-11 Anderson R. Rox Method and apparatus for medical treatment utilizing long duration electromagnetic radiation
US6653618B2 (en) 2000-04-28 2003-11-25 Palomar Medical Technologies, Inc. Contact detecting method and apparatus for an optical radiation handpiece
US6613042B1 (en) * 2000-06-30 2003-09-02 Nikolai Tankovich Rainbow laser
US6997923B2 (en) 2000-12-28 2006-02-14 Palomar Medical Technologies, Inc. Method and apparatus for EMR treatment
US20020161357A1 (en) * 2000-12-28 2002-10-31 Anderson R. Rox Method and apparatus for EMR treatment
US20100145321A1 (en) * 2000-12-28 2010-06-10 Palomar Medical Technologies, Inc. Methods and products for producing lattices of emr-treated islets in tissues, and uses therefor
US7531967B2 (en) 2001-03-01 2009-05-12 Palomar Medical Technologies, Inc. Flashlamp drive circuit
US7274155B2 (en) 2001-03-01 2007-09-25 Palomar Medical Technologies, Inc. Flash lamp drive circuit
US7220256B2 (en) 2001-03-13 2007-05-22 Hobart James L Laser system and method for treatment of biological tissues
US6743221B1 (en) 2001-03-13 2004-06-01 James L. Hobart Laser system and method for treatment of biological tissues
US6770069B1 (en) 2001-06-22 2004-08-03 Sciton, Inc. Laser applicator
US6723090B2 (en) 2001-07-02 2004-04-20 Palomar Medical Technologies, Inc. Fiber laser device for medical/cosmetic procedures
US20060111760A1 (en) * 2001-08-10 2006-05-25 Lajos Kemeny Phototherapeutical method and system for the treatment of inflammatory and hyperproliferative disorders of the nasal mucosa
US20040199227A1 (en) * 2001-11-29 2004-10-07 Altshuler Gregory B. Biostimulation of the oral cavity
US20090149844A1 (en) * 2001-12-27 2009-06-11 Palomar Medical Technologies, Inc. Method And Apparatus For Improved Vascular Related Treatment
US7540869B2 (en) 2001-12-27 2009-06-02 Palomar Medical Technologies, Inc. Method and apparatus for improved vascular related treatment
US7044959B2 (en) 2002-03-12 2006-05-16 Palomar Medical Technologies, Inc. Method and apparatus for hair growth management
US20040034319A1 (en) * 2002-03-12 2004-02-19 Palomar Medical Technologies, Inc. Method and apparatus for hair growth management
US20050180140A1 (en) * 2002-05-07 2005-08-18 George David S. Intense pulsed light devices
US7135033B2 (en) 2002-05-23 2006-11-14 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US20110184334A1 (en) * 2002-05-23 2011-07-28 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US7942916B2 (en) 2002-05-23 2011-05-17 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US7942915B2 (en) 2002-05-23 2011-05-17 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants
US7351252B2 (en) 2002-06-19 2008-04-01 Palomar Medical Technologies, Inc. Method and apparatus for photothermal treatment of tissue at depth
US8915948B2 (en) 2002-06-19 2014-12-23 Palomar Medical Technologies, Llc Method and apparatus for photothermal treatment of tissue at depth
US20040073079A1 (en) * 2002-06-19 2004-04-15 Palomar Medical Technologies, Inc. Method and apparatus for treatment of cutaneous and subcutaneous conditions
US10556123B2 (en) 2002-06-19 2020-02-11 Palomar Medical Technologies, Llc Method and apparatus for treatment of cutaneous and subcutaneous conditions
US7276058B2 (en) 2002-06-19 2007-10-02 Palomar Medical Technologies, Inc. Method and apparatus for treatment of cutaneous and subcutaneous conditions
US10500413B2 (en) 2002-06-19 2019-12-10 Palomar Medical Technologies, Llc Method and apparatus for treatment of cutaneous and subcutaneous conditions
US6916315B2 (en) 2002-10-07 2005-07-12 Kenneth Lawrence Short Methods of operating a photo-thermal epilation apparatus
US20040068255A1 (en) * 2002-10-07 2004-04-08 Short Kenneth Lawrence Methods of operating a photo-thermal epilation apparatus
US20040162549A1 (en) * 2002-11-12 2004-08-19 Palomar Medical Technologies, Inc. Method and apparatus for performing optical dermatology
US20040116984A1 (en) * 2002-12-12 2004-06-17 Greg Spooner Method and system for controlled spatially-selective epidermal pigmentation phototherapy with UVA LEDs
US6991644B2 (en) 2002-12-12 2006-01-31 Cutera, Inc. Method and system for controlled spatially-selective epidermal pigmentation phototherapy with UVA LEDs
US20060089687A1 (en) * 2002-12-12 2006-04-27 Greg Spooner System for controlled spatially-selective epidermal pigmentation phototherapy with UVA LEDs
US7147654B2 (en) * 2003-01-24 2006-12-12 Laserscope Treatment Site Cooling System of Skin Disorders
US20040147986A1 (en) * 2003-01-24 2004-07-29 Baumgardner Jonathan M. Method and apparatus for treating skin disorders using a near black body flashlamp source
US10342617B2 (en) 2003-02-25 2019-07-09 Channel Investments, Llc Phototherapy device thermal control apparatus and method
US7981111B2 (en) 2003-02-25 2011-07-19 Tria Beauty, Inc. Method and apparatus for the treatment of benign pigmented lesions
US8551104B2 (en) 2003-02-25 2013-10-08 Tria Beauty, Inc. Self-contained, diode-laser-based dermatologic treatment apparatus
US7413567B2 (en) 2003-02-25 2008-08-19 Spectragenics, Inc. Optical sensor and method for identifying the presence of skin
US8709003B2 (en) 2003-02-25 2014-04-29 Tria Beauty, Inc. Capacitive sensing method and device for detecting skin
US7452356B2 (en) 2003-02-25 2008-11-18 Tria Beauty, Inc. Eye-safe dermatologic treatment apparatus
US10342618B2 (en) 2003-02-25 2019-07-09 Channel Investments, Llc Self-contained, eye-safe hair-regrowth-inhibition apparatus and method
US7118563B2 (en) 2003-02-25 2006-10-10 Spectragenics, Inc. Self-contained, diode-laser-based dermatologic treatment apparatus
US7250045B2 (en) 2003-02-25 2007-07-31 Spectragenics, Inc. Self-contained, eye-safe hair-regrowth-inhibition apparatus and method
US7354433B2 (en) * 2003-02-28 2008-04-08 Advanced Light Technologies, Llc Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy
US20110040295A1 (en) * 2003-02-28 2011-02-17 Photometics, Inc. Cancer treatment using selective photo-apoptosis
US20040236267A1 (en) * 2003-02-28 2004-11-25 Advanced Light Technology, Llc, A Corporation Of The State Of California Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy
US8790381B2 (en) 2003-02-28 2014-07-29 Photometics, Inc. Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy
US20080208294A1 (en) * 2003-02-28 2008-08-28 Advanced Light Technology, Llc Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy
US20040176824A1 (en) * 2003-03-04 2004-09-09 Weckwerth Mark V. Method and apparatus for the repigmentation of human skin
US7291140B2 (en) 2003-07-18 2007-11-06 Cutera, Inc. System and method for low average power dermatologic light treatment device
US8915906B2 (en) 2003-08-25 2014-12-23 Cutera, Inc. Method for treatment of post-partum abdominal skin redundancy or laxity
US8870856B2 (en) 2003-08-25 2014-10-28 Cutera, Inc. Method for heating skin using light to provide tissue treatment
US7722600B2 (en) 2003-08-25 2010-05-25 Cutera, Inc. System and method for heating skin using light to provide tissue treatment
FR2862204A1 (en) * 2003-11-13 2005-05-20 Yves Vincent Brottier Epilation apparatus for local cutaneous application, operates by current pulses that generate measuring voltage which is compared to reference voltage to control open or closed state of switch using hysteresis, and to regulate current
US7780652B2 (en) 2003-12-22 2010-08-24 Cutera, Inc. System and method for flexible architecture for dermatologic treatments utilizing multiple light sources
US7326199B2 (en) 2003-12-22 2008-02-05 Cutera, Inc. System and method for flexible architecture for dermatologic treatments utilizing multiple light sources
US7220254B2 (en) 2003-12-31 2007-05-22 Palomar Medical Technologies, Inc. Dermatological treatment with visualization
US7309335B2 (en) 2003-12-31 2007-12-18 Palomar Medical Technologies, Inc. Dermatological treatment with visualization
US20090125006A1 (en) * 2004-02-25 2009-05-14 Spectragenics, Inc. Optical Sensor and Method for Identifying the Presence of Skin
US8777935B2 (en) 2004-02-25 2014-07-15 Tria Beauty, Inc. Optical sensor and method for identifying the presence of skin
US9452013B2 (en) 2004-04-01 2016-09-27 The General Hospital Corporation Apparatus for dermatological treatment using chromophores
US8268332B2 (en) 2004-04-01 2012-09-18 The General Hospital Corporation Method for dermatological treatment using chromophores
US8246613B2 (en) 2004-07-22 2012-08-21 Shaser, Inc. Method and apparatus of treating tissue
US7837675B2 (en) 2004-07-22 2010-11-23 Shaser, Inc. Method and device for skin treatment with replaceable photosensitive window
US20070038206A1 (en) * 2004-12-09 2007-02-15 Palomar Medical Technologies, Inc. Photocosmetic device
US8277495B2 (en) 2005-01-13 2012-10-02 Candela Corporation Method and apparatus for treating a diseased nail
US10434324B2 (en) 2005-04-22 2019-10-08 Cynosure, Llc Methods and systems for laser treatment using non-uniform output beam
US9795443B2 (en) * 2005-05-12 2017-10-24 Koninklijke Philips N.V. Hair-growth control device and hair-growth control method
US20080228178A1 (en) * 2005-05-12 2008-09-18 Koninklijke Philips Electronics N.V. Hair-Growth Control Device and Hair-Growth Control Method
WO2006120635A2 (en) 2005-05-12 2006-11-16 Koninklijke Philips Electronics N.V. Hair-growth control device and hair-growth control method
WO2006120635A3 (en) * 2005-05-12 2007-02-15 Koninkl Philips Electronics Nv Hair-growth control device and hair-growth control method
CN102512242A (en) * 2005-05-12 2012-06-27 皇家飞利浦电子股份有限公司 Hair-growth control device and hair-growth control method
JP2008539934A (en) * 2005-05-12 2008-11-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Hair growth control device and hair growth control method
US8346347B2 (en) 2005-09-15 2013-01-01 Palomar Medical Technologies, Inc. Skin optical characterization device
US9028469B2 (en) 2005-09-28 2015-05-12 Candela Corporation Method of treating cellulite
US7891362B2 (en) 2005-12-23 2011-02-22 Candela Corporation Methods for treating pigmentary and vascular abnormalities in a dermal region
US20070239142A1 (en) * 2006-03-10 2007-10-11 Palomar Medical Technologies, Inc. Photocosmetic device
US20070255265A1 (en) * 2006-04-28 2007-11-01 Davenport Scott A Localized flashlamp skin treatments
US8460280B2 (en) 2006-04-28 2013-06-11 Cutera, Inc. Localized flashlamp skin treatments
US8246611B2 (en) 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
US9486285B2 (en) 2006-06-14 2016-11-08 Candela Corporation Treatment of skin by spatial modulation of thermal heating
US10966785B2 (en) 2006-08-02 2021-04-06 Cynosure, Llc Picosecond laser apparatus and methods for its operation and use
US10849687B2 (en) 2006-08-02 2020-12-01 Cynosure, Llc Picosecond laser apparatus and methods for its operation and use
US11712299B2 (en) 2006-08-02 2023-08-01 Cynosure, LLC. Picosecond laser apparatus and methods for its operation and use
US9028536B2 (en) 2006-08-02 2015-05-12 Cynosure, Inc. Picosecond laser apparatus and methods for its operation and use
US20110202115A1 (en) * 2007-01-26 2011-08-18 Panasonic Electric Works Co., Ltd. Hair growth modulation device
US10463429B2 (en) 2007-04-19 2019-11-05 Miradry, Inc. Methods, devices, and systems for non-invasive delivery of microwave therapy
US10166072B2 (en) 2007-04-19 2019-01-01 Miradry, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US9149331B2 (en) 2007-04-19 2015-10-06 Miramar Labs, Inc. Methods and apparatus for reducing sweat production
US8401668B2 (en) 2007-04-19 2013-03-19 Miramar Labs, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US9241763B2 (en) 2007-04-19 2016-01-26 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US8688228B2 (en) 2007-04-19 2014-04-01 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US9427285B2 (en) 2007-04-19 2016-08-30 Miramar Labs, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US10779887B2 (en) 2007-04-19 2020-09-22 Miradry, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US11419678B2 (en) 2007-04-19 2022-08-23 Miradry, Inc. Methods, devices, and systems for non-invasive delivery of microwave therapy
US10624696B2 (en) 2007-04-19 2020-04-21 Miradry, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
US8723121B2 (en) * 2007-11-27 2014-05-13 The Flewelling Ford Family Trust Identification system and method using highly collimated source of electromagnetic radiation
US20110036983A1 (en) * 2007-11-27 2011-02-17 Ford Timothy D F Identification system and method using highly collimated source of electromagnetic radiation
US8406894B2 (en) 2007-12-12 2013-03-26 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US8825176B2 (en) 2007-12-12 2014-09-02 Miramar Labs, Inc. Apparatus for the noninvasive treatment of tissue using microwave energy
US20090248004A1 (en) * 2008-02-28 2009-10-01 Palomar Medical Technologies, Inc. Systems and methods for treatment of soft tissue
US20100286673A1 (en) * 2008-03-17 2010-11-11 Palomar Medical Technologies, Inc. Method and apparatus for treatment of tissue
US20090254076A1 (en) * 2008-03-17 2009-10-08 Palomar Medical Corporation Method and apparatus for fractional deformation and treatment of tissue
US9687671B2 (en) 2008-04-25 2017-06-27 Channel Investments, Llc Optical sensor and method for identifying the presence of skin and the pigmentation of skin
US20100298744A1 (en) * 2009-04-30 2010-11-25 Palomar Medical Technologies, Inc. System and method of treating tissue with ultrasound energy
US20110046523A1 (en) * 2009-07-23 2011-02-24 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US10321954B2 (en) 2011-08-01 2019-06-18 Miradry, Inc. Applicator and tissue interface module for dermatological device
US11123136B2 (en) 2011-08-01 2021-09-21 Miradry, Inc. Applicator and tissue interface module for dermatological device
US9028477B2 (en) 2011-08-01 2015-05-12 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US8469951B2 (en) 2011-08-01 2013-06-25 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US8535302B2 (en) 2011-08-01 2013-09-17 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US9314301B2 (en) 2011-08-01 2016-04-19 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US10305244B2 (en) * 2012-04-18 2019-05-28 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US10581217B2 (en) 2012-04-18 2020-03-03 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US9780518B2 (en) 2012-04-18 2017-10-03 Cynosure, Inc. Picosecond laser apparatus and methods for treating target tissues with same
US11664637B2 (en) 2012-04-18 2023-05-30 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US11095087B2 (en) 2012-04-18 2021-08-17 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US10285757B2 (en) 2013-03-15 2019-05-14 Cynosure, Llc Picosecond optical radiation systems and methods of use
US11446086B2 (en) 2013-03-15 2022-09-20 Cynosure, Llc Picosecond optical radiation systems and methods of use
US10765478B2 (en) 2013-03-15 2020-09-08 Cynosurce, Llc Picosecond optical radiation systems and methods of use
US10245107B2 (en) 2013-03-15 2019-04-02 Cynosure, Inc. Picosecond optical radiation systems and methods of use
US10779885B2 (en) 2013-07-24 2020-09-22 Miradry. Inc. Apparatus and methods for the treatment of tissue using microwave energy
US11418000B2 (en) 2018-02-26 2022-08-16 Cynosure, Llc Q-switched cavity dumped sub-nanosecond laser
US11791603B2 (en) 2018-02-26 2023-10-17 Cynosure, LLC. Q-switched cavity dumped sub-nanosecond laser

Similar Documents

Publication Publication Date Title
US3693623A (en) Photocoagulation means and method for depilation
JP3245426B2 (en) Alexandrite laser system for treating dermatological specimens
US6514243B1 (en) Method and apparatus for electromagnetic treatment of the skin, including hair depilation
US5632741A (en) Epilation system
US6197020B1 (en) Laser apparatus for subsurface cutaneous treatment
JP4117846B2 (en) Hair removal equipment
CA2171260C (en) Method and apparatus for depilation using pulsed electromagnetic radiation
US6235015B1 (en) Method and apparatus for selective hair depilation using a scanned beam of light at 600 to 1000 nm
Patil Overview of lasers
US6106514A (en) Laser method for subsurface cutaneous treatment
US5853407A (en) Method and apparatus for hair removal
US6045548A (en) Alexandrite laser system for hair removal and method therefor
US7097656B1 (en) Device for the therapeutic and cosmetic photo-processing of biological tissue and method for using the same
US7862564B2 (en) Method of remodelling stretch marks
US20060009763A1 (en) Tissue treatment system
US20070100401A1 (en) Compact laser device and method for hair removal
JP2010012268A (en) Invasive dual-wavelength laser acupuncture
WO2000057229A1 (en) Direct diode laser with fiber delivery
US20070027446A1 (en) Method of removing a tattoo
EP1848356B1 (en) Tissue treatment system
EP1042033A1 (en) Apparatus for therapeutic electromagnetic treatment
US20050065503A1 (en) Method and apparatus for reducing the appearance of skin markings
IL276884B1 (en) Tip for multiple beam tissue therapy
Exley et al. Development of a broadband light source with variable pulse length and energy for the treatment of vascular lesions