US3699650A - Co-firing process for making a resistor - Google Patents

Co-firing process for making a resistor Download PDF

Info

Publication number
US3699650A
US3699650A US109337A US3699650DA US3699650A US 3699650 A US3699650 A US 3699650A US 109337 A US109337 A US 109337A US 3699650D A US3699650D A US 3699650DA US 3699650 A US3699650 A US 3699650A
Authority
US
United States
Prior art keywords
resistor
paste
glass coating
substrate
centigrade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US109337A
Inventor
Theodore F Cocca
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPACETAC Inc
Original Assignee
SPACETAC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPACETAC Inc filed Critical SPACETAC Inc
Application granted granted Critical
Publication of US3699650A publication Critical patent/US3699650A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/02Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistors with envelope or housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49099Coating resistive material on a base

Abstract

A resistor element and a process for manufacturing it including the steps of applying resistor material to a substrate; baking and drying the resistor material at approximately 125* centigrade; applying a glass coating on the resistor material; baking and drying the glass coating at approximately 125* centigrade; and co-firing the material at approximately 840* centigrade to form a resistor element.

Description

[22] Filed:
United States Patent Cocca [s4] CO-FIRING PROCESS FOR MAKING A RESISTOR [72] Inventor: Theodore Cocca, Everett, Mass.
731 Assignee: Spacetac Incorporated Bedford,
Mass.
' Jan. 25, 1971 211 App]. No.: 109,337
[521 115.0. 29/620,117/212, 338/308 51 1111.01. ..H0lc 7/00 581 FieldofSearch ..117/2 17,212; 338/308 262,
[ References Cited I I UNITED STATES PATENTS 3,411,947 11/1968 Block ..117/212'x [151 3,699,650 [4 Oct. 24, 1972 Primary Examiner-E. A. Goldberg Attorney-Joseph S. Iandiorio and Dos T. Hatfield [57] ABSTRACT 1 Claim, 7 Drawing Figures I 1 CO-FIRING PROCESSFOR MAKING A RESISTOR FIELD OF INVENTION This invention relates to a co-firing process for manufacturing glass coated resistor elements.
BACKGROUND OF INVENTION Typically, thickfilm resistor elements are manufactured by screening a resistormaterial onto a substrate, baking and drying .the material and then firing it at a hightemperature followed by screening a glass coating overthe resistor material, baking and drying the coating and then firing it at a lower temperature. Originally, when this process was used with a good grade of resistor material such as DuPont 8000 resistor paste, re-
sistor elements could be made having only a 2 5 percent variation in resistance over a period of 1,000
hours. of cyclical temperature variation. As thetechnology advanced, better tolerances, in the range of 0.5 2 percent were demanded, and resistor pastes were developed which met these requirements. One such paste is DuPont Birox. But once again the technology demands even more precise resistance variation tolerances i.e 0.02 0.05 percent. It has been determined that one reason for the resistance variation of such resistor elements is the different coefficients of expansion of the resistor paste and glass coating. That difference in expansion propertiescan cause stresses which produce strain in the resistor material that alter its resistive properties.
SUMMARYIOFINVEN'IION It is therefore an object of this invention to provide a high precision, high reliability resistor element and a method for making it.
It is a further object of this invention to provide a method for making a resistor element which minimizes the sharp change in coefficient of expansion at the interface of the resistor material or paste and the glass coating.
It is a further object of this invention to provide a resistor element with a gradual change in coefficient of expansion between the resistor material and glass coat- In It is a further object of this invention to provide a method of applying a glass coating, to an area of a resistive element which has been trimmed, which minimizes any change in the value of resistances of the element.
This invention features a resistor element and a process for manufacturing that element. First, a resistor material is applied to a substrate;.then the substrate is subjected to heat for baking or drying the resistor materials. Next, a glass coating. is applied on the resistor material and the substrate is again subjected to heat to bake and dry the glass coating. Finally, the resistor material and the glass coating are co-fired at approximately 840 centigrade to form the resistor element.
DISCLOSURE OF PREFERRED EMBODIMENT Other objects, features and advantages will occur from the following description of a preferred embodiment and the accompanying drawings, in which:
FIG. 1 is a plan view of a substrate containing a plurality of resistor elements according to this invention.
FIG. 2 is an enlarged view of a portion of a substrate with two spaced'conductors as it appears before the resistor material is applied.
FIG. 3 shows the substrate portion of FIG. 2 after the FIG. 7 is a view of the substrate portion of FIG. 6
after the area abraded away in the trimming operation has been resealed with a glass coating.
The co-firing technique of this invention is described herein with reference to thick film circuits, but this is not a limitation of the invention: the co-firing technique of this invention may be used for thin film circuitry, hybrid circuitry, andmany other applica tions. There is shown in FIG. 1 a substrate 10 containing a plurality of resistor elements 12 according to this invention. Each resistor element 12 includes a resistor material or paste 14 applied between a pair of conductors 16, 18 and a high temperature dielectric glass coating 20 covering the resistor paste 14. Resistor paste 14 may be DuPont Birox paste or another Ruthenium oxide paste.
. The co-firing technique of this invention may be best illustrated by step by-step explanation of the construction of a single resistor element. Initially, a pair of conductors 16, 18 are established on a substrate 10, only a portion of which is shown in FIG. 2. Following this, resistor paste 14 is screened through a mask to fill the space between conductors 16 and 18, FIG. 3. Next, the conductors 16, 18 and resistor paste 14 supported on substrate 10 as shown in FIG. 3 are bake and dried, typically, at approximately centigrade for approximately 30 minutes. After this baking a high temperature low dielectric glass 20, FIG. 4, is screened over the resistor paste 14 using a mask similar to the one used to apply the resistor paste. The substrate 10 with conductors 16, 18, resistor paste 14 and glass coating 20 is now baked and dried at approximately 125 centigrade for approximately 30 minutes. Following this baking, the entire substrate 10 as pictured in FIG. 4 is fired at 840 centigrade for approximately 10 minutes so that the glass coating 20 and the resistor paste 14 are both simultaneously co-fired. This co-firing process causes a merging of the glass coating 20 and the resistor paste 14 at their interface 22, FIG. 7, instead of the sharp boundary24, shown in phantom,-which is obtained when the resistor paste 14 and the glass coating 20 are separately fired'This merging at interface 22 contributes to a more uniform gradient of the coefficient of expansion between resistor paste l4 and glass coating 20which substantially reduces'stresses between coating 20 and paste 14. The elimination of such stresses results in the reduction of strains in the paste 14 which can vary the resistor characteristics of paste 14. Another advantage of this process is that it results in a better, more predictable temperature coefficient of resistance of the resistor element.
A second advantage of the co-firing technique of this invention relates to the trimming operation to which most resistor elements are subject. Often after the final firing is completed the element-12 is submitted to a testing device which compares its resistance to that of some reference resistance. If the resistance of element 12 is lower than the reference resistance, a portion of paste l4 and the surrounding glass coating 20 is abraded away by techniques well known in the art,
' leaving a notch 26 in the resistor paste 14 in glass coatlower temperature glass which sets at a temperature considerably lower than 840 Centigrade, typically 525 centigrade. One such glass is DuPont 8185. After coating notch 26 with this low temperature glass 28, FIG. 5, substrate 10 can be tired to 525 for approximately 10 minutes to set the glass coating 28 without interfering with resistor paste l4 and glass coating 20 which was set at 840 centigrade, thereby eliminating the danger of disturbing the previously established resistance vaLue of resistor paste l4.
Other embodiments will occur to those skilled in the art and are within the following claims.
What is claimed is:
1. A process for manufacturing resistor elements comprising the steps of: applying resistor material to a substrate; baking and drying the resistor material; applying a glass coating on the resistor material; baking and drying the glass coating; co-firing the material and coating at approximately 840 centigrade to form a resistor element; trimming the resistor element, applying a low temperature glass coating to the trimmed area,
baking and drying the low temperature glass coating at approximately 125 centigrade and firing the resistor element and low temperature glass coating at approximately 525 centigrade.
US109337A 1971-01-25 1971-01-25 Co-firing process for making a resistor Expired - Lifetime US3699650A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10933771A 1971-01-25 1971-01-25

Publications (1)

Publication Number Publication Date
US3699650A true US3699650A (en) 1972-10-24

Family

ID=22327132

Family Applications (1)

Application Number Title Priority Date Filing Date
US109337A Expired - Lifetime US3699650A (en) 1971-01-25 1971-01-25 Co-firing process for making a resistor

Country Status (1)

Country Link
US (1) US3699650A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833407A (en) * 1971-03-10 1974-09-03 Honeywell Inc Unitary resistor and shunt
US3998980A (en) * 1972-05-05 1976-12-21 Hewlett-Packard Company Fabrication of thick film resistors
US4146957A (en) * 1977-01-17 1979-04-03 Engelhard Minerals & Chemicals Corporation Thick film resistance thermometer
US4164067A (en) * 1976-08-27 1979-08-14 Allen-Bradley Company Method of manufacturing electrical resistor element
US4311982A (en) * 1980-08-01 1982-01-19 The Yellow Springs Instrument Company, Inc. Trimmable wirewound resistance temperature transducer
US4320165A (en) * 1978-11-15 1982-03-16 Honeywell Inc. Thick film resistor
US4338351A (en) * 1980-09-10 1982-07-06 Cts Corporation Apparatus and method for producing uniform fired resistors
US5169493A (en) * 1989-05-18 1992-12-08 Kabushiki Kaisha Toshiba Method of manufacturing a thick film resistor element
US5955938A (en) * 1995-03-09 1999-09-21 Sumitomo Metal (Smi) Electronics Devices, Inc. RuO2 resistor paste, substrate and overcoat system
US6144287A (en) * 1996-06-26 2000-11-07 Rohm Co., Ltd. Chip resistor and method for manufacturing the same
US6304167B1 (en) * 1997-07-09 2001-10-16 Matsushita Electric Industrial Co., Ltd. Resistor and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411947A (en) * 1964-06-29 1968-11-19 Ibm Indium oxide resistor composition, method, and article

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411947A (en) * 1964-06-29 1968-11-19 Ibm Indium oxide resistor composition, method, and article

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833407A (en) * 1971-03-10 1974-09-03 Honeywell Inc Unitary resistor and shunt
US3998980A (en) * 1972-05-05 1976-12-21 Hewlett-Packard Company Fabrication of thick film resistors
US4164067A (en) * 1976-08-27 1979-08-14 Allen-Bradley Company Method of manufacturing electrical resistor element
US4146957A (en) * 1977-01-17 1979-04-03 Engelhard Minerals & Chemicals Corporation Thick film resistance thermometer
US4320165A (en) * 1978-11-15 1982-03-16 Honeywell Inc. Thick film resistor
US4311982A (en) * 1980-08-01 1982-01-19 The Yellow Springs Instrument Company, Inc. Trimmable wirewound resistance temperature transducer
US4338351A (en) * 1980-09-10 1982-07-06 Cts Corporation Apparatus and method for producing uniform fired resistors
US5169493A (en) * 1989-05-18 1992-12-08 Kabushiki Kaisha Toshiba Method of manufacturing a thick film resistor element
US5955938A (en) * 1995-03-09 1999-09-21 Sumitomo Metal (Smi) Electronics Devices, Inc. RuO2 resistor paste, substrate and overcoat system
US6144287A (en) * 1996-06-26 2000-11-07 Rohm Co., Ltd. Chip resistor and method for manufacturing the same
US6304167B1 (en) * 1997-07-09 2001-10-16 Matsushita Electric Industrial Co., Ltd. Resistor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US3699650A (en) Co-firing process for making a resistor
US4498071A (en) High resistance film resistor
US4447799A (en) High temperature thermistor and method of assembling the same
GB1235786A (en) Method of preparing resistive films
US4320165A (en) Thick film resistor
US4584553A (en) Coated layer type resistor device
US3394386A (en) Method of calibrating electrical components
US2416599A (en) Resistor and method of making the same
US3342654A (en) Process for producing wound capacitors having a biaxially oriented, thermoplastic, dielectric medium between alternate electrodes
JPH04282802A (en) Manufacture of ceramic electronic parts
US4378549A (en) Resistive electrical components
US5790011A (en) Positive characteristics thermistor device with a porosity occupying rate in an outer region higher than that of an inner region
US2416347A (en) Method of making helical thread resistors
JPS5771160A (en) Manufacture of thick film printed circuit substrate
US5169493A (en) Method of manufacturing a thick film resistor element
JPS6165464A (en) Manufacture of film resistor in thick film multilayer substrate
US4530852A (en) Method for producing a thin film resistor
US2791522A (en) Insulated ceramic conductors
US2984589A (en) Electrical resistors
US3546540A (en) Control system
JPH03283593A (en) Thick film multilayer board
JPS5936948A (en) Ceramic substrate
SU115270A1 (en) Method of making lacquer resistances
JPH0389590A (en) Manufacture of circuit substrate fitted with thick film resistor
JPS56164946A (en) Dewing sensor