US3700745A - Hydrodealkylation process with promoted group viii metals - Google Patents

Hydrodealkylation process with promoted group viii metals Download PDF

Info

Publication number
US3700745A
US3700745A US769729A US3700745DA US3700745A US 3700745 A US3700745 A US 3700745A US 769729 A US769729 A US 769729A US 3700745D A US3700745D A US 3700745DA US 3700745 A US3700745 A US 3700745A
Authority
US
United States
Prior art keywords
silica
alumina
catalyst
group
hydrodealkylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US769729A
Inventor
Stephen M Kovach
Ralph E Patrick
Ronald A Kmecak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashland LLC
Original Assignee
Ashland Oil Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashland Oil Inc filed Critical Ashland Oil Inc
Application granted granted Critical
Publication of US3700745A publication Critical patent/US3700745A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/12Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
    • C07C4/14Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
    • C07C4/18Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/12Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Definitions

  • Schneider I ABSTRACT A hydrodealkylation process comprising contacting alkyl aromatic hydrocarbons with a catalyst, including an active Group VIII metal, such as, platinum, rhodium, palladium, ruthenium and nickel, a promoter selected from the group of alkali, alkaline earth and rare earth metals, such as, potassium, rubidium, cesium, calcium, strontium, cerium and thorium, and an inert oxide support such as, gamma aluminas, silicaalumina, silica, silica-magnesia, alumina-magnesia and silica-zirconia at a temperature of 1,050 to 1,200 F, a pressure of 100 to 1,000 psig., a liquid hourly space velocity of 0.1 to 5 and a hydrogen-to-hydrocarbon mole ratio of 3-1 5/ 1.
  • a catalyst including an active Group VIII metal, such as, platinum, rhodium, palladium, ruthenium and nickel, a promoter
  • the present invention relates to a process for the hydrodealkylation of alkyl aromatics to the parent aromatic hydrocarbons. More specifically, the present invention relates to a process for the hydrodealkylation of alkyl aromatic hydrocarbons to the parent aromatic hydrocarbons, utilizing a unique catalyst system.
  • the hydrodealkylation of alkyl aromatics has been practiced for many years.
  • the principal processes involve the conversion of toluene and like alkyl-substituted benzenes to benzene, and coal tar light oils and coal tar methyl naphthalene to benzene and naphthalene, respectively.
  • These processes may be catalytic or non-catalytic in nature.
  • the non-catalytic system which involves thermal dealkylation, in the presence of hydrogen, requires high temperatures and pressures. While the catalytic processes require lower temperatures and pressures, these temperatures and pressures are still quite high and therefore result in short catalyst life.
  • Most commercial catalytic processes employ chromia-magnesia deposited on an alumina base as a catalyst. Since the development of this catalyst, there has really been no improvement in catalysts for this reaction.
  • the present invention relates to the process for the hydrodealkylation of alkyl aromatics wherein catalysts which improve conversion are employed.
  • Another and further object of the present invention is to provide a process for the hydrodealkylation of aromatics wherein catalysts of higher selectivity are utilized.
  • a still further object of the present invention is to provide an improved process for the hydrodealkylation of alkyl aromatics wherein catalysts which reduce carbon lay-down on the catalyst are employed.
  • a further object of the present invention is to provide an improved hydrodealkylation process for the hydrodealkylation of alkyl aromatics wherein novel catalysts are employed which permit operation at lower than conventional temperatures.
  • Another and further object of the present invention is to provide an improved system for the hydrodealkylation of alkyl aromatics wherein catalysts are employed which permit the use of lower hydrogen partial pressures.
  • feedstocks for use in accordance with the present invention include toluene, polymethyl benzenes, coal tar light oils, coal tar methylnaphthalene concentrates, and bicyclic concentrates from light cycle oils and heavy reformates.
  • Feedstock preparation includes fractionation to remove front ends or bottoms to thereby remove undesired fractions such as unsaturates, indanes and resinous materials. For example, it has been found that coal tar methylnaphthalene concentrates, as received from the coke oven, contain a large amount of contaminants, such as polymers, resins and free carbon.
  • the processing conditions for the hydrodealkylation reaction of the present invention include a temperature between about 1,050 and 1,200" F, a pressure between about and 1,000 psig., a liquid hourly space velocity between about 0.1 and 5, and a hydrogen-tohydrocarbon mole ratio of about 3 to 15/ 1.
  • the catalysts to be employed in accordance with the present invention include metal oxides from Group VHI of the Periodic System, particularly platinum, rhodium, palladium, ruthenium and nickel.
  • the promoters include alkali metal oxides of Group I of the Periodic System, alkaline earth metal oxides of Group II of the Periodic System and the rare earth metals. Examples of materials of this nature which may be employed include potassium, rubidium and cesium; calcium and strontium, and cerium and thorium, etc.
  • the active metal and the promoter are deposited on an inert oxide support, which preferably includes a high area alumina having a boehmite, bayerite, beta, or eta crystalline form, or other aluminas, silica-alumina, silica, silica-magnesia, silica-zirconia, alumina-magnesia, etc.
  • an inert oxide support which preferably includes a high area alumina having a boehmite, bayerite, beta, or eta crystalline form, or other aluminas, silica-alumina, silica, silica-magnesia, silica-zirconia, alumina-magnesia, etc.
  • the optimum active metal content of the catalyst is about 0.5 to 5 percent by weight based on the final catalyst.
  • the metal oxide promoter should be present in amounts of about 1 to 10 percent by weight.
  • the catalysts of the present invention may be prepared by well-known impregnation techniques. One may employ extrudates or pellets for impregnation or powders followed by pelletization or extrusion to yield the finished catalyst.
  • the active metal and the promoter may be added through the use of water-soluble salts, such as their halides, nitrates, sulfates, acetates, etc. Easily hydrolyzed salts can be kept in solution without decomposition by employing appropriate inorganic acids.
  • the catalysts of the present invention may be utilized with sulfur or none-sulfur containing feedstocks.
  • a feedstock containing small amounts of sulfur for example 10 to 100 ppm, will minimize hydrocracking activity without impairing the hydrodealkylation activity of the catalyst.
  • the process of the present invention is further illustrated by the following examples in which a Group VIII metal was combined with an alkaline earth metal and with a rare earth metal and used as a catalyst for the process.
  • a process wherein hydrodealkylating dealkylatable hydrocarbon materials is the dominant reaction comprising: contacting the hydrocarbon materials with a catalyst consisting essentially of about 0.5 to 5 percent by weight of an active metal selected from the Group consisting of platinum, rhodium, palladium, ruthenium, and nickel and about 1 to 10 percent by weight of a promoting metal selected from the group consisting of cerium, thorium and mixtures thereof, both impregnated on an inert oxide carrier selected from the group consisting of alumina, silica, magnesia, zirconia, and mixtures thereof under conditions sufiicient to effect said hydrodealkylation reaction, including a temperature of about 1,050 to 1,200 F, a pressure of about 100 to 1,000 psig, a liquid hourly'space velocity of about 0.1 to 5 and a gaseous hydrogen to inlet feed hydrocarbon mole ratio between about 3 and 15 to 1.
  • a catalyst consisting essentially of about 0.5 to 5 percent by weight of an active metal selected from the
  • a process wherein hydrodealkylating dealkylatable methyl-substituted aromatic hydrocarbons is the dominant reaction comprising: contacting the hydrocarbons with a catalyst consisting essentially of about 0.5 to 5 percent by weight of an active metal selected from the group consisting of platinum, rhodium, palladium, ruthenium, and nickel and about 1 to percent by weight of a promoting metal selected from the group consisting of cerium, thorium, and mixtures thereof, both impregnated on an inert oxide carrier selected from the group consisting of alumina, silica, magnesia, zirconia, and mixtures thereof under conditions sufficient to efiect said hydrodealkylation reaction, including a temperature of about 1,050 to l,200 F, a pressure of about 100 to 1,000 psig, a liquid hourly space velocity of about 0.1 to 5, and a gaseous hydrogen to inlet feed hydrocarbon mole ratio between about3 and 15 to 1.
  • a catalyst consisting essentially of about 0.5 to 5

Abstract

A hydrodealkylation process comprising contacting alkyl aromatic hydrocarbons with a catalyst, including an active Group VIII metal, such as, platinum, rhodium, palladium, ruthenium and nickel, a promoter selected from the group of alkali, alkaline earth and rare earth metals, such as, potassium, rubidium, cesium, calcium, strontium, cerium and thorium, and an inert oxide support such as, gamma aluminas, silica-alumina, silica, silica-magnesia, alumina-magnesia and silica-zirconia at a temperature of 1,050* to 1,200* F, a pressure of 100 to 1,000 psig., a liquid hourly space velocity of 0.1 to 5 and a hydrogento-hydrocarbon mole ratio of 3-15/1.

Description

United States Patent Kovach et a1.
[ Oct. 24, 1972 [54] HYDRODEALKYLATION PROCESS WITH PROMOTED GROUP VIII METALS [72] Inventors: Stephen M. Kovach, Ashland; Ralph E. Patrick, Flatwoods; Ronald A.
[21] Appl. N0.: 769,729
[52] U.S. Cl ..260/672 R, 208/110, 208/112,
[51] Int. Cl ..B0lj 11/06, C07c 3/58 [58] Field of Search ..260/672 [56] References Cited UNITED STATES PATENTS 2,861,959 11/1958 Thorn et a1. ..252/465 2,814,599 11/ 1957 Lefrancois et a1. ..252/466 2,780,580 2/1957 Doumani ..208/137 2,894,898 7/ 1959 Oettinger et a1 ..208/112 2,976,232 3/1961 Porter et a1 ..208/138 3,436,433 4/1969 Lester ..260/672 3,436,434 4/1969 Lester ..260/672 2,422,673 6/ 1947 Haensel et a1. ..260/672 2,734,929 2/ 1956 Doumani ..260/672 2,858,348 10/ 1958 Bosmajian et a1. ..260/668 3,193,592 7/ 1965 Eubank ..260/672 3,222,410 12/ 1965 Swanson ..260/672 3,236,904 2/ 1966 Pickert ..260/672 3 ,306,944 2/1967 Pollitzer ..260/ 672 3,478,120 11/ 1969 Myers et a1 ..260/672 2,780,584 2/1957 Doumani ..208/137 Primary ExaminerDelbert E. Gantz Assistant Examiner-G. E. Schmitkons Attorney-Walter H. Schneider I ABSTRACT A hydrodealkylation process comprising contacting alkyl aromatic hydrocarbons with a catalyst, including an active Group VIII metal, such as, platinum, rhodium, palladium, ruthenium and nickel, a promoter selected from the group of alkali, alkaline earth and rare earth metals, such as, potassium, rubidium, cesium, calcium, strontium, cerium and thorium, and an inert oxide support such as, gamma aluminas, silicaalumina, silica, silica-magnesia, alumina-magnesia and silica-zirconia at a temperature of 1,050 to 1,200 F, a pressure of 100 to 1,000 psig., a liquid hourly space velocity of 0.1 to 5 and a hydrogen-to-hydrocarbon mole ratio of 3-1 5/ 1.
4 Claims, No Drawings BACKGROUND OF THE INVENTION The present invention relates to a process for the hydrodealkylation of alkyl aromatics to the parent aromatic hydrocarbons. More specifically, the present invention relates to a process for the hydrodealkylation of alkyl aromatic hydrocarbons to the parent aromatic hydrocarbons, utilizing a unique catalyst system.
The hydrodealkylation of alkyl aromatics has been practiced for many years. The principal processes involve the conversion of toluene and like alkyl-substituted benzenes to benzene, and coal tar light oils and coal tar methyl naphthalene to benzene and naphthalene, respectively. These processes may be catalytic or non-catalytic in nature. The non-catalytic system which involves thermal dealkylation, in the presence of hydrogen, requires high temperatures and pressures. While the catalytic processes require lower temperatures and pressures, these temperatures and pressures are still quite high and therefore result in short catalyst life. Most commercial catalytic processes employ chromia-magnesia deposited on an alumina base as a catalyst. Since the development of this catalyst, there has really been no improvement in catalysts for this reaction.
It is therefore an object of the present invention to provide a new process for the hydrodealkylation of alkyl aromatics employing a novel catalyst system. In a more specific aspect, the present invention relates to the process for the hydrodealkylation of alkyl aromatics wherein catalysts which improve conversion are employed. Another and further object of the present invention is to provide a process for the hydrodealkylation of aromatics wherein catalysts of higher selectivity are utilized. A still further object of the present invention is to provide an improved process for the hydrodealkylation of alkyl aromatics wherein catalysts which reduce carbon lay-down on the catalyst are employed. A further object of the present invention is to provide an improved hydrodealkylation process for the hydrodealkylation of alkyl aromatics wherein novel catalysts are employed which permit operation at lower than conventional temperatures. Another and further object of the present invention is to provide an improved system for the hydrodealkylation of alkyl aromatics wherein catalysts are employed which permit the use of lower hydrogen partial pressures.
SUMMARY OF THE INVENTION DESCRIPTION OF THE PREFERRED EMBODIMENTS Suitable feedstocks for use in accordance with the present invention include toluene, polymethyl benzenes, coal tar light oils, coal tar methylnaphthalene concentrates, and bicyclic concentrates from light cycle oils and heavy reformates. Feedstock preparation includes fractionation to remove front ends or bottoms to thereby remove undesired fractions such as unsaturates, indanes and resinous materials. For example, it has been found that coal tar methylnaphthalene concentrates, as received from the coke oven, contain a large amount of contaminants, such as polymers, resins and free carbon. Distillation of such raw materials to yield a percent overhead leaves these materials as a bottoms. Hydrogenation and hydrotreating of the overhead fraction removes sulfur, nitrogen and oxygen contaminants, but, due to the thermal instability of the 'feedstocks, a heavy resinous material is produced through thermal polymerization. Distillation of the hydrotreated product is required to remove these resins andfthereby reduce carbon laydown on the hydrodealkylation catalyst and reduce hydrogen consumption due to hydrocracking of the resins and polymers.
The processing conditions for the hydrodealkylation reaction of the present invention include a temperature between about 1,050 and 1,200" F, a pressure between about and 1,000 psig., a liquid hourly space velocity between about 0.1 and 5, and a hydrogen-tohydrocarbon mole ratio of about 3 to 15/ 1.
The catalysts to be employed in accordance with the present invention include metal oxides from Group VHI of the Periodic System, particularly platinum, rhodium, palladium, ruthenium and nickel. The promoters include alkali metal oxides of Group I of the Periodic System, alkaline earth metal oxides of Group II of the Periodic System and the rare earth metals. Examples of materials of this nature which may be employed include potassium, rubidium and cesium; calcium and strontium, and cerium and thorium, etc. The active metal and the promoter are deposited on an inert oxide support, which preferably includes a high area alumina having a boehmite, bayerite, beta, or eta crystalline form, or other aluminas, silica-alumina, silica, silica-magnesia, silica-zirconia, alumina-magnesia, etc.
The optimum active metal content of the catalyst is about 0.5 to 5 percent by weight based on the final catalyst. The metal oxide promoter should be present in amounts of about 1 to 10 percent by weight.
The catalysts of the present invention may be prepared by well-known impregnation techniques. One may employ extrudates or pellets for impregnation or powders followed by pelletization or extrusion to yield the finished catalyst. The active metal and the promoter may be added through the use of water-soluble salts, such as their halides, nitrates, sulfates, acetates, etc. Easily hydrolyzed salts can be kept in solution without decomposition by employing appropriate inorganic acids.
The following examples illustrate methods of preparing the composite catalysts of the present invention.
EXAMPLE I To ml. of distilled water was added 2 g. of rhodium trichloride. This solution was added to 150 ml. of boehrnite alumina pellets and after contact for fifteen minutes the unadsorbed liquid was decanted from the catalyst pellets. The resulting impregnated catalyst was dried at 250 F for 1 hour and calcined at 950 F in air in a muffle furnace for 16 hours. This yielded a catalyst of the following composition:
1% Rh4% K O-Al O EXAMPLE II By employing the techniques and procedure outlined in Example 1, other catalysts were prepared. A solution containing cesium nitrate was added to a boehmite alumina. Drying and calcination of this impregnated catalyst yielded the following composition:
An aqueous solution of chloroplatinic acid added to pellets of 4% Cs OA1 O followed by drying and calcination yielded a catalyst of the following composition:
USE OF CATALYSTS FOR HYDRODEALKYLATION In order to illustrate the effectiveness of the catalysts of the present invention and the process for hydrodealkylation, a toluene feed was subjected to a temperature of 1,150 F, a pressure of 500 psig., a liquid hourly space velocity of 0.5, and a hydrogen-to-hydrocarbon mole ratio of 5:1, utilizing a commercial catalyst of chromia-magnesia on alumina as compared with certain of the catalysts of the present invention. The results of these Runs are shown in Table I. In a similar comparative run under exactly the same conditions, a topped, commercial, coal tar methyl naphthalene cut at 500 F and having the composition set forth in Table II was utilized with the results shown in Table Il.
Catalyst 12Cr-2Mg-A1,0, 1 RhtCs-ALO; Product Distribution Naphthalene 37.8 41.0 Naphthalene 59.0 53.8 Methylnaphthalene 1.4 0.5 Dimethylnaphthalene 2.9 4.7 Wt. Feed Me Naphthalene Conversion 97 Carbon on Catalyst Wt. Feed 1.32 0.82 Wt.
Naphthalene 50.4 Naphthalene 30.4 Methylnaphthalene 13.4 Dimethylnaphthalene 5.8
The catalysts of the present invention may be utilized with sulfur or none-sulfur containing feedstocks. Preferably, however, a feedstock containing small amounts of sulfur, for example 10 to 100 ppm, will minimize hydrocracking activity without impairing the hydrodealkylation activity of the catalyst.
The process of the present invention is further illustrated by the following examples in which a Group VIII metal was combined with an alkaline earth metal and with a rare earth metal and used as a catalyst for the process.
TABLE III Hydrodealkylation of Toluene Conditions: 1 F, 500 PSIG, 0.5
LHSV, 5/1 H,H'C Feed: Toluene Wt. Feed When reference is made herein to the Periodic System of elements, the particular groupings referred to are as set forth in the Periodic Chart of the Elements, in The Merck Index, Seventh Edition, Merck & Co., Inc., 1960.
What is claimed is:
l. A process wherein hydrodealkylating dealkylatable hydrocarbon materials is the dominant reaction, comprising: contacting the hydrocarbon materials with a catalyst consisting essentially of about 0.5 to 5 percent by weight of an active metal selected from the Group consisting of platinum, rhodium, palladium, ruthenium, and nickel and about 1 to 10 percent by weight of a promoting metal selected from the group consisting of cerium, thorium and mixtures thereof, both impregnated on an inert oxide carrier selected from the group consisting of alumina, silica, magnesia, zirconia, and mixtures thereof under conditions sufiicient to effect said hydrodealkylation reaction, including a temperature of about 1,050 to 1,200 F, a pressure of about 100 to 1,000 psig, a liquid hourly'space velocity of about 0.1 to 5 and a gaseous hydrogen to inlet feed hydrocarbon mole ratio between about 3 and 15 to 1.
2. A process wherein hydrodealkylating dealkylatable methyl-substituted aromatic hydrocarbons is the dominant reaction comprising: contacting the hydrocarbons with a catalyst consisting essentially of about 0.5 to 5 percent by weight of an active metal selected from the group consisting of platinum, rhodium, palladium, ruthenium, and nickel and about 1 to percent by weight of a promoting metal selected from the group consisting of cerium, thorium, and mixtures thereof, both impregnated on an inert oxide carrier selected from the group consisting of alumina, silica, magnesia, zirconia, and mixtures thereof under conditions sufficient to efiect said hydrodealkylation reaction, including a temperature of about 1,050 to l,200 F, a pressure of about 100 to 1,000 psig, a liquid hourly space velocity of about 0.1 to 5, and a gaseous hydrogen to inlet feed hydrocarbon mole ratio between about3 and 15 to 1.
3. A process in accordance with claim 1 wherein the inert oxide carrier is a gamma alumina.
4. A process in accordance with claim 1 wherein the promoting metal is in its oxide form.

Claims (3)

  1. 2. A process wherein hydrodealkylating dealkylatable methyl-substituted aromatic hydrocarbons is the dominant reaction comprising: contacting the hydrocarbons with a catalyst consisting essentially of about 0.5 to 5 percent by weight of an active metal selected from the group consisting of platinum, rhodium, palladium, ruthenium, and nickel and about 1 to 10 percent by weight of a promoting metal selected from the group consisting of cerium, thorium, and mixtures thereof, both impregnated on an inert oxide carrier selected from the group consisting of alumina, silica, magnesia, zirconia, and mixtures thereof under conditions sufficient to effect said hydrodealkylation reaction, including a temperature of about 1, 050* to 1,200* F, a pressure of about 100 to 1,000 psig, a liquid hourly space velocity of about 0.1 to 5, and a gaseous hydrogen to inlet feed hydrocarbon mole ratio between about 3 and 15 to 1.
  2. 3. A process in accordance with claim 1 wherein the inert oxide carrier is a gamma alumina.
  3. 4. A process in accordance with claim 1 wherein the promoting metal is in its oxide form.
US769729A 1968-10-22 1968-10-22 Hydrodealkylation process with promoted group viii metals Expired - Lifetime US3700745A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76972968A 1968-10-22 1968-10-22

Publications (1)

Publication Number Publication Date
US3700745A true US3700745A (en) 1972-10-24

Family

ID=25086356

Family Applications (1)

Application Number Title Priority Date Filing Date
US769729A Expired - Lifetime US3700745A (en) 1968-10-22 1968-10-22 Hydrodealkylation process with promoted group viii metals

Country Status (1)

Country Link
US (1) US3700745A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915845A (en) * 1973-12-06 1975-10-28 Universal Oil Prod Co Hydrocarbon conversion with a multimetallic catalytic composite
US3992468A (en) * 1974-03-01 1976-11-16 Institut Francais Du Petrole, Des Carburants Et Lubrifiants Et Entreprise De Recherches Et D'activities Petrolieres Elf Process for the catalytic hydrodealkylation of alkylaromatic hydrocarbons
US4053531A (en) * 1975-09-29 1977-10-11 Texaco Inc. Steam reforming of polycyclic hydrocarbons
US4075255A (en) * 1975-09-04 1978-02-21 Texaco Inc. Steam dealkylation with hydrogen treated catalyst of groups I, VI B, VIII
US4191844A (en) * 1978-05-04 1980-03-04 Phillips Petroleum Company Hydrodealkylation process and catalyst
US4331566A (en) * 1978-05-04 1982-05-25 Phillips Petroleum Company Catalyst for hydrodealkylation process
US4417089A (en) * 1982-09-01 1983-11-22 Phillips Petroleum Company Hydroisomerization
US4587229A (en) * 1984-10-22 1986-05-06 Phillips Petroleum Company Catalyst for the production of allyl acetate
US4605790A (en) * 1985-05-21 1986-08-12 E. I. Du Pont De Nemours And Company Phenol from coal and biomass
US4608362A (en) * 1984-10-22 1986-08-26 Phillips Petroleum Company Catalyst for the production of allyl acetate
US4634794A (en) * 1984-10-22 1987-01-06 Phillips Petroleum Co. Process for the production of allyl acetate
US4921980A (en) * 1986-01-27 1990-05-01 Ciba-Geigy Corporation Process for the preparation of N-Alkylanilines
US4966878A (en) * 1989-07-03 1990-10-30 Exxon Research & Engineering Company Novel platinum agglomerated iridium catalysts
US4966881A (en) * 1989-07-03 1990-10-30 Exxon Research & Engineering Company Novel platinum-alumina reforming catalysts
US4966880A (en) * 1989-07-03 1990-10-30 Exxon Research & Engineering Company Novel platinum-tin-alumina reforming catalysts
US4966879A (en) * 1989-07-03 1990-10-30 Exxon Research & Engineering Company Novel platinum-iridium reforming catalysts
US5457255A (en) * 1990-10-12 1995-10-10 Mitsubishi Oil Co., Ltd. Catalysts for hydrogenolytic dealkylation and use thereof
US5571763A (en) * 1992-06-02 1996-11-05 Mazda Motor Corporation Exhaust gas purification system and catalyst therefor
US5575902A (en) * 1994-01-04 1996-11-19 Chevron Chemical Company Cracking processes
US5593571A (en) * 1993-01-04 1997-01-14 Chevron Chemical Company Treating oxidized steels in low-sulfur reforming processes
US5674376A (en) * 1991-03-08 1997-10-07 Chevron Chemical Company Low sufur reforming process
US5723707A (en) * 1993-01-04 1998-03-03 Chevron Chemical Company Dehydrogenation processes, equipment and catalyst loads therefor
US5849969A (en) * 1993-01-04 1998-12-15 Chevron Chemical Company Hydrodealkylation processes
US5853693A (en) * 1996-04-03 1998-12-29 Mitsubishi Gas Chemical Company, Inc. Hydrogenation catalyst for production of hydrogen peroxide, and method for preparation of same
US6107237A (en) * 1997-07-10 2000-08-22 University Of Florida Homogeneous metathesis/heterogeneous hydrogenation
US6258256B1 (en) 1994-01-04 2001-07-10 Chevron Phillips Chemical Company Lp Cracking processes
US6274113B1 (en) 1994-01-04 2001-08-14 Chevron Phillips Chemical Company Lp Increasing production in hydrocarbon conversion processes
US6419986B1 (en) 1997-01-10 2002-07-16 Chevron Phillips Chemical Company Ip Method for removing reactive metal from a reactor system
US20030060363A1 (en) * 2001-05-11 2003-03-27 Nippon Mitsubishi Oil Corporation Autothermal reforming catalyst and process of producing fuel gas for fuel cell
US20030060364A1 (en) * 2001-05-11 2003-03-27 Nippon Mitsubishi Oil Corporation Autothermal reforming catalyst and process of producing fuel gas for fuel cell
US20030232721A1 (en) * 2002-01-31 2003-12-18 Hydrocarbon Technologies Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
US6680280B1 (en) * 1999-03-03 2004-01-20 Kataleuna Gmbh Catalysts Hydrogenating catalyst containing nickel and method for producing the same
US20040074811A1 (en) * 2002-10-21 2004-04-22 George Yaluris NOx reduction compositions for use in FCC processes
USRE38532E1 (en) 1993-01-04 2004-06-08 Chevron Phillips Chemical Company Lp Hydrodealkylation processes
US20050042158A1 (en) * 2003-08-18 2005-02-24 George Yaluris NOx reduction compositions for use in FCC processes
US20060116286A1 (en) * 2004-11-17 2006-06-01 Bing Zhou Multicomponent nanoparticles formed using a dispersing agent
US20080081017A1 (en) * 2006-09-29 2008-04-03 Headwaters Nanokinetix, Inc. Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure
US7541309B2 (en) 2006-05-16 2009-06-02 Headwaters Technology Innovation, Llc Reforming nanocatalysts and methods of making and using such catalysts
US7569508B2 (en) 2004-11-17 2009-08-04 Headwaters Technology Innovation, Llc Reforming nanocatalysts and method of making and using such catalysts
US7655137B2 (en) 2003-07-14 2010-02-02 Headwaters Technology Innovation, Llc Reforming catalysts having a controlled coordination structure and methods for preparing such compositions

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2422673A (en) * 1943-10-27 1947-06-24 Universal Oil Prod Co Treatment of alkyl aromatic hydrocarbons
US2734929A (en) * 1956-02-14 Dealkylation of hydrocarbons
US2780580A (en) * 1953-03-04 1957-02-05 Lummus Co Production of ethylene
US2780584A (en) * 1951-11-20 1957-02-05 Union Oil Co Hydroforming of a naphtha with a nickel oxides-on-alumina catalyst containing small amounts of sulphur
US2814599A (en) * 1953-04-17 1957-11-26 Kellogg M W Co Group iii metal compound promoted platinum or palladium catalyst
US2858348A (en) * 1957-03-12 1958-10-28 Sinclair Refining Co Process for making naphthalene
US2861959A (en) * 1952-05-03 1958-11-25 Exxon Research Engineering Co Promoted hydroforming catalyst
US2894898A (en) * 1954-05-07 1959-07-14 Basf Ag Method of treating hydrocarbons with an alumina containing catalyst composite
US2976232A (en) * 1959-01-19 1961-03-21 Exxon Research Engineering Co Platinum-alumina-ceria hydroforming catalyst and process
US3193592A (en) * 1961-08-11 1965-07-06 Union Oil Co Manufacture of petroleum naphthalene
US3222410A (en) * 1962-02-15 1965-12-07 Universal Oil Prod Co Dealkylation of unsaturated sulfur-containing alkylaromatic hydrocarbons
US3236904A (en) * 1962-02-07 1966-02-22 Union Carbide Corp Hydrodealkylation process
US3306944A (en) * 1965-12-27 1967-02-28 Universal Oil Prod Co Process for the hydrodealkylation of alkyl aromatic hydrocarbons
US3436434A (en) * 1967-04-21 1969-04-01 Universal Oil Prod Co Dealkylation of alkyl aromatic hydrocarbons
US3436433A (en) * 1967-04-21 1969-04-01 Universal Oil Prod Co Dealkylation of alkyl substituted aromatic hydrocarbons
US3478120A (en) * 1968-04-09 1969-11-11 Phillips Petroleum Co Dealkylation process and catalyst

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734929A (en) * 1956-02-14 Dealkylation of hydrocarbons
US2422673A (en) * 1943-10-27 1947-06-24 Universal Oil Prod Co Treatment of alkyl aromatic hydrocarbons
US2780584A (en) * 1951-11-20 1957-02-05 Union Oil Co Hydroforming of a naphtha with a nickel oxides-on-alumina catalyst containing small amounts of sulphur
US2861959A (en) * 1952-05-03 1958-11-25 Exxon Research Engineering Co Promoted hydroforming catalyst
US2780580A (en) * 1953-03-04 1957-02-05 Lummus Co Production of ethylene
US2814599A (en) * 1953-04-17 1957-11-26 Kellogg M W Co Group iii metal compound promoted platinum or palladium catalyst
US2894898A (en) * 1954-05-07 1959-07-14 Basf Ag Method of treating hydrocarbons with an alumina containing catalyst composite
US2858348A (en) * 1957-03-12 1958-10-28 Sinclair Refining Co Process for making naphthalene
US2976232A (en) * 1959-01-19 1961-03-21 Exxon Research Engineering Co Platinum-alumina-ceria hydroforming catalyst and process
US3193592A (en) * 1961-08-11 1965-07-06 Union Oil Co Manufacture of petroleum naphthalene
US3236904A (en) * 1962-02-07 1966-02-22 Union Carbide Corp Hydrodealkylation process
US3222410A (en) * 1962-02-15 1965-12-07 Universal Oil Prod Co Dealkylation of unsaturated sulfur-containing alkylaromatic hydrocarbons
US3306944A (en) * 1965-12-27 1967-02-28 Universal Oil Prod Co Process for the hydrodealkylation of alkyl aromatic hydrocarbons
US3436434A (en) * 1967-04-21 1969-04-01 Universal Oil Prod Co Dealkylation of alkyl aromatic hydrocarbons
US3436433A (en) * 1967-04-21 1969-04-01 Universal Oil Prod Co Dealkylation of alkyl substituted aromatic hydrocarbons
US3478120A (en) * 1968-04-09 1969-11-11 Phillips Petroleum Co Dealkylation process and catalyst

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915845A (en) * 1973-12-06 1975-10-28 Universal Oil Prod Co Hydrocarbon conversion with a multimetallic catalytic composite
US3992468A (en) * 1974-03-01 1976-11-16 Institut Francais Du Petrole, Des Carburants Et Lubrifiants Et Entreprise De Recherches Et D'activities Petrolieres Elf Process for the catalytic hydrodealkylation of alkylaromatic hydrocarbons
US4075255A (en) * 1975-09-04 1978-02-21 Texaco Inc. Steam dealkylation with hydrogen treated catalyst of groups I, VI B, VIII
US4053531A (en) * 1975-09-29 1977-10-11 Texaco Inc. Steam reforming of polycyclic hydrocarbons
US4191844A (en) * 1978-05-04 1980-03-04 Phillips Petroleum Company Hydrodealkylation process and catalyst
US4331566A (en) * 1978-05-04 1982-05-25 Phillips Petroleum Company Catalyst for hydrodealkylation process
US4417089A (en) * 1982-09-01 1983-11-22 Phillips Petroleum Company Hydroisomerization
US4587229A (en) * 1984-10-22 1986-05-06 Phillips Petroleum Company Catalyst for the production of allyl acetate
US4608362A (en) * 1984-10-22 1986-08-26 Phillips Petroleum Company Catalyst for the production of allyl acetate
US4634794A (en) * 1984-10-22 1987-01-06 Phillips Petroleum Co. Process for the production of allyl acetate
US4605790A (en) * 1985-05-21 1986-08-12 E. I. Du Pont De Nemours And Company Phenol from coal and biomass
US4921980A (en) * 1986-01-27 1990-05-01 Ciba-Geigy Corporation Process for the preparation of N-Alkylanilines
US4966880A (en) * 1989-07-03 1990-10-30 Exxon Research & Engineering Company Novel platinum-tin-alumina reforming catalysts
US4966881A (en) * 1989-07-03 1990-10-30 Exxon Research & Engineering Company Novel platinum-alumina reforming catalysts
US4966878A (en) * 1989-07-03 1990-10-30 Exxon Research & Engineering Company Novel platinum agglomerated iridium catalysts
US4966879A (en) * 1989-07-03 1990-10-30 Exxon Research & Engineering Company Novel platinum-iridium reforming catalysts
US5457255A (en) * 1990-10-12 1995-10-10 Mitsubishi Oil Co., Ltd. Catalysts for hydrogenolytic dealkylation and use thereof
US5863418A (en) * 1991-03-08 1999-01-26 Chevron Chemical Company Low-sulfur reforming process
US6548030B2 (en) 1991-03-08 2003-04-15 Chevron Phillips Chemical Company Lp Apparatus for hydrocarbon processing
US5674376A (en) * 1991-03-08 1997-10-07 Chevron Chemical Company Low sufur reforming process
US5676821A (en) * 1991-03-08 1997-10-14 Chevron Chemical Company Method for increasing carburization resistance
US5571763A (en) * 1992-06-02 1996-11-05 Mazda Motor Corporation Exhaust gas purification system and catalyst therefor
USRE38532E1 (en) 1993-01-04 2004-06-08 Chevron Phillips Chemical Company Lp Hydrodealkylation processes
US5849969A (en) * 1993-01-04 1998-12-15 Chevron Chemical Company Hydrodealkylation processes
US5723707A (en) * 1993-01-04 1998-03-03 Chevron Chemical Company Dehydrogenation processes, equipment and catalyst loads therefor
US5866743A (en) * 1993-01-04 1999-02-02 Chevron Chemical Company Hydrodealkylation processes
US5593571A (en) * 1993-01-04 1997-01-14 Chevron Chemical Company Treating oxidized steels in low-sulfur reforming processes
US5575902A (en) * 1994-01-04 1996-11-19 Chevron Chemical Company Cracking processes
US6602483B2 (en) 1994-01-04 2003-08-05 Chevron Phillips Chemical Company Lp Increasing production in hydrocarbon conversion processes
US6258256B1 (en) 1994-01-04 2001-07-10 Chevron Phillips Chemical Company Lp Cracking processes
US6274113B1 (en) 1994-01-04 2001-08-14 Chevron Phillips Chemical Company Lp Increasing production in hydrocarbon conversion processes
US6126914A (en) * 1996-04-03 2000-10-03 Mitsubishi Gas Chemical Co., Inc. Hydrogenation catalyst for production of hydrogen peroxide, and method for preparation of same
US5853693A (en) * 1996-04-03 1998-12-29 Mitsubishi Gas Chemical Company, Inc. Hydrogenation catalyst for production of hydrogen peroxide, and method for preparation of same
US6419986B1 (en) 1997-01-10 2002-07-16 Chevron Phillips Chemical Company Ip Method for removing reactive metal from a reactor system
US6551660B2 (en) 1997-01-10 2003-04-22 Chevron Phillips Chemical Company Lp Method for removing reactive metal from a reactor system
US6107237A (en) * 1997-07-10 2000-08-22 University Of Florida Homogeneous metathesis/heterogeneous hydrogenation
US6680280B1 (en) * 1999-03-03 2004-01-20 Kataleuna Gmbh Catalysts Hydrogenating catalyst containing nickel and method for producing the same
US20030060363A1 (en) * 2001-05-11 2003-03-27 Nippon Mitsubishi Oil Corporation Autothermal reforming catalyst and process of producing fuel gas for fuel cell
US20030060364A1 (en) * 2001-05-11 2003-03-27 Nippon Mitsubishi Oil Corporation Autothermal reforming catalyst and process of producing fuel gas for fuel cell
US20040184985A1 (en) * 2001-05-11 2004-09-23 Nippon Mitsubishi Oil Corporation Process of producing fuel gas for fuel cell
US20040191165A1 (en) * 2001-05-11 2004-09-30 Nippon Mitsubishi Oil Corporation Process of producing fuel gas for fuel cell
US7144566B2 (en) 2001-05-11 2006-12-05 Nippon Mitsubishi Oil Corporation Process of producing fuel gas for fuel cell
US7175827B2 (en) 2001-05-11 2007-02-13 Nippon Mitsubishi Oil Corporation Process of producing fuel gas for fuel cell
US20030232721A1 (en) * 2002-01-31 2003-12-18 Hydrocarbon Technologies Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
US6746597B2 (en) * 2002-01-31 2004-06-08 Hydrocarbon Technologies, Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
US20040074811A1 (en) * 2002-10-21 2004-04-22 George Yaluris NOx reduction compositions for use in FCC processes
US6881390B2 (en) * 2002-10-21 2005-04-19 W. R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
US7655137B2 (en) 2003-07-14 2010-02-02 Headwaters Technology Innovation, Llc Reforming catalysts having a controlled coordination structure and methods for preparing such compositions
US20050042158A1 (en) * 2003-08-18 2005-02-24 George Yaluris NOx reduction compositions for use in FCC processes
US7030055B2 (en) * 2003-08-18 2006-04-18 W.R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
US20060116286A1 (en) * 2004-11-17 2006-06-01 Bing Zhou Multicomponent nanoparticles formed using a dispersing agent
US7569508B2 (en) 2004-11-17 2009-08-04 Headwaters Technology Innovation, Llc Reforming nanocatalysts and method of making and using such catalysts
US7632775B2 (en) 2004-11-17 2009-12-15 Headwaters Technology Innovation, Llc Multicomponent nanoparticles formed using a dispersing agent
US7709411B2 (en) 2004-11-17 2010-05-04 Headwaters Technology Innovation, Llc Method of manufacturing multicomponent nanoparticles
US7541309B2 (en) 2006-05-16 2009-06-02 Headwaters Technology Innovation, Llc Reforming nanocatalysts and methods of making and using such catalysts
US20080081017A1 (en) * 2006-09-29 2008-04-03 Headwaters Nanokinetix, Inc. Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure
US7601668B2 (en) 2006-09-29 2009-10-13 Headwaters Technology Innovation, Llc Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure

Similar Documents

Publication Publication Date Title
US3700745A (en) Hydrodealkylation process with promoted group viii metals
US3686340A (en) Hydrodealkylation process
US4677237A (en) Dehydrogenation catalyst compositions
US4487848A (en) Indium-containing catalyst for reforming hydrocarbons
US4486547A (en) Indium-containing dehydrogenation catalyst
US4522935A (en) Platinum and indium-containing catalyst for reforming hydrocarbons
US4595673A (en) Dehydrogenation catalyst compositions and method of their preparation
US2861959A (en) Promoted hydroforming catalyst
US3729521A (en) Process for the disproportionation of petroleum hydrocarbons
US3997618A (en) Process for isomerizing alkyl benzenes
US3729408A (en) Catalytic reforming process
US2972644A (en) Dehydrogenation or dehydrocyclization of non-aromatic hydrocarbons
US4551574A (en) Indium-containing dehydrogenation catalyst
US3692863A (en) Dehydrogenation and dehydrocyclization method
US3679773A (en) Dehydrogenation-type reactions with group viii catalysts
US3692858A (en) Catalytic hydrocracking process for distillation residues
US4177219A (en) Process for selective ethyl scission of ethylaromatics to methylaromatics
US3670041A (en) Hydrogenation process
US3760023A (en) Hydrodealkylation process with promoted group vib metals and promoters
US3223617A (en) Catalytic hydrocarbon conversion
US3865750A (en) Titanium carbide catalysts, and the catalyst compositions
US2848510A (en) Manganese reforming oxide-containing catalyst
US2817626A (en) Process of activating hydrocracking catalysts with hydrogen
US2692293A (en) Catalytic dealkylation of aromatic hydrocarbons
US3917540A (en) Catalyst for hydrogenation and dehydrogenation of hydrocarbons