Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3700280 A
Tipo de publicaciónConcesión
Fecha de publicación24 Oct 1972
Fecha de presentación28 Abr 1971
Fecha de prioridad28 Abr 1971
Número de publicaciónUS 3700280 A, US 3700280A, US-A-3700280, US3700280 A, US3700280A
InventoresPapadopoulos Michael N, Ueber Russell C
Cesionario originalShell Oil Co
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US 3700280 A
Resumen
A new and improved method of recovering hydrocarbons and dawsonite decomposition products from a subterranean oil shale formation containing substantial amounts of nahcolite and dawsonite comprising penetrating said formation with at least one well borehole and forming a cavern therein. A hot fluid is circulated in the upper region of the cavern to effect formation of carbon dioxide by decomposition of the nahcolite and dawsonite thereby causing pressure build-up resulting in fracturization and/or rubbling and enlargement of the cavern, thereafter injecting simultaneously or sequentially into the upper region of the cavern a cooling liquid, and into the rubblized zone a kerogen-pyrolyzing fluid to recover hydrocarbons and final by recovering dawsonite decomposition products by suitable means such as solution mining.
Imágenes(4)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

lC -Zh-YZ XR 337009280 EJnited States Patent Papadopoulos et al.

1 Oct. 24, 1972 [72] Inventors: Michael N. Papadopoulos, Lafayette, Calif; Russell C. Ueber, Houston,

Tex.

[73] Assignee: Shell Oil Company, New York, N.Y.

[22] Filed: April 28, 1971 [21] Appl. No.: 138,379

Related US. Application Data [63] Continuation-impart of Ser. No. 835,323, June 23, 1969, abandoned.

[52] US. Cl. ..299/5, 166/271, 166/272,

166/303, 166/307 [51] Int. Cl. ..E21b 43/24, E2lb 43/28 [58] Field of Search ..l66/266, 269, 270, 271, 272, 166/303, 307; 299/4, 5

[56] References Cited UNITED STATES PATENTS 3,480,082 11/1969 Gilliland ..166/272X 3,501,201 3/1970 Closmann ..166/259 x 3,502,372 3/1970 Prats ..299/5 3,572,838 3/1971 Templeton ..299/4 Primary Examiner-Robert L. Wolfe Attorney-Harold L. De'nkler and George G. Pritzker 57 ABSTRACT A new and improved method of recovering hydrocarbons and dawsonite decomposition products from a subterranean oil shale formation containing substantial amounts of nahcolite and dawsonite comprising penetrating said formation 'with at least one well borehole and forming a cavern therein. A hot fluid is circulated in the upper region of the cavern to effect formation of carbon dioxide by decomposition of the nahcoiite and dawsonite thereby causing pressure build-up resulting in fracturization and/or rubbling and enlargement of the cavern, thereafter injecting simultaneously or sequentially into the upper region of the cavern 'a cooling liquid, and into the rubblized zone a kerogen-pyrolyzing fluid to recover hydrocar-' bons and final by recovering dawsonite decomposition products by suitable means such as solution mining.

5 Claims, No Drawings METHOD OF PRODUCING OIL FROM AN OIL SHALE FOTION CONTAINING NAHCOLITE AND DAWSONITE CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of copending application, Ser. No. 835,323, filed June 23, 1969 and now abandoned.

BACKGROUND OF THE INVENTION The use of various techniques both nuclear and nonnuclear to fracture, rubblize or break-up or fragment underground oil shale formations so as to form a fractured formation or a chimney or cavern filled with rubble or fragmented oil shale to facilitate shale oil recovery from such fractured, fragmented oil shale areas by in-situ pyrolysis is well known in the art. Although some oil shale formations are known to contain nahcolite and dawsonite, their recovery in conjunction with insitu pyrolysis of shale oil recovery has not been thought feasible in the past because of the thermal decomposition of the nahcolite and dawsonite and in the case of the latter the formation of insoluble oxides and/or silica complexes of aluminum. Therefore, attempts to recover dawsonite from subterranean oil shale formations containing rich zones of nahcolite and dawsonite has not been attempted except with respect to shallow deposits from which the minerals are mined and processed at surface locations.

A number of proposals have been made in the art to recover dawsonite from oil shale above ground by subjecting an oil shale previously retorted above ground to a leaching process using an aqueous solution of sodium carbonate and sodium hydroxide and subsequently precipitating the dawsonite with carbon dioxide in order to recover dawsonite. In US Pat. No. 3,502,372 in-situ recovery of oil and dawsonite from subterranean rubblized oil shale formation is described using a combination of a pyrolysis and solution mining technique involving forming a fracture-permeated zone within a subterranean oil shale formation, prior to such treatment.

The above-ground retorting techniques for recovering oil and dawsonite are outside the scope of the present invention, and are undesirable and unsuitable for carrying out the process of the present invention since the process results in the formation of large amounts of insoluble materials which are undesirable and difficult to handle making these operations costly and unattractive. The process described in U.S. Pat. No. 3,502,372 is more attractive and less costly than an above-ground retorting technique but tends to cause a formation of some insoluble products and a failure to recover a significant proportion of the dawsonite.

OBJECTS or THE INVENTION It is an object of this invention to provide an improved method for recovering hydrocarbons and dawsonite decomposition products from underground oil-shale formations containing nahcolite-dawsonite deposits.

Still another object of this invention is to decompose the nahcolite and dawsonite of an underground oilshale formation rich in these minerals to carbon dioxide to aid in the fracturing and rubbling of the formation; insitu recovering hydrocarbons therefrom by means of a kerogen-pyrolyzing fluid and finally recovering the insoluble complexes of aluminum from the decomposed dawsonite.

Still another object of this invention is to circulate a hot fluid preferably along the roof of the cavern to effect formation of carbon dioxide by decomposing the nahcolite and dawsonite to cause enlargement of the cavern and fracturization and/or rubbling of the oilshale therein, cooling the roof or upper portion of the cavern to terminate this process; injecting a kerogenpyrolyzing fluid into the rubbled oil shale to effect recovery of hydrocarbons therefrom and finally recovering the dawsonite decomposition products containing water insoluble aluminum complexes.

Still another object of this invention is that the cavern in the oil shale formation containing the nahcolite-dawsonite zones is formed by leaching a portion of the nahcolite and thereafter forming carbon dioxide by decomposing the remaining nahcolite and dawsonite by means of a hot fluid such as steam.

Still another object of this invention is that the kerogen-pyrolyzing fluid to effect hydrocarbon recovery from the oil shale and the cooling fluid used to prevent vertical migration of the cavern roof can be circulated through the cavern sequentially or simultaneously.

SUMMARY OF THE INVENTION These and other objects are preferably accomplished by forming a cavern preferably one which is generally horizontally controlled in a subterranean oil shalebearing formation that is impermeable and contains a significant proportion of nahcolite and dawsonite below its upper boundary region and providing fluid communication between the earth surface and the cavern. Hot fluid is injected and circulated through the cavern in its upper region and should preferably be in contact with the roof thereof at a temperature sufficient to cause decomposition of the nahcolite and dawsonite and form carbon dioxide and water thereby causing a high pressure build-up within portions of the cavern and cause fracturing and rubbling of the roof of the cavern. As the volume of the hot fluid within the cavern increases, the paths of fluid flow within the cavern are preferably adjusted to keep the hot fluid in contact with the upward migrating roof of the cavern. The fluid circulation is continued for a time sufficient to enlarge the cavern by a significant amount. The cavern roof is cooled prior to its migration above a selected depth, such as an upper boundary region of the normally impermeable hydrocarbon-bearing formation, by displacing a cooling fluid into contact therewith. Relatively cool fluid is maintained in contact with the roof of the enlarged cavern while circulating a kerogen-pyrolyzing fluid through the hydrocarbonbearing material within the cavern to recover hydrocarbons therefrom and finally solution mining to recover the dawsonite decomposition products.

The process of this invention is particularly applicable to various subsurface oil shale formations, such as in the Green River formation in the Colorado area of the United States, containing rich deposits of nahcolite and dawsonite. The nahcolite and dawsonite are apt to occur within an oil shale formation in the form of beds, lenses, nodules, loads, veins, or the like, having sizes ranging from microscopic particles to layers that are many feet in thickness and many miles in extent. Dawsonite is particularly apt to occur in the form of microscopic particles in amounts of .up to about 10 or 12 percent by weight of the oil shale while the nacholite can vary in amounts of -40percent.

The present process provides a means for enlarging a permeable zone within a normally impermeable oil shale by circulating a hot fluid such as hot water, steam, mixtures thereof or non-aqueous fluids to effect decomposition of the nahcolite and dawsonite present therein to carbon dioxide at a temperature between about 300 F and about 1,500 F, preferably between 350 F and 750 F. The invention also provides a means for terminating the enlargement of the permeable zone at a selected depth and avoiding the danger of extending fractures to surface or subsurface locations that would create a danger or disadvantage by means of cooling fluids. It further provides a procedure that generates significant amounts of carbon dioxide as a circulating fluid which also has a significant stripping action on the hydrocarbon materials released from the heated oil shale by a kerogen pyrolyzing fluid which may be an aqueous or non-aqueous pyrolyzing fluid or by use of hydrocarbon extracting materials such as phenols etc. Oil shale begins to release hydrocarbons at significant rates at temperatures from about 400 F and preferably between 550 and 750 F. In the presence of carbon dioxide, the hydrocarbons released from the oil shale by a pyrolyzing fluid such as steam tend to be entrained and transported in the form of vapors. This provides both an economy in the recovery of hydrocarbon products and their upgrading. The utilization of the carbon dioxide and water that are generated in-situ can be used as a part of the hot fluid that is circulated along the cavern roof to cause vertical expansion of the cavern within a subterranean oil shale and results in a significant increase in the amount of shale oil recovered.

The recovery of dawsonite decomposition products can be finally recovered by solution mining using an aqueous fluid preferably containing a chelating agent.

The chelating agents useful as additives in the aqueous alkaline fluid of this invention can include any organic chelating agent capable of chelating with the aluminum or other prevalent metallic compounds present in the oil shale and forming soluble compounds in the aqueous solution and include nitrogen-containing carboxylic acids and amine or metallic salts thereof such as amino-, imino-, nitrilo-, carboxylic acids and salts thereof such as described in US. Pats. Nos. 2,631,978; 2,959,547; 3,256,196 and 3,409,551 and include amino carboxylic acids, e.g., ethylene diamine tetraacetic acid and salts thereof methyl iminodiacetric acid, nitroacetic acid, phenyl iminodiacetic acid, 1, 2- diamino cyclohexane tetraacetic acid of which preferred are the amine and alkali metal (sodium) salts of ethylene diamine tetraacetic acid, e.g., di-, tn'- and tetrasodium ethylene diamine eteraacetate (Na Na or Na EDTA), 1, 2-d.iamino cyclohexane tetraacetic acid and mixtures thereof.

The presence of the chelating agent in the aqueous alkaline solutions aids in the recovery of dawsonite decomposition products which are substantially insoluble aluminum compounds, such as analcite.

SPECIFIC EMBODIMENT OF THE INVENTION The procedural steps in carrying out the process of the present invention are essentially as follows:

1. establishing at least one well borehole into a nahcolite-dawsonite rich oil-shale formation;

2. forming a cavern therein by leaching a portion of the nahcolite with an aqueous fluid such as water which may be cool or hot, preferably the latter;

3. circulating a hot fluid such as hot water and/or steam in the upper region and preferably along the cavern roof to effect decomposition of the nahcolite and dawsonite to carbon dioxide and water insoluble products of dawsonite such as insoluble oxides and silicates complexes of aluminum such as analcite to effect enlargement of the cavern by upward migration of the cavern roof as well as fracturization and/or rubbling;

4. circulating sequentially or simultaneously a cooling fluid such as hydrogen along the cavern roof and a kerogen pyrolyzing fluid such as steam and/or solvents such as benzene phenol, etc. through the rubbled oil shale to effect hydrocarbon recovery; and

5. solution mining to recovery the aluminum complexes from dawsonite.

EXAMPLE Into an oil-shale formation rich in nahcolite and dawsonite a well was completed at below about 2000 feet and a portion of the nahcolite bed was water leached to form a cavern. Steam was injected along the cavern roof to decomposition the nahcolite and dawsonite to form carbon dioxide thereby building up pressure and cause upward migration of the cavern roof and oil shale rubbling. The dawsonite is essentially converted to water insoluble complexes of aluminum such as analcite. A cooling fluid hydrogen is thereafter circulated along the cavern roof to prevent further upward roof migration while steam is injected into the oil shale rubble to effect hydrocarbon recovery thereafter.

After the hydrocarbons such as oil have been recovered a basic solution containing a chelating agent such as an alkali metal salt of ethylene diamine tetraacetic acid, e.g., Na EDTA (the sodium salt of ethylenediaminetetraacetic acid) or Na salt of l, 2- diamino cyclohexane tetraacetic acid is injected into the treated oil recovery zone of the shale formation preferably at a temperature of from about F to about 500 F to effect recovery of analcite.

The foregoing description of the invention is merely intended to be explanatory thereof. Various changes in the details of the described method may be made within the scope of the appended claims without departing from the spirit of the invention.

I claim as my invention 1. A method of producing hydrocarbons and dawsonite decomposition products from a subterranean oil shale formation containing rich deposits of nahcolite and dawsonite comprising the steps of:

a. penetrating at least one well borehole into an underground nahcolite-dawsonite oil shale formation;

b. injecting a nahcolite leaching solution to create a cavern;

c. circulating a hot fluid along the cavern roof to release carbon dioxide from the nahcolite and dawsonite and thereby increasing the volume of the cavern by effecting rubbling;

d. injecting a cool fluid along the enlarged cavern roof while injecting a kerogen-pyrolyzing fluid into the oil shale rubble and recovery hydrocarbons therefore; and

e recovering water insoluble dawsonite decomposition products.

2. The method of claim 1 wherein the leaching solution in step (b) is hot water and the hot fluid in step (c) is steam.

3. The method of claim 1 wherein the decomposed dawsonite is recovered by solution mining.

4. The method of claim 3 wherein the decomposed dawsonite is essentially analcite.

S. A method of producing hydrocarbons and analcite from an underground oil shale formation rich in nahcolite and dawsonite comprising the steps of:

a. penetrating at least one well borehole into an underground oil shale formation rich in nahcolite and dawsonite;

b. leaching a portion of the nahcolite with hot water to create a cavern;

c. circulating steam along the roof of cavern to release carbon dioxide from the nahcolite and dawsonite the latter being converted to analcite to enlarge the cavern vertically and rubble the oil shale;

d. injecting a cooling fluid along the roof of the cavern;

e. injecting steam into the rubbled oil shale and recovering hydrocarbons therefrom; and

f. recovering analcite by solution mining.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3480082 *25 Sep 196725 Nov 1969Continental Oil CoIn situ retorting of oil shale using co2 as heat carrier
US3501201 *30 Oct 196817 Mar 1970Shell Oil CoMethod of producing shale oil from a subterranean oil shale formation
US3502372 *23 Oct 196824 Mar 1970Shell Oil CoProcess of recovering oil and dawsonite from oil shale
US3572838 *7 Jul 196930 Mar 1971Shell Oil CoRecovery of aluminum compounds and oil from oil shale formations
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3779602 *7 Ago 197218 Dic 1973Shell Oil CoProcess for solution mining nahcolite
US3792902 *14 Ago 197219 Feb 1974Shell Oil CoMethod of preventing plugging of solution mining wells
US3804169 *7 Feb 197316 Abr 1974Shell Oil CoSpreading-fluid recovery of subterranean oil
US3880238 *18 Jul 197429 Abr 1975Shell Oil CoSolvent/non-solvent pyrolysis of subterranean oil shale
US3915234 *28 Ago 197428 Oct 1975Cities Service Res & Dev CoIn situ production of hydrocarbon values from oil shale using H{HD 2{B S and CO{HD 2{B
US3987851 *2 Jun 197526 Oct 1976Shell Oil CompanySerially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US4243638 *15 Jun 19786 Ene 1981Westinghouse Electric Corp.Iron EDTA chelate catalyzed oxidation of uranium
US4557910 *29 Mar 198210 Dic 1985Intermountain Research & Development CorporationCrystallization of aqueous solution of partially calcined ore; high purity
US4743439 *16 Ene 198410 May 1988General Chemical CorporationWet calcination of alkali metal bicarbonates in hydrophobic media
US4815790 *13 May 198828 Mar 1989Natec, Ltd.Using pressurized hot aqueous liquid
US660976110 Ene 200026 Ago 2003American Soda, LlpSodium carbonate and sodium bicarbonate production from nahcolitic oil shale
US704039724 Abr 20029 May 2006Shell Oil CompanyThermal processing of an oil shale formation to increase permeability of the formation
US764499322 Mar 200712 Ene 2010Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US808299514 Nov 200827 Dic 2011Exxonmobil Upstream Research CompanyOptimization of untreated oil shale geometry to control subsidence
US80874607 Mar 20083 Ene 2012Exxonmobil Upstream Research CompanyGranular electrical connections for in situ formation heating
US810453715 Dic 200931 Ene 2012Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US812295518 Abr 200828 Feb 2012Exxonmobil Upstream Research CompanyDownhole burners for in situ conversion of organic-rich rock formations
US814666421 May 20083 Abr 2012Exxonmobil Upstream Research CompanyUtilization of low BTU gas generated during in situ heating of organic-rich rock
US815187718 Abr 200810 Abr 2012Exxonmobil Upstream Research CompanyDownhole burner wells for in situ conversion of organic-rich rock formations
US815188410 Oct 200710 Abr 2012Exxonmobil Upstream Research CompanyCombined development of oil shale by in situ heating with a deeper hydrocarbon resource
US820007224 Oct 200312 Jun 2012Shell Oil CompanyTemperature limited heaters for heating subsurface formations or wellbores
US823092917 Mar 200931 Jul 2012Exxonmobil Upstream Research CompanyMethods of producing hydrocarbons for substantially constant composition gas generation
US854002021 Abr 201024 Sep 2013Exxonmobil Upstream Research CompanyConverting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US859635510 Dic 20103 Dic 2013Exxonmobil Upstream Research CompanyOptimized well spacing for in situ shale oil development
US86162797 Ene 201031 Dic 2013Exxonmobil Upstream Research CompanyWater treatment following shale oil production by in situ heating
US861628017 Jun 201131 Dic 2013Exxonmobil Upstream Research CompanyWellbore mechanical integrity for in situ pyrolysis
US862212717 Jun 20117 Ene 2014Exxonmobil Upstream Research CompanyOlefin reduction for in situ pyrolysis oil generation
US86221337 Mar 20087 Ene 2014Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US864115011 Dic 20094 Feb 2014Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US870178822 Dic 201122 Abr 2014Chevron U.S.A. Inc.Preconditioning a subsurface shale formation by removing extractible organics
US877028419 Abr 20138 Jul 2014Exxonmobil Upstream Research CompanySystems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US883986022 Dic 201123 Sep 2014Chevron U.S.A. Inc.In-situ Kerogen conversion and product isolation
WO2003035801A2 *24 Oct 20021 May 2003Shell Oil CoProducing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation
WO2012171857A111 Jun 201220 Dic 2012Akzo Nobel Chemicals International B.V.Treatment of shale formations using a chelating agent
Clasificaciones
Clasificación de EE.UU.299/5, 423/206.2, 166/272.2, 166/307, 166/271
Clasificación internacionalE21B43/28, E21B43/00, E21B43/16, E21B43/24
Clasificación cooperativaE21B43/281, E21B43/2405
Clasificación europeaE21B43/24K, E21B43/28B