Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3709222 A
Tipo de publicaciónConcesión
Fecha de publicación9 Ene 1973
Fecha de presentación28 Dic 1970
Fecha de prioridad28 Dic 1970
Número de publicaciónUS 3709222 A, US 3709222A, US-A-3709222, US3709222 A, US3709222A
InventoresVries J De
Cesionario originalSarns Inc
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Method and apparatus for automatic peritoneal dialysis
US 3709222 A
Resumen
A method and apparatus for automatic peritoneal dialysis which includes a series of steps for the exchange of dialysate which proportions the in-flow to the out-flow and provides for the elimination of any distressing in-flow or out-flow pressures on the patient and any abnormal build-up of fluid quantity in the patient. The apparatus includes a portable bed-side unit which carries the necessary pumps and valves for the automatic cycle and includes a disposable plastic sheet unit supported on the apparatus which is positioned such that pumps and valves in the apparatus can operate on this unit when in place.
Imágenes(8)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent [1 1 DeVries [54] METHOD AND APPARATUS FOR AUTOMATIC PERITONEAL DIALYSIS [75] Inventor: James H. DeVries, Ann Arbor,

Mich.

[73] Assignee: Sarns, Inc., Ann Arbor, Mich.

[22] Filed: Dec. 28, 1970 [21] App]. No.: 101,636

[52] US. Cl. ..l28/213, 128/230, 417/395 [51] Int. Cl. ..A6lm 5/00 [58] FieldofSearch...l28/213,214R,2143,2141,

[5 6] References Cited UNITED STATES PATENTS 3,054,401 9/1962 Gewecke....-.' ..128/214 F 3,256,883 6/1966 2,625,933 1/1953 11/1971 Tysk et a1. ..l28/213 MANUAL CLAMP PROFORTIONING CHAMBER 51 Jan. 9, 1973 12/1970 DeVries "128/213 3,291,151 12/1966 LokenW. ....128/2l4B 3,328,255 6/1967 11g..... ..23/258.5 2,865,388 12/1958 Sternbergh.. ...l37/564.5 2,950,396 8/1960 Schneider ..4 l 7/ 349 Primary Examiner-Dalton Truluck Attorney-Barnes, Kisselle, Raisch & Choate [57] ABSTRACT A method and apparatus for automatic peritoneal dialysis which includes a series of steps for the exchange of dialysate which'proportions the in-fiow to the outflow and provides for the elimination of any distressing in-flow or out-flow pressures on the patient and any abnormal build-up of fluid quantity in the patient. The apparatus includes a portable bed-side unit which carries the necessary pumps and valves for the automatic cycle and includes a disposable plastic sheet unit supported on the apparatus which is positioned such that pumps and valves in the apparatus can operate on this unit when in place.

21 Claims, 25 Drawing Figures ,Paessuas' RELIEF cam/week PATENTED JAN 9 I973 FIG.

TUBE

INVENTOR. JAMES H. DEVRIES ATTORNEYS SHEET 2 BF 8 PATENTEU JAN 9 I973 INVENTOR, JAMES H. DE VRIES ATTORNEYS PATENTEDJAH 9m: 3.709.222

SHEET 3 OF 8 RELIEF CHAMBER 66 MANUAL CLAM P PROPORTIONING I CHAMBER TO WA$TE CHAMBER 2/? m |RETURN CHAMBER INVENTOR. Y JAMES H. DEVR\E5 BY Fae. S M M 44011? ATTORNEYS PATENTEDJAH 91975 SHEET []F 8 A T TORNEYS PATENTED JAN 9 I973 SHEET S 0F 8 6 x m o J WV H A m m m E iiii B u WHHIIIHM. 2 5 P m F PATENTEDJAN sum 3,709 222 SHEET 6 OF 8 INVENTOR. JAMES H. DEVRIES ATTORNEYS PATENIEBJAN 9 I975 3. 709.222

sum 7 [IF 8 I 58 ,Paassusz: RELIEF AL CLAMP MANUAL. CLAMP PROPORTIONSNYG CHAMBER 2/2 m o FLUID TO PATIENT FIG; 22

INFLOW PUMP SOURCE OF FRESH DlALYSATE PROPORTIOMNG 2/0 p CHAMBER RETURN PuM 205 7 2 2 FLUID QETURN 90 FIG.

INFLOW PUMP NVENTOR.

JAMES H. bsvracas BY W M M 2 M A TTOENE'YS METHOD AND APPARATUS FOR AUTOMATIC PERITONEAL DIALYSIS This invention relates to a Method and Apparatus for Automatic Peritoneal Dialysis.

It is an object of the present invention to provide a system and apparatus for use in peritoneal dialysis which requires a minimum of attention by skilled hospital personnel and which has a number of safety features relative to the elimination of infection and discomfort.

It is an object of the invention to provide a system and apparatus which will maintain fluid balance to monitor the amount of fluid administered to the patient, thus preventing a build-up of the fluid quantity over a period of operation.

It is a further object to provide a system which can be automatically cycled and which will warm the dialysate to maintain a certain temperature range when additional dialysate is added to the quantity in use.

It is a further object to provide a system which prevents continuing operation in the event of a negative pressure build-up in the outflow and also a system which will control maximum volume in the cycle and interrupt the cycle if a fluidsource is exhausted.

The invention also contemplates the use of a disposable bag element in cooperation with a support apparatus which is relatively inexpensive compared to the overall apparatus and which permits a fresh series of chambers to be used for each patient.

Another object of the invention is a mounting apparatus for the various elements of the system which adapts itself to and cooperates with the disposable elements.

Other objects and features of the invention relating to details of construction and operation will be apparent in the following description and claims in which the principles of the invention are set forth in connection .with the best mode presently contemplated for the invention.

DRAWINGS accompany the disclosure and the various views thereof may be briefly described as:

FIG. I, a perspective view of the-system showing the I apparatus and the relationship to the patient.

FIG. 2, a sectional view taken on line 2-2 of FIG. 4 of thesupport cabinet showing the manner in which the mechanically operated valves are related to the system.

FIG. 3, a rear elevation of the valve mechanism.

FIG. 4, a view of the support apparatus cabinet with the door in open position.

FIG. 5, a view of certain disposable portions'of the apparatus separated from the supporting cabinet.

FIGS. 6, 7, 8, and 9, partial sectional views taken on lines 6-6, 7-7, 8-8, and 9-9 of FIG. 5.

FIG. 10, a view of a waste bag element for the system. 7

FIG. 11, a sectional view on line I 1-1 1 of FIG. 10.

FIG. 12, a view of the opening of the neck portion of the waste bag in closed position.

FIG. 13, a sectional view on line 13-13 of FIG. 12.

FIG. 14, a sectional view of the apparatus showing the return chamber of the system and associated control elements.

FIG. 15, a sectional view of the proportioning chamber of the system in relation to the controlling portions of the support apparatus.

FIG. 16, a sectional view taken on line 16-16 of FIG. 4 of a portion of the apparatus showing a sensor control switch.

FIG. 17, a sectional view on line 17-17 of FIG. 4 of a second sensing switch and response portion of the apparatus.

FIG. 18, an elevation of a peristaltic pump utilized in the system.

FIGS. 19, 20, and 21, sectional views taken on lines 19-19, 20-20, and 21-21 of FIG. 18.

FIG. 22, a diagrammatic view illustrating the system disposed for flow of fluid to the patient.

FIG. 23, another diagrammatic view showing the condition of fluid return from the patient.

' FIG. 24, a view of a float valve with an orifice leak by-pass.

FIG. 25, an electrical diagram showing various control elements of the system.

REFERRING TO THE DRAWINGS In FIG. 1, the apparatus is shown adjacent a hospital 'bed 30 on which is resting a patient 32 who has received the insertion of, an abdominal catheter 34 leading from the apparatus. The apparatus consists of a main cabinet 36 having a door 38 which is hinged to be moved to an open position.

Cross-wise of the cabinet 36 on one end is an open topped case 40. A frame formed by cross members 41 and axles 42 and 44 is supported on wheels or castors 46 and 48. A control panel50 is mounted on the top of the cabinet. On the side of the cabinet 36 mounted in suitable brackets 51 is a stanchion tube 52 which extends upwardly to hold two horizontal cross bars 54 and 56 which can support a supply of sterile dialysate in vessels 58 and 60. Mounted on the stanchion tube 52 is a slide bracket 61 which supports a vertical rod 62 shiftable from the solid line position shown in FIG. 1 to a dotted line position also shown wherein a horizontal portion 64 of the rod can support a plastic relief chamber bag 66 forming part of the system.

Valves which open and close certain tubes of the system, as will be later described, are shown in crosssection in FIG. 2. These are mounted on a panel 70 lying behind the door 38 of the cabinet on a bracket 72 (see FIG. 3), this bracket having a horizontal plate 74 which supports a motor 76 which drives a reduction gear 78 leading to an eccentric driven crank 80. This crank moves a plunger 82 forward and aft, the plunger being sealed by a grommet 84 in the wall of the plate 70. The plunger has a chamfered nose portion 86 which can drive forward against the door plate 38 to close off a particular tube in the system. Suitable control elements for the motor will actuate these valves in response to the general system. There are four such valve control units-mounted on plate '70 and viewing FIG. 4 these are referenced as V-l, V-2, V-4 and V-5. The functions of these valves in connection with the system will be described relative to certain tubes in the system at the appropriate time.

Other hardware on the cabinet includes, as illustrated in FIG. 4, two rotating peristaltic pumps indicated generally at 90 and 92. Except as will be later described, these are of standard construction and are driven by suitable motors mounted in the cabinet 36 behind the panel 70. Additional structure is shown in the sectional view of FIG. 14 where it will be seen that at the bottom portion of the plate 70 is a recess 94 which is closed by a swinging panel 96 hinged at 98. Behind this panel is a micro-switch actuator roller 100 on arm 102 connectedwith micro-switch 104. The door 38 has an opening 106 (see FIGS. 4 and 14) which also is closed by a swinging panel 108 hinged at 110. The position of the plate 108 can be adjustably regulated by an adjustment screw 112 on bracket 114. The purpose of this compartment between plates 96 and 108'will be described later.

Another compartment that is formed in the system by a portion of plate 70 and the cover 38 is shown in cross-section in FIG. 15. Plate 70 is again apertured and this aperture is provided with a shaped panel member 116 which is dished as shown in the drawing. On the back of this dished member is a small electric heater 118 which will be used to maintain a temperature level of liquid in the system. The door panel 38 is also provided with a recess which is filled by a dished member 120 essentially symmetrical with the member 116 to provide anelongate substantially rectangular, rigid-walled compartment. At the lower central portion of the plate 70, as viewed in FIG. 4, is an opening 130 shown in FIG. 17 below which is a bracket having a horizontal plate 132 on'the left side and a horizontal plate 134 at a slightly higher level on the right side as viewed in FIG. 17. Positioned at the opening 130 on bracket plate 132 is a micro-switch arm 136 which controls a micro-switch 138. The purpose of this microswitch in conjunction with the fluid system will be described later.

'At the upper left-hand corner of the plate 70 is an opening 140 (FIG. 16) below which is mounted a bracket plate 142 supporting a micro-switch 144 operatedby a switch arm 146. This switch arm is influenced by the pocket 224 (FIGS. and 7) toreflect absence of hydraulic head in the supply line from containers 58, 60. It will be notedalso that the door has an opening 150 which overlies the pumps 90 and 92 so that the operation ,of these pumps may be observed from outside the cabinet when the door is closed. The door has a latch handle 152 which cooperates with a latch 154 on a wall of the cabinet 36. The plate 70 also carries a plurality of projectingpins 156 positioned at the top and bottom and atother points on the left-hand side of the plate for the supporting of a plastic container andconduit sheet 160. This sheet is shown in F IG.- 4 illustrated in greater detail in FIG. 5 where it is shown apart from the supporting panel. A detailed description follows.

The pumps 90 and 92 are relatively standard peristaltic pumps, FIGS. 18-21, having a rotor 170 mounted on a drive shaft 172 and carrying guide'wheels 174, which rotate on pins 175 within a housing wall 176, and pressure rollers 178 on pins 179 which exert rolling pressure on a tube lying against the inside of the wall.

The pump 92 differs from the normal pump in that one pressureroller at the roller mount 180 is omitted to permit a periodic pressure equalization as will be later described.

Referring now to FIG. 5 and related sectional views in FIGS. 6 to 9, there is shown the plastic container and conduit sheet 160. This container sheet is intended to be disposable to avoid the sterilization problems incident to the use of reusable containers. The'sheet is made from a plastic which is preferably transparent, or at least translucent, and heat scalable. Chambers are formed, in the double or folded-over sheet, by heat sealing the peripheries, and plastic tubes are heat sealed into these chambers, FIG. 6, to provide the necessary ingress and egress. I

Specifically with reference to FIG. 5, a return chamber 200 is formed in the lower area by a heat sealed periphery 202 with an outlet 202 with an outlet tube 203 sealed at 204, this tube having an arched portion with a top air vent 205. A bottom tube 206 leads to a float valve entry unit 207 within the chamber and to a collapsible sensor pocket 208 (FIG. 17 is cross-section) and thence through a pump tube 209, 209a, 2091; to a sealed entrance to one side of a proportioning chamber 210 again formed by a heat sealed periphery. The float valve 207 is designed to close outlet tube 206 when chamber 200 is depleted, FIG. 24. A small orifice 207a permits a bleeding action to relieve negative pressure.

A lower outlet tube 212 leads out of one side of the proportioning chamber 210 in the sheet to a connector 213 which will join to a waste chamber connector 214 on a plastic waste chamber bag 216 lying in compartment 40 (FIGS. 1 and 10). The vented tube 203 from the return chamber also connects at 218 to the waste chamber bag 216. At the top of the proportioning chamber 210 one side of the chamber is connected through a sealed tube 220 to a point near the top of the elevatable pressure relief chamber bag 66 (FIG. 1). A second tube 222 at the top of the proportioning chamber 210 leads through a small pocket chamber 224 (FIG. 7 in cross-section) to a tube 226 which has a bifurcate connector 228 which joins tubes leading to supply containers 58 and 60 (FIG. 1

The pressure relief chamber 66 also has a connector tube 230 into the bottom which leads to a bifurcate connector 232, the single outletof which leads to patient tube 234 and body chamber catheter 34. The other branch of the connector 232 leads through a pressure relief pocket 236 (FIG. 9 in section) and then to a tube 238 entering the plastic container sheet 160 to a bacterial trap 240 recessed into the sheet 160 and having a connector tube 242 leading to a pump tube 242a and a connection to a re-entry tube 242k in sheet 160 sealed into the top of return chamber 200.

The proportioning chamber 210 actually consists of two side-by-side chambers which are created by sandwiching a diaphragm or separation wall 250 between the walls 252 and 254 formed from the double sheets. (See FIGS. 8 and 15). This forms two chambers 260 and 270, the chamber 260 on the right, as viewed in FIG. 15, serves to receive return dialysate fluid through tube 209(b) and, under some circumstances, to discharge it to tube 212 and the waste chamber. The chamber 270 on the left, a s viewed in FIG. 15, serves to receive fresh dialysate fluid from tube 222 through pocket 224 and can introducethisfresh fluid into relief chamber 66 through tube 220. These two chambers 260 and 270 have a volumetric effect on each other as will be described. It will be noted that these two chambers 260 and 270 are encased between the rigid dished plates 116 and 120 of the cabinetwall and cover 38 as shown in the sectional view of FIG. 15. Thus, the expansion of one chamber will cause ensmalling of the other and vice versa. There can then be a volumetric proportioning or balancing occur by reason of this arrangement.

The return chamber 200 lies in the compartment formed by the plate 96 and the plate 108 shown in FIG. 14 so that the volume of the chamber 200 can serve as a control by reason of pressure against the movable plate 96 which will influence the micro-switch arm 102. The pocket 208 at the lower right-hand portion of the chamber sheet, supported on bracket 134, as shown in FIG. 17, has a possible influence on theswitch arm 136, and the pocket 224 shown in section in FIG. 16 is a collapsible pocket which will reflect a reduction in pressure in the return flow line and thus influence a micro-switch arm 146.

The previously described close-off valves V-l, V-2, V-4 and V-5, which may be referred to as clamp valves, are shown in phantom on FIG. 5 to indicate the particular tubes that they are controlling. V-l, for example, controls tube 222; V-2 control tube 220; V-4 controls tube 242; and V-5 controls tube 212.

Referring to FIGS. to 13 the waste bag 216 is formed of a double sheet ofplastic with holes 280 and 282 for suspending the bag in the-compartment 40, this bag being sealed around its edges as illustrated in FIG. 11. The two top connector tubes are also sealed into the bag at 284. The bag has an outlet neck portion 286 which has a flap assembly 288 containing a malleable metallic stiffener 290. When thebag is to be used, this closure neck can be sealed by folding over the tab portion 290 and bending the ends to a locking position as shown in FIGS. 12 and 13.

Function and Operation The function of the apparatus above described is to administer dialysate to a patient over long periods of time in a manner to reduce the need for constant supervision by a nurse or technical attendant. The machine must maintain fluid balance, i.e., monitor the amount of fluid administered to the patient to avoid the danger and discomfort of fluid build-up in the peritoneal chamber of the patient; it must also automatically cycle the flow of dialysate and warm the dialysate which will enter the peritoneal chamber. In addition, the machine must be safe and simple to operate and maintain sterility of the system.

It will be recognized that the machine has, first, an electrical cycling unit with a suitable Power On switch 292 which controls inflow pump 90 and return pump 92 and the four clamp valves V-l, V-2, V-4, V-S. Other functional elements in the electrical system are a starting switch 294, the micro-switches 104 (FIGS. 4, I4), 138 (FIGS. 4, l7) and 144 (FIGS. 4, '16), and timers T1, T2 and T3. An electronic circuit system system is shown in FIG. 25 illustrating the controlling circuitelements and sequence of operation.

The second basic element of the machine is the replaceable or disposable, flexible, plastic sheet and tube fabrication 160 which can be initially pre-sterilized.

A third basic element of the apparatus isthe proportioning reservoir or chamber (FIGS. 4, 15) which consists essentially of the side-by-side chambers 260 and 270 formed by the lamination of the three sheets 250, 252, 254 confined between rigid dished walls 116 and 120. One of the chambers can be filled to the total volume of the rigid housing. If fluid is then subsequently forced into the second chamber, it will force an equal volume out of the first chamber through movement of the intermediate wall 250 which acts as a diaphragm piston. Fluid balance in the patient is achieved by filling one chamber 270 with fresh sterile dialysate prior to the inflow cycle. During inflow, the fluid returned from the previous cycle is pumped into the second compartment 260, thus forcing an equal volume of fresh sterile dialysate into the patient. Thus, the proportioning chamber serves the function of a pump.

In FIGS. 22 and 23, a schematic presentation of the apparatus is illustrated. With reference to these views and the previously described detailed views, to start the cycle, the pressure relief chamber 66 is raised on rod support 64 above the source bottle 58 before the pumps are started. With the clamp valves open, sterile fluid will flow into proportioning chamber 270 through tube 226 until chamber 270 completely fills the rigid chamber 116, 120. The pressure'relief chamber is then lowered below the fluid sources 58, 60 to allow fluid to flow to it through valve V-2 and line 220 and then to the line 230 and line 234 which will be connected to the patient. After this catheter line v is filled, it is manually clamped. The return pump 92 will pump fluid from the connector 232 to the return chamber 200 where fluid will accumulate until switch arm 102 tripsmicro-switch 104 to stop the motor of the return pump 92. At this time the fluid supply line 226 is manually .clamped. At the same time the inflow pump is automatically turned on and clamp valve V-4 is closed electrically. The inflow pump moves the contents of the return chamber 200 into the waste chamber .216, thereby priming all the lines. The depletion of the liquid in chamber 200 causes pump 90 to create a negative pressure in collapsible pocket 208, thus triggering micro-switch 138 through arm I36 bearing against the pocket to automatically stop inflow pump 90. The float valve 207 closes when liquid leaves the bottom of chamber 200 causing the negative pressure in pocket 208 but an orifices 207a (FIG. 24) permits enough fluid to leak by to allow pocket 208 to return to its normal configuration which will reset switch 138.

At this time the adjustable plate 108 (FIG. 14) can be moved to a position which allows the return chamber to hold a maximum volume equal to'the desired exchange volume for a particular patient. This affects the action of plate 96 and micro-switch 104. Now the body catheter 34 can be connected to the patient. The manual clamp is now removed from inflow tube 226 and from the catheter tube 234 and a measured amount of fresh fluid is allowed to run through the lowered pressure relief chamber into the patient. This relief chamber is now moved to its upper position above the fluid source to prevent additional fluid from flowing into the patient.

The machine is now ready for automatic cycling. A suitable start switch 294 on a control unit connected in the electric control circuit is manually actuated to initiate the outflow phase. This opens valve clamps V-l, V-4 and V-5 while V-2 remains closed.

This condition is shown in FIG. 23. The return pump 92 is turned on and two timers T1 and T2 are energized. Timer T1 controls the length of the outflow bination prevents the machine from automatically advancing if the return from the patient is less than the desirable rate and indicates a corrective action by the nurse such as catheter manipulation.

When timer T1 times out, the next phase of operation is initiated. Valve clamp V-2 is opened and the return pump 92 is stopped and an optional add cycle is started. The amount of return is observed by the operator. If it is less than desirable, the pressure relief chamber 66 is again lowered and the return pump is manually turned on until the volume in the return chamber is increased to the desired level. The pressure relief chamber is again raised. Once the volumehas been determined to be adequate, a start switch 294 (FIG. 25) is closed and the inflow cycle begins.

During the inflow cycle, valve clamps V-1, V-4 and V-5 are. closed and V-2 is open. See FIG. 22. Inflow pump 90 is turned on to pump the fluid from the return chamber 200 into the, proportioning chamber 260 through tubes 209, 209a, 209b, thus forcing fresh dialysate from charged chamber 270 into the pressure relief chamber 66 from whence it flows into thepatient. The pressure relief chamber is constructed of flexible plastic and has a greater volume than that of the rigid housing 116-120 of the proportioning chamber. Also,

- the inlet 220 to the relief chamber is near the top, while the outlet to tube 230 is at the bottom. If the line to the patient is blocked, fluid will accumulate in the pressure relief chamber exerting a maximum hydrostatic force on the patient determined by its height above the patient. I

When thereturn chamber empties, the switch 138 closes (by closing of float valve and collapsing of pocket 208) and the next phase of the cycle, namely, the equilibration phase, is started. In this phase, valve clamps V-2 and V-4 are closed and V-l and V-5 are open. Both pumps are off. A timer T3 is energized which controls the length of this phase. Sterile fluid flows from the source 58, 60 into the proportioning chamber 270. This forces the fluid in chamber 260 into the .waste chamber 216 through tube 212 and connector 2l3. Also the heater 1l8transmits heat to the fresh dialysate. When timer T3 times out, the unit is automatically switched back to the outflow cycle which has previously been described.

There are several control features in the apparatus not touched upon previously. If, for example, the amount of return fluid exceeds the intended volume as regulated bypanels 96 and 108, any excess fluid will flow out of the top of the return chamber through line tube 204.directly into the waste chamber 216. The air vent 205 prevents siphoning once the flow has started.

If switch 144 is triggered by a collapse of flexible pocket 224 (FIG. 16) indicating no hydrostatic head from thesupply line 226, the cycle will be interrupted, and, after replenishment, the restart switch must be actuated. The cycle can also be altered by actuating an increase switch 300 (FIG. to replenish fluid when pump 92 is on. Otherwise, the device will continue to cycle: inflow, return, equilibration, inflow return and so In FIG. 25, an electronic control system is illustrated for the purpose of accomplishing the cycling previously described. The electronic control unit has seven control banks or columns A, B, C, D, E, F, and G and an input signal to any particular column or bank cancels the output-of any previous column. When a column receives an input, all actions indicated must take place prior to an output signal which may lead to another bank.

Each of these banks controls valves V-l, V-2, V4

and V-5, pump 92 and pump 90. The circuit also shows the location of a start switch 294 and control switch 104, 138 and 144 as well as timers T1, T2 and T3. A power-on switch is shown at 292 and a starting switch 294 is indicated at three points in the circuit. On the electronic panel, the designation 0 is for open along the horizontal lines leading to each controlled valve orpump and the designation C means ing off pump 92, and turning on the inflow' pump 90.

Fluid will then flow into thewaste chamber 216 and ultimately cause the triggering of micro-switch 138 which will pass signal current from bank B to bank C. This will leave valve V-4 on and turn off pump 90. At this point, the circuit is ready for cycling and when the start switch 294 is actuated, the electrical signal will then go to bank D, closing valve V-2 and turning on the return pump 92. Signal current out of bank D will ordinarily pass through the normally closed timer switch T2'and pass to T1; and when timer T1 is phased, current will then flow through a normally closed add switch 296 and through normally closed switch 144 to bank E where all valves are open and the pumpsare off. This bank E might function in an add cycle.

Current can also pass then through the start switch 294 to bank F where valves V-l, V4 and V-5 are turned off and inflow pump is turned on. This portion of the cycle will continue until switch 138 is trig gered' by a depletion of the liquid in the chamber 200 when current will flow around to bank G, thus opening valve V-l and closing V-2, leaving V-4 closed, and opening V-5 with both pumps being offnThis circuit then moves to the timer T3 which is normally open and when this timer is phased, the circuit will recycle by starting again at bank D. The timer T3 is controlling what is called the equilibration phase of the cycle which has been previously described. The electronic circuit in FIG. 25 also shows an add switch 296 which can be actuated manually if fluidis to be added and itv also includes an increase switch 300 which can be actuthe first timer T1 is reset'and stops'until switch 104.

closes.

The maximum negative pressureis controlled during the outflow phase by two devices. Return pump 92 acts as a positive displacement pump during most of its cycle but one roller at roller pin 180 (FIG. 18) is removed so that at a certainpoint in the rotation, the pump tube 242a is open and unrestricted, thus relieving the negative pressure on the catheter. Secondly, a collapsible chamber 236 in tube 238 (FIG. 9) normally returns to its expanded maximum volume shape if there is no negative pressure within it. The maximum volume of this chamber 236 is greater than the stroke volume of the pump and should the inflow tube 234 be blocked, the pump will collapse chamber 236 during the positive displacement cycle and prevent transmission of any undue negative force to the catheter. The maximum negative force created by the walls of the chamber 236 can readily be calibrated and controlled by the geometrical configuration and the selected material. During the balance of the pump cycle, the open tube 242a will permit retrograde flow and relief of negative pressure and the collapse chamber 236 can return to its normal expanded configuration.

It will be noted that one function of the pressure relief chamber is to prevent flow into the patient if clamp valves V-l and V-2 should fail since the height of the chamber is above the fluid source 58 and 60. The relation of the tubes 220 and 230 prevent positive pump pressure reaching the patient tube 234 during a regular cycle or when liquid is flowing from the supply bottles. lf the patient tube 234 should become blocked, there can be no great build-up of pressure, positive or negative, which would cause discomfort of the patient. If switch l38should fail, the maximum volume pumped is determined by the maximum volume of the proportion ing chamber which is established at a safe level. Also, of course, the adjustment of panel 108 determines maximum volume. The normal volume returned to the patient is equal to the return volume of the previous cycle.

What is claimed as new is as follows:

1. A method of automatic cycling of peritoneal dialysis which comprises:

a. introducing a metered quantity of dialysate patient,

b. providing a metered quantity of fresh dialysate in a first expansible, contractible, volumetric container,

c. providing a second expansible, contractible, volumetric container adjacent the first container,

d. confining the first and second containers within a non-expansible volumetric housing,

e. transferring a quantity of dialysate from the patient to the second container'to cause ensmalling of said first container, and

f. introducing fresh dialysate thus forced from said first container into the patient.

2. A method as defined in claim I which includes interposing a third expansible-contractiblecontainer between the first container and the patient, and positioning the third container relative to the patient to cause gravity flow of dialysate from the third container to the patient.

3. A method as defined in claim 1 which includes interposing a return chamber between the patient and the second chamber, moving dialysate from the patient to the return chamber, and subsequently moving dialysate from the return chamber to the second chamber.

into a 4; A method as defined in claim 2 which includesinterposing a return chamber between the patient and the second chamber, moving dialysate from the patient'to the return chamber, and subsequently moving dialysate from the return chamber to the second chamber.

5. method as defined in'claim 1 which includes providing a waste receptacle, and intermittently discharging returned dialysate to said waste chamber from said second chamber subsequent to introduction of the said dialysate into the second chamber.

6. An apparatus for automatic cycling of peritoneal dialysis which comprises:

a. a support to be positioned at the bedside of a patient,

b. means on said support for holding a supply of fresh dialysate,

c. a first expansible, contractible container on said support for receiving fresh dialysate from said pp y.

d. a second expansible, contractible container on said support directly adjacent said first container,

e. a fixed volumetric chamberon said support confining the expansion of said first and second containers,

f. first means to flow dialysate to and froma patient,

and

g. second means selectively operable to connect said first means'to said second container to permit flow from a patient to said second container, and to permit flow from said first container to a patient.

. An apparatus as defined in claim 6 in which:

a. said second means includes a pressure relief chamber positionable above the patient having an inlet connected to said first chamber and an outlet connectable to a patient.

. An apparatus as defined in claim 6 in which:

a. said second means includes a return chamber to receive return flow to dialysate from said first means, and

b. third means to move return dialysate from said return chamber to said second chamber to force fresh dialysate from said first chamber to said first means.

9. An apparatus as defined in claim 8 in which said third means includes:

a. a pump'connected in a line leading from said return chamber, I b. a float valve in said line at the bottom of said return chamber to momentarily close said line when the return chamber is empty, and c. a vacuum responsive envelope in said line operable to stop said pump upon emptying of said return chamber. 10. An apparatus as defined in claim 6 in which said second means includes:

a. apump connected in a line leading from said first means, and b. a pressure relief means in said line to limit negative pressure in said first means. I I 11. An apparatus as defined in claim 10 in which said pump is 'aperistaltic pump having a positive displacement and a negative displacement cycle sequentially, and said pressure relief means comprises a collapsible envelope in said line leading from said first means. 12. An apparatus as defined in claim 6 in which:

a. a hydrostatically expanded pocket is provided in a line between the supply of fresh dialysate and said first container to respond to exhaustion of supply of fresh dialysate to interrupt the function of said second means.

13. An, apparatus as defined in claim 6 in which said support includes afirst panel, and said containers are formed from overlaid sheets of plastic supported on said panel and heat sealed in defined areas to form said containers. y

14. An apparatus as defined in claim 13 in which a plurality of collapsible connector lines are heat sealed into said plastic sheets to provide flow lines for said apparatus.

15. An apparatus as defined in claim 14 in which a plurality of valve means are supported on said panel operable to squeeze said connector lines to a close-off position.

16. An apparatus as defined in claim 15 in which a 7 18. An'apparatus asdefined in claim 7 in which said 12 relief, chamber is mounted on vertically adjustable means on said support to permit regulation of hydrostatic position relative to a supply of fresh dialysate.

19. An apparatus as defined in claim 8 in which said 7 support comprises adjustable panel means for confining the walls of said return-chamber to regulate its expansion as a control means in the cycling.

20. An apparatus as defined in claim 13in which: a. said second means includes a return chamber to receive return flow of dialysate from said first means, i b. third means to move return dialysate from said return chamber to said second chamber to force fresh dialysate from said first chamber to said first means, c. a cover panel is mounted on said support movable to a fixed position relative to said first panel, and d. a movable section 'is provided on said cover panel overlying said return chamber shiftable relative to said first panel to regulate the expansion of said return chamber as a control means in the cycling.

21. An apparatus as defined in claim 1 l in which said pump has a plurality of rollers spaced circumferentiall y to provide a positive displacement cycle, duringonly a portion of the rotative cycle of said purnp.

i a: v

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US2625933 *10 May 194920 Ene 1953Peter F SalisburyBlood transfer mechanism
US2865388 *13 Ene 195523 Dic 1958West Shore Mfg CompanyLiquid mixing and proportioning device
US2950396 *14 Sep 195623 Ago 1960 Colorevietric analyzer
US3054401 *23 Dic 195918 Sep 1962American Sterilizer CoTransfusion set
US3256883 *8 Ago 196321 Jun 1966Wall Richard A DeOxygenator with heat exchanger
US3291151 *6 Nov 196313 Dic 1966Selmer M LokenFluid exchange system
US3328255 *13 Dic 196327 Jun 1967Elliot Lab IncMethod and apparatus for treating blood
US3545438 *12 Feb 19688 Dic 1970Sarns IncIntermittent dialysis method and apparatus therefor
US3620215 *28 May 197016 Nov 1971Lkb Medical AbApparatus for peritoneal dialysis
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3858572 *27 Oct 19727 Ene 1975Kendall & CoInsufflation device
US3860000 *12 Jul 197314 Ene 1975Lear Siegler IncMedical apparatus and method for feeding and aspirating
US3872863 *31 Jul 197325 Mar 1975American Med ProdPeritoneal dialysis apparatus
US3890969 *21 Ene 197424 Jun 1975Baxter Laboratories IncCardiopulmonary bypass system
US3946731 *31 Jul 197430 Mar 1976Lichtenstein Eric StefanApparatus for extracorporeal treatment of blood
US3955574 *9 Dic 197411 May 1976Rubinstein Morton KPumping system for catheter suction units
US4096859 *4 Abr 197727 Jun 1978Agarwal Mahesh CApparatus for peritoneal dialysis
US4252115 *4 Dic 197824 Feb 1981Dr. Eduard Fresenius, Chemisch-Pharmazeutische Industrie Kg. Apparatebau Kg.Apparatus for periodically rinsing body cavities, particularly the abdominal cavity
US4275726 *4 Dic 197830 Jun 1981Dr. Eduard Fresenius, Chemisch-Pharmazeutische Industrie Kg Apparatebau KgApparatus for fluid balancing under sterile conditions
US4306976 *17 Dic 197922 Dic 1981Bieffe S.P.A.Method and device for ambulatory peritoneal dialysis
US4352374 *15 Feb 19805 Oct 1982Gambro AbApparatus for diluting a concentrated solution
US4379452 *6 Dic 197912 Abr 1983Baxter Travenol Laboratories, Inc.Prepackaged, self-contained fluid circuit module
US4413988 *28 Abr 19828 Nov 1983Handt Alan EShort-tubing set gravity powered peritoneal cycler
US4475900 *5 Jun 19819 Oct 1984Popovich Robert PMethod of peritoneal dialysis involving ultraviolet radiation of dialysis apparatus
US4479760 *28 Dic 198230 Oct 1984Baxter Travenol Laboratories, Inc.Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479761 *28 Dic 198230 Oct 1984Baxter Travenol Laboratories, Inc.Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures
US4479762 *28 Dic 198230 Oct 1984Baxter Travenol Laboratories, Inc.Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4560472 *10 Dic 198224 Dic 1985Baxter Travenol Laboratories, Inc.Peritoneal dialysis apparatus
US4586920 *9 Jul 19846 May 1986Peabody Alan MContinuous flow peritoneal dialysis system and method
US4718890 *17 Mar 198612 Ene 1988Peabody Alan MContinuous flow peritoneal dialysis system and method
US4747822 *2 May 198631 May 1988Peabody Alan MContinuous flow peritoneal dialysis system and method
US4770769 *16 Jul 198513 Sep 1988Fresenius AktiengesellschaftHemodialysis apparatus with degassing means for the dialysis solution
US5004459 *31 May 19882 Abr 1991Peabody Alan MContinuous cyclic peritoneal dialysis system and method
US5115682 *21 May 199026 May 1992Feiler Ernest MCoronary artery graft flow-meter
US5324422 *3 Mar 199328 Jun 1994Baxter International Inc.User interface for automated peritoneal dialysis systems
US5334139 *3 Feb 19942 Ago 1994Gambro AbMethod of peritoneal dialysis using a tube set
US5350357 *3 Mar 199327 Sep 1994Deka Products Limited PartnershipPeritoneal dialysis systems employing a liquid distribution and pumping cassette that emulates gravity flow
US5421823 *1 Jun 19946 Jun 1995Deka Products Limited PartnershipPeritoneal dialysis methods that emulate gravity flow
US5427509 *22 Dic 199327 Jun 1995Baxter International Inc.Peristaltic pump tube cassette with angle pump tube connectors
US5431626 *3 Mar 199311 Jul 1995Deka Products Limited PartnershipLiquid pumping mechanisms for peritoneal dialysis systems employing fluid pressure
US5438510 *3 Mar 19931 Ago 1995Deka Products Limited PartnershipUser interface and monitoring functions for automated peritoneal dialysis systems
US5441636 *12 Feb 199315 Ago 1995Cobe Laboratories, Inc.Integrated blood treatment fluid module
US5443447 *11 Mar 199422 Ago 1995Amin I. KassisIntracavitary delivery or withdrawal device
US5445506 *22 Dic 199329 Ago 1995Baxter International Inc.Self loading peristaltic pump tube cassette
US5474683 *3 Mar 199312 Dic 1995Deka Products Limited PartnershipPeritoneal dialysis systems and methods employing pneumatic pressure and temperature-corrected liquid volume measurements
US5480294 *22 Dic 19932 Ene 1996Baxter International Inc.Peristaltic pump module having jaws for gripping a peristaltic pump tube cassett
US5482440 *22 Dic 19939 Ene 1996Baxter IntBlood processing systems using a peristaltic pump module with valve and sensing station for operating a peristaltic pump tube cassette
US5484239 *22 Dic 199316 Ene 1996Baxter International Inc.Peristaltic pump and valve assembly for fluid processing systems
US5542919 *5 Jun 19956 Ago 1996Fresenius AgPeritoneal dialysis device
US5628908 *9 Mar 199513 May 1997Deka Products Limited PartnershipPeritoneal dialysis systems and methods employing a liquid distribution and pump cassette with self-contained air isolation and removal
US5746708 *22 Dic 19935 May 1998Baxter International Inc.Peristaltic pump tube holder with pump tube shield and cover
US5836908 *9 Dic 199617 Nov 1998Fresenius AktiengesellschaftDisposable balancing unit for balancing fluids, and related medical treatment device
US5868696 *28 Abr 19979 Feb 1999Baxter International Inc.Peristaltic pump tube holder with pump tube shield and cover
US5870805 *6 Ene 199716 Feb 1999Baxter International Inc.Disposable tubing set and organizer frame for holding flexible tubing
US5906598 *22 Nov 199525 May 1999Baxter International Inc.Self-priming drip chamber with extended field of vision
US5938634 *23 Ago 199617 Ago 1999Baxter International Inc.Peritoneal dialysis system with variable pressure drive
US5989423 *10 Sep 199623 Nov 1999Deka Products Limited PartnershipDisposable cassette, delivery set and system for peritoneal dialysis
US61867526 Ago 199713 Feb 2001Baxter International Inc.Peristaltic pumping apparatus with tubing organizer
US64886472 Jun 20003 Dic 2002Hiromu MiuraAutomated solution injection-discharge system and automated peritoneal dialysis system (APDS)
US64916583 Mar 200010 Dic 2002Jms Co., Ltd.Automated solution injection-discharge system and automated peritoneal dialysis system
US655478925 Feb 200029 Abr 2003Nxstage Medical, Inc.Layered fluid circuit assemblies and methods for making them
US657925325 Feb 200017 Jun 2003Nxstage Medical, Inc.Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US658948225 Feb 20008 Jul 2003Nxstage Medical, Inc.Extracorporeal circuits for performing hemofiltration employing pressure sensing without an air interface
US659594325 Feb 200022 Jul 2003Nxstage Medical, Inc.Systems and methods for controlling blood flow and waste fluid removal during hemofiltration
US66321893 Sep 199914 Oct 2003Edwards Lifesciences CorporationSupport device for surgical systems
US663847725 Feb 200028 Oct 2003Nxstage Medical, Inc.Fluid replacement systems and methods for use in hemofiltration
US663847825 Feb 200028 Oct 2003Nxstage Medical, Inc.Synchronized volumetric fluid balancing systems and methods
US667331425 Feb 20006 Ene 2004Nxstage Medical, Inc.Interactive systems and methods for supporting hemofiltration therapies
US683055325 Feb 200014 Dic 2004Nxstage Medical, Inc.Blood treatment systems and methods that maintain sterile extracorporeal processing conditions
US689969122 Dic 200031 May 2005Gambro Inc.Extracorporeal blood processing methods and apparatus
US71476138 Mar 200412 Dic 2006Nxstage Medical, Inc.Measurement of fluid pressure in a blood treatment device
US715328624 May 200226 Dic 2006Baxter International Inc.Automated dialysis system
US71693528 Oct 200330 Ene 2007Gambro, Inc.Extracorporeal blood processing methods and apparatus
US747323827 Ago 20036 Ene 2009Nxstage Medical, Inc.Hemofiltration systems and methods that maintain sterile extracorporeal processing conditions
US75138828 Sep 20067 Abr 2009Caridianbct, Inc.Extracorporeal blood processing methods with multiple alarm levels
US755991328 Feb 200014 Jul 2009Gambro Lundia AbMethod and device for PD cyclers
US76080538 Sep 200627 Oct 2009Caridianbct, Inc.Extracorporeal blood processing methods with return-flow alarm
US77044548 Oct 200327 Abr 2010Caridianbct, Inc.Methods and devices for processing blood
US77363285 Jul 200715 Jun 2010Baxter International Inc.Dialysis system having supply container autoconnection
US77760018 Mar 200417 Ago 2010Nxstage Medical Inc.Registration of fluid circuit components in a blood treatment device
US77760065 Jul 200717 Ago 2010Baxter International Inc.Medical fluid pumping system having real time volume determination
US778061811 Jun 200724 Ago 2010Caridian Bct, Inc.Extracorporeal blood processing apparatus and methods with pressure sensing
US778061929 Ene 200824 Ago 2010Nxstage Medical, Inc.Blood treatment apparatus
US778984921 Dic 20067 Sep 2010Baxter International Inc.Automated dialysis pumping system using stepper motor
US781559521 Dic 200619 Oct 2010Baxter International Inc.Automated dialysis pumping system
US78243557 Ago 20082 Nov 2010Caridianbct, Inc.Methods and devices for processing blood
US79013765 Jul 20078 Mar 2011Baxter International Inc.Dialysis cassette having multiple outlet valve
US790585330 Oct 200715 Mar 2011Baxter International Inc.Dialysis system having integrated pneumatic manifold
US79097955 Jul 200722 Mar 2011Baxter International Inc.Dialysis system having disposable cassette and interface therefore
US806667113 Oct 201029 Nov 2011Baxter International Inc.Automated dialysis system including a piston and stepper motor
US807070921 Jul 20096 Dic 2011Baxter International Inc.Peritoneal dialysis machine
US807552613 Oct 201013 Dic 2011Baxter International Inc.Automated dialysis system including a piston and vacuum source
US808370921 May 201027 Dic 2011Baxter International Inc.Dialysis method having supply container autoconnection
US80880908 Sep 20063 Ene 2012Caridianbct, Inc.Extracorporeal blood processing methods with multiple alarm levels
US81577615 Jul 200717 Abr 2012Baxter International Inc.Peritoneal dialysis patient connection system
US817278913 Oct 20108 May 2012Baxter International Inc.Peritoneal dialysis system having cassette-based-pressure-controlled pumping
US81970875 Jul 200712 Jun 2012Baxter International Inc.Peritoneal dialysis patient connection system using ultraviolet light emitting diodes
US82063383 Jul 200726 Jun 2012Baxter International Inc.Pumping systems for cassette-based dialysis
US820633920 Mar 200926 Jun 2012Baxter International Inc.System for monitoring and controlling peritoneal dialysis
US825729914 Dic 20114 Sep 2012Baxter InternationalDialysis methods and systems having autoconnection and autoidentification
US832323128 Dic 20064 Dic 2012Baxter International, Inc.Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US832875814 Mar 201111 Dic 2012Baxter International Inc.Dialysis systems and methods having disposable cassette and interface therefore
US837699923 Nov 201119 Feb 2013Baxter International Inc.Automated dialysis system including touch screen controlled mechanically and pneumatically actuated pumping
US840388020 Oct 200926 Mar 2013Baxter International Inc.Peritoneal dialysis machine with variable voltage input control scheme
US846544614 Mar 201118 Jun 2013Baxter International Inc.Noise-reducing dialysis systems and methods of reducing noise in dialysis systems
US846954510 May 201225 Jun 2013Baxter Healthcare Inc.Peritoneal dialysis connection system and method for using ultraviolet light emitting diodes
US850652228 Ene 201113 Ago 2013Baxter International Inc.Peritoneal dialysis machine touch screen user interface
US85294969 Jun 201010 Sep 2013Baxter International Inc.Peritoneal dialysis machine touch screen user interface
US8545425 *18 Ene 20081 Oct 2013Baxter InternationalReusable effluent drain container for dialysis and other medical fluid therapies
US85972301 Dic 20113 Dic 2013Baxter International Inc.Dialysis system having supply container autoconnection
US85975058 Feb 20113 Dic 2013Fresenius Medical Care Holdings, Inc.Portable dialysis machine
US867905420 Jun 201225 Mar 2014Baxter International Inc.Pumping systems for cassette-based dialysis
US868497130 Ene 20131 Abr 2014Baxter International Inc.Automated dialysis system using piston and negative pressure
US87152355 Jul 20076 May 2014Baxter International Inc.Dialysis system having disposable cassette and heated cassette interface
US87408364 Dic 20133 Jun 2014Baxter International Inc.Pumping systems for cassette-based dialysis
US87408374 Dic 20133 Jun 2014Baxter International Inc.Pumping systems for cassette-based dialysis
US87647025 Jul 20071 Jul 2014Baxter International Inc.Dialysis system having dual patient line connection and prime
US87715119 Ene 20128 Jul 2014Fresenius Medical Care Holdings, Inc.Disposable apparatus and kit for conducting dialysis
US8784358 *27 Ene 201122 Jul 2014Ta-Lun TanIntelligent automatic peritoneal dialysis
US89001745 Dic 20112 Dic 2014Baxter International Inc.Peritoneal dialysis machine
US891110920 Jun 201316 Dic 2014Baxter Healthcare Inc.Peritoneal dialysis connection system and method for using ultraviolet light emitting diodes
US896144417 Jun 201324 Feb 2015Baxter International Inc.Pressure manifold system for dialysis
US898624315 Mar 201224 Mar 2015Baxter International Inc.Peritoneal dialysis patient connection system
US899246223 Feb 201131 Mar 2015Baxter International Inc.Systems and methods for performing peritoneal dialysis
US8992463 *19 Feb 201331 Mar 2015Baxter International Inc.Balanced flow dialysis machine
US899883617 Jun 20137 Abr 2015Baxter International Inc.Noise-reducing dialysis systems and methods of reducing noise in dialysis systems
US904454421 Nov 20082 Jun 2015Baxter International Inc.Dialysis machine having auto-connection system with roller occluder
US915778624 Dic 201213 Oct 2015Fresenius Medical Care Holdings, Inc.Load suspension and weighing system for a dialysis machine reservoir
US919902231 Mar 20101 Dic 2015Fresenius Medical Care Holdings, Inc.Modular reservoir assembly for a hemodialysis and hemofiltration system
US928331210 Ene 201115 Mar 2016Baxter International Inc.Dialysis system and method for cassette-based pumping and valving
US929577213 Feb 201229 Mar 2016Fresenius Medical Care Holdings, Inc.Priming system and method for dialysis systems
US930830728 Mar 201312 Abr 2016Fresenius Medical Care Holdings, Inc.Manifold diaphragms
US935228226 Dic 201131 May 2016Fresenius Medical Care Holdings, Inc.Manifolds for use in conducting dialysis
US935464011 Nov 201331 May 2016Fresenius Medical Care Holdings, Inc.Smart actuator for valve
US935833124 Dic 20127 Jun 2016Fresenius Medical Care Holdings, Inc.Portable dialysis machine with improved reservoir heating system
US936012913 Jul 20127 Jun 2016Fresenius Medical Care Holdings, Inc.Valve system
US941515230 May 201416 Ago 2016Fresenius Medical Care Holdings, Inc.Disposable apparatus and kit for conducting dialysis
US947484226 Nov 201225 Oct 2016Baxter International Inc.Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US95047786 Feb 201329 Nov 2016Baxter International Inc.Dialysis machine with electrical insulation for variable voltage input
US95111809 Ago 20136 Dic 2016Baxter International Inc.Stepper motor driven peritoneal dialysis machine
US95142839 Jul 20086 Dic 2016Baxter International Inc.Dialysis system having inventory management including online dextrose mixing
US951729627 Sep 201313 Dic 2016Fresenius Medical Care Holdings, Inc.Portable dialysis machine
US958264528 Ago 201328 Feb 2017Baxter International Inc.Networked dialysis system
US958600327 Ago 20147 Mar 2017Baxter International Inc.Medical fluid machine with supply autoconnection
US962316820 Feb 201518 Abr 2017Baxter International Inc.Pressure manifold system for dialysis
US9662430 *13 Abr 201230 May 2017Fresenius Medical Care Deutschland GmbhDevice and method for conveying a fluid to a filter unit of a medical treatment apparatus
US967574426 Oct 201213 Jun 2017Baxter International Inc.Method of operating a disposable pumping unit
US967574518 Nov 201613 Jun 2017Baxter International Inc.Dialysis systems including therapy prescription entries
US969090528 Ago 201327 Jun 2017Baxter International Inc.Dialysis treatment prescription system and method
US969733417 Nov 20164 Jul 2017Baxter International Inc.Dialysis system having approved therapy prescriptions presented for selection
US97442836 Mar 201429 Ago 2017Baxter International Inc.Automated dialysis system using piston and negative pressure
US975971027 Oct 201512 Sep 2017Fresenius Medical Care Holdings, Inc.Modular reservoir assembly for a hemodialysis and hemofiltration system
US977593914 Ago 20133 Oct 2017Baxter International Inc.Peritoneal dialysis systems and methods having graphical user interface
US979572921 May 201424 Oct 2017Baxter International Inc.Pumping systems for cassette-based dialysis
US20030220598 *24 May 200227 Nov 2003Don BusbyAutomated dialysis system
US20030220607 *24 May 200227 Nov 2003Don BusbyPeritoneal dialysis apparatus
US20040243047 *8 Mar 20042 Dic 2004Brugger James M.Single step fluid circuit engagement device and method
US20040243048 *8 Mar 20042 Dic 2004Brugger James M.Registration of fluid circuit components in a blood treatment device
US20040243049 *8 Mar 20042 Dic 2004Brugger James M.Blood-contactless measurement of arterial pressure
US20040267184 *8 Mar 200430 Dic 2004Burbank Jeffrey H.Measurement of fluid pressure in a blood treatment device
US20050045548 *27 Ago 20033 Mar 2005James BruggerHemofiltration systems and methods that maintain sterile extracorporeal processing conditions
US20050082210 *20 Nov 200221 Abr 2005Favre Olivier C.Device for intracorporeal and and extracorporeal purification
US20050113734 *8 Mar 200426 May 2005Brugger James M.Network-based extracorporeal blood treatment information system
US20050113735 *8 Mar 200426 May 2005Brugger James M.Blood flow control in a blood treatment device
US20050209563 *16 Mar 200522 Sep 2005Peter HoppingCassette-based dialysis medical fluid therapy systems, apparatuses and methods
US20070004997 *8 Sep 20064 Ene 2007Gambro, Inc.Extracorporeal Blood Processing Methods With Multiple Alarm Levels
US20070078368 *8 Sep 20065 Abr 2007Gambro, Inc.Extracorporeal Blood Processing Methods With Return-Flow Alarm
US20070135758 *28 Dic 200614 Jun 2007Baxter International Inc.Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US20070149913 *21 Dic 200628 Jun 2007Don BusbyAutomated dialysis pumping system
US20070213651 *21 Dic 200613 Sep 2007Don BusbyAutomated dialysis pumping system using stepper motor
US20070232980 *11 Jun 20074 Oct 2007Gambro Bct, Inc.Extracorporeal Blood Processing Apparatus And Methods With Pressure Sensing
US20080015493 *5 Jul 200717 Ene 2008Baxter International Inc.Medical fluid pumping system having real time volume determination
US20080033346 *3 Jul 20077 Feb 2008Baxter International Inc.Pumping systems for cassette-based dialysis
US20080149551 *29 Ene 200826 Jun 2008Nxstage Medical, Inc.Blood treatment apparatus
US20080306426 *8 Mar 200411 Dic 2008Brugger James MBlood flow control in a blood treatment device
US20090012442 *8 Mar 20048 Ene 2009Brugger James MRegistration of fluid circuit components in a blood treatment device
US20090012451 *5 Jul 20078 Ene 2009Baxter International Inc.Peritoneal dialysis patient connection system
US20090012455 *5 Jul 20078 Ene 2009Baxter International Inc.Dialysis system having supply container autoconnection
US20090012457 *5 Jul 20078 Ene 2009Baxter International Inc.Dialysis system having disposable cassette and interface therefore
US20090012458 *5 Jul 20078 Ene 2009Baxter International Inc.Dialysis system having dual patient line connection and prime
US20090012459 *5 Jul 20078 Ene 2009Baxter International Inc.Peritoneal dialysis patient connection system using ultraviolet light emitting diodes
US20090012460 *5 Jul 20078 Ene 2009Baxter International Inc.Dialysis cassette having multiple outlet valve
US20090012461 *5 Jul 20078 Ene 2009Baxter International Inc.Dialysis system having disposable cassette and heated cassette interface
US20090043237 *7 Ago 200812 Feb 2009Caridianbct, Inc.Methods and devices for processing blood
US20090112151 *30 Oct 200730 Abr 2009Baxter International Inc.Dialysis system having integrated pneumatic manifold
US20090187138 *18 Ene 200823 Jul 2009Baxter International Inc.Reusable effluent drain container for dialysis and other medical fluid therapies
US20090198174 *20 Mar 20096 Ago 2009Baxter International Inc.System for monitoring and controlling peritoneal dialysis
US20090281484 *21 Jul 200912 Nov 2009Baxter International Inc.Peritoneal dialysis machine
US20100087777 *20 Oct 20098 Abr 2010Baxter International Inc.Peritoneal dialysis machine with variable voltage input control scheme
US20100130920 *21 Nov 200827 May 2010Baxter International Inc.Dialysis machine having auto-connection system with roller occluder
US20100140149 *30 Oct 200910 Jun 2010Barry Neil FulkersonModular, Portable Dialysis System
US20100229366 *21 May 201016 Sep 2010Baxter International Inc.Dialysis method having supply container autoconnection
US20110028892 *13 Oct 20103 Feb 2011Baxter International Inc.Peritoneal dialysis system having cassette-based-pressure-controlled pumping
US20110040244 *13 Oct 201017 Feb 2011Baxter International Inc.Automated dialysis system including a piston and stepper motor
US20110106003 *10 Ene 20115 May 2011Baxter International Inc.Dialysis system and method for cassette-based pumping and valving
US20110144569 *9 Jun 201016 Jun 2011Baxter International Inc.Peritoneal dialysis machine touch screen user interface
US20110163033 *14 Mar 20117 Jul 2011Baxter International Inc.Noise-reducing dialysis systems and methods of reducing noise in dialysis systems
US20110166507 *14 Mar 20117 Jul 2011Baxter International Inc.Dialysis systems and methods having disposable cassette and interface therefore
US20110184339 *27 Ene 201128 Jul 2011Ta-Lun TanIntelligent automatic peritoneal dialysis
US20120261341 *13 Abr 201218 Oct 2012Fresenius Medical Care Deutschland GmbhDevice and method for conveying a fluid to a filter unit of a medical treatment apparatus
US20130193073 *19 Feb 20131 Ago 2013Baxter Healthcare S.A.Balanced flow dialysis machine
USRE32303 *24 Mar 19779 Dic 1986American Medical Products Corp.Peritoneal dialysis apparatus
CN102655894A *15 Dic 20105 Sep 2012弗雷塞尼斯医疗保健德国有限责任公司Balancing device, external medical functional device, treatment device, and methods
CN102655894B *15 Dic 20102 Mar 2016弗雷塞尼斯医疗保健德国有限责任公司平衡设备、外用医疗功能设备、治疗装置和方法
CN102671250A *11 Mar 201119 Sep 2012谭大伦Intelligent full-automatic peritoneal dialysis device and operating method
DE4421126A1 *16 Jun 199421 Dic 1995Fresenius AgPeritonealdialysegerät
EP0004600A2 *22 Mar 197917 Oct 1979Hoechst AktiengesellschaftPeristaltic pump for a dialysis solution
EP0004600A3 *22 Mar 197916 Abr 1980Hoechst AktiengesellschaftPeristaltic pump for a dialysis solution
EP0084512A1 *7 Ene 198327 Jul 1983MACO-PHARMA, Société AnonymeSterile Siamese bag
EP0157024A1 *17 Dic 19849 Oct 1985SIS TER SpaImproved automatic apparatus for peritoneal dialysis
EP0243547A1 *1 May 19864 Nov 1987Alan M. PeabodyContinuous flow peritoneal dialysis apparatus
EP0402505A1 *15 Jun 198919 Dic 1990Alan M. PeabodyContinuous cyclic peritoneal dialysis system
EP0687474A112 Jun 199520 Dic 1995Fresenius AGApparatus for peritoneal dialysis
EP0778033A3 *30 Nov 19965 Nov 1997Fresenius Medical Care Deutschland GmbHBlood treatment device with balanced flow
EP1829569A2 *28 Feb 20005 Sep 2007Gambro Lundia ABMethod and device for PD cyclers
EP1829569A3 *28 Feb 200020 Feb 2008Gambro Lundia ABMethod and device for PD cyclers
WO1983003765A1 *11 Abr 198310 Nov 1983Handt Alan EShort-tubing set gravity powered peritoneal cycler
WO1984002473A1 *26 Oct 19835 Jul 1984Baxter Travenol LabPrepackaged fluid processing module having pump and valve elements operable in response to applied pressures
WO2000016825A3 *16 Sep 199924 Ago 2000Baxter IntSupport devices for surgical systems
WO2005089832A2 *17 Mar 200529 Sep 2005Baxter International Inc.Cassette-based dialysis medical fluid therapy systems, apparatuses and methods
WO2005089832A3 *17 Mar 20051 Dic 2005Baxter IntCassette-based dialysis medical fluid therapy systems, apparatuses and methods
WO2009091706A213 Ene 200923 Jul 2009Baxter International Inc.Reusable effluent drain container for dialysis and other medical fluid therapies
WO2009091706A3 *13 Ene 200911 Sep 2009Baxter International Inc.Reusable effluent drain container for dialysis and other medical fluid therapies
WO2011082783A115 Dic 201014 Jul 2011Fresenius Medical Care Deutschland GmbhBalancing device, external medical functional device, treatment device, and methods
Clasificaciones
Clasificación de EE.UU.604/28, 417/395, 604/29
Clasificación internacionalA61M1/00, A61M1/16, A61M1/28
Clasificación cooperativaA61M1/28, A61M2205/12, A61M2001/1639, A61M1/0023
Clasificación europeaA61M1/28
Eventos legales
FechaCódigoEventoDescripción
13 Jul 1981AS02Assignment of assignor's interest
Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, ST. PA
Owner name: SARNS, INC.,
Effective date: 19810601
13 Jul 1981ASAssignment
Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, ST. PA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SARNS, INC.,;REEL/FRAME:003883/0150
Effective date: 19810601
Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, A COR
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SARNS, INC.,;REEL/FRAME:003883/0150