US3711246A - Inhibition of corrosion in cooling water systems with mixtures of gluconate salts and silicate salts - Google Patents

Inhibition of corrosion in cooling water systems with mixtures of gluconate salts and silicate salts Download PDF

Info

Publication number
US3711246A
US3711246A US00104477A US3711246DA US3711246A US 3711246 A US3711246 A US 3711246A US 00104477 A US00104477 A US 00104477A US 3711246D A US3711246D A US 3711246DA US 3711246 A US3711246 A US 3711246A
Authority
US
United States
Prior art keywords
corrosion
gluconate
cooling water
silicate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00104477A
Inventor
Z Foroulis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Application granted granted Critical
Publication of US3711246A publication Critical patent/US3711246A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids

Definitions

  • This invention relates to methods of preventing oxidative corrosion of metals by aqueous solutions.
  • this invention relates to methods of inhibiting oxidative corrosion in recirculating cooling water systems.
  • Cooling water systems are widely used in oil refineries and in chemical plants, as well as in homes, factories and public buildings. Each day huge volumes of water are circulated through tremendous numbers of such systems. This obviously represents a large dollar volume in capital investment and operating expense.
  • Cooling water systems may be classified generally into two types.
  • One type is the once-through cooling system, where cooling water is picked up from a convenient source, such as a river, sent once through the cooling equipment, and then discharged. Corrosion problems in such systems are generally minor. However, in most localities cooling water is not sufiiciently abundant to permit the use of a once-through system and the number of such systems is on the decrease.
  • the other general type of cooling water system is the recirculating cooling water system.
  • Recirculating systems include a cooling tower or equivalent type of equipment. Heat picked up by the water in such systems is passed on to the atmosphere by passing air through the heated water in the cooling tower or equivalent equipment. However, during the course of such contact with the air, a substantial amount of air dissolves in the cooling water and is ciirculated throughout the cooling system. The oxygen dissolved in the water dilfuses to the water-metal interface and will produce corrosion in the heat exchangers and on the metal pipes and vessels in the cooling system.
  • Admiralty metal, copper, and steel, particularly carbon steels are the most commonly used materials in such systems, and unfortunately such materials are particularly prone to oxidative attack.
  • Chromates under certain conditions can give rise to accelerated corrosion.
  • chromates can promote pitting when introduced in low concentrations. This pitting attack may be quite serious and may result in perforation, particularly in areas of breaks or discon- 3,711,246 Patented Jan. 16, 12%73 tinuities in the film produced by the chromate inhibitor. Since setting up virtually perfect thin film in large scale equipment with high flow rates is tricky to say the least, it is safe to say that effective inhibition will be most unpredictable from unit to unit, and even from day to day in the same unit.
  • Polyphosphates have also been used as corrosion inhibitors. These substances have the further advantage of acting as sequestering agents for calcium and magnesium ions which are frequently present in cooling water.
  • polyphosphates are quite corrosive in concentrated solutions and that under certain conditions when used in high concentrations they sufier from conversion to orthophosphates with the resulting formation of sludge or scale which can promote serious corrosion.
  • polyphosphates are also stream pollutants when discharged into a sewage system, although the acceptable concentration of phosphates is considerably higher than the acceptable concentration of chromates.
  • Alkali metal silicates have also been suggested as corrosion inhibitors.
  • a problem with alkali metal silicates is that they promote the formation of scale in pipes and cooling equipment, especially when calcium or magnesium is present in the cooling water, thereby promoting corrosion and fouling.
  • gluconates are not quite effective in inhibiting corrosion in hard waters having substantial concentrations of calcium and magnesium.
  • the art is seeking new corrosion inhibitor combinations for cooling water systems which will effectively inhibit corrosion and at the same time will not cause stream pollution when waste water is discharged from the system.
  • an inhibitor combination comprising a water-soluble inorganic silicate salt and a water-soluble inorganic gluconate salt is effective as an oxidative corrosion inhibitor in recirculating cooling water systems.
  • a small amount of a water-soluble polyphosphate salt can also be included in the inhibitor combination. Cooling water systems can be inhibited against corrosion simply by adding the silicate salt, the gluconate salt, and the polyphosphate salt also where desired, to the cooling water in elfective corrosion inhibiting amounts.
  • the Water-soluble silicate salts for use in the present invention are the water-soluble alkali metal silicates. These may be represented generically by the formula Na O-xSiO -yH O, where x is in the range of about 1 to about 3.5. Commercial sodium silicate solutions in which the mole ratio of silica to soda is about 3.3 may be used to advantage. However, more alkaline solutions having an SiO :Na O mole ratio as low as about 1:1, or less alkaline solutions having an SiO :Na O mole ratio up to about 3.5:1 can also be used.
  • the preferred inorganic water-soluble gluconate salts are the alkali metal gluconates and ammonium gluconate.
  • inorganic gluconate denotes a gluconate salt having an inorganic cation, such as an alkali metal or ammonium.
  • suitable alkali metal gluconates include lithium gluconate, sodium gluconate and potassium gluconate.
  • Sodium gluconate is especially preferred because it gives an effective inhibition and is an article of commerce which is readily available at relatively low cost.
  • Preferred polyphosphates for use in the present invention are the water-soluble inorganic hexametaphosphates, and particularly the alkali metal and ammonium hexametaphosphates.
  • Sodium hexametaphosphate is a preferred salt of this type.
  • Sodium hexametaphosphate is a readily available article of commerce which is used as the chelating agent in aqueous systems containing calcium and magnesium ions.
  • Polyphosphates are primarily useful in cooling Water systems using hard water, since they prevent or minimize calcium precipitation. In addition, they improve the corrosion inhibiting properties of the silicate-gluconate combination at concentrations low enough to be acceptable from the standpoint of stream pollution.
  • the concentration of alkali metal silicate in the cooling water according to this invention is in the range of about 2 to about 200 p.p.m., and preferably about 10 to about 80 p.p.m.
  • the water-soluble gluconate salt is present in a concentration of about 2 to about 1000 p.p.m., and preferably about 20 to about 90 p.p.m.
  • the watersoluble polyphosphate is present in a concentration of about to about 100 p.p.m.
  • the silicate, gluconate, and polyphosphate where used can be added as either solids or as aqueous solutions to the cooling water system in amounts which will give the above-specified concentrations.
  • the alkali metal silicate for example, may be a commercially available sodium silicate (water glass) solution containing approximately 3.3 moles of silica per mole of soda; other silicate solutions or alkali metal silicates in solid form may be used instead.
  • the gluconate and polyphosphate salts will most often be added as solids, although again aqueous solutions are acceptable.
  • a single treatment with the inhibitor combination will be sufficient to adequately protect a cooling water system up to two or three weeks.
  • a higher concentrationof inhibitor is required on startup of a cooling water system than is required thereafter.
  • Example This example describes the efiicacy of a mixture of sodium silicate and sodium gluconate as an inhibitor of oxidative corrosion in carbon steel exposed to water saturated with dissolved oxygen.
  • the test procedure involves placing a small specimen of known weight of 1020 carbon steel (1" x 4" x A”) in tap water through which air is constantly being bubbled. The concentration of dissolved oxygen will thus be kept at a very high level and will duplicate a long period of exposure of the-metal in a cooling water system environment.
  • a second specimen of 1020 carbon steel of known weight is placed in water which is also saturated with air by means of a bubbler. A desired quantity of the corrosion inhibitor is dissolved in this Water. The temperature of both the blank and the testsolutions is maintained at 120 F.
  • the specimens before their introduction into the solutions are abraded through 4-0 emery paper, degreased in benzene, pickled in dilute sulfuric acid and washed in distilled water.
  • the amount of corroded metal is determined by weight loss by weighing before and after the test.
  • the corrosion rate is calculated in mils per year, a mil being .001 inch.
  • the effectiveness of an inhibitor to reduce corrosion is expressed as percentage inhibitor efiiciency where E equals inhibitor elficiency, I is the corrosion rate without inhibitor, and I is the corrosion rate with inhibitor.
  • the inhibitor salts in this example were sodium silicate and sodium gluconate.
  • the sodium silicate was commercial sodium silicate having an Na O:SiO mole ratio of 1:1.
  • the sodium gluconate' wascommercial anhydrous sodium gluconate.
  • a blank run (no inhibitor) and samples using sodium silicate alone and sodium gluconate alone were also tested by the same procedure.
  • a method of inhibiting oxidative corrosion in a circulating cooling water system in which the cooling water contains substantial amounts of dissolved oxygen comprising adding an alkali metal silicate and an alkali metal or ammonium gluconate salt to said water in amounts giving a corrosion inhibited aqueous solution containing about 2 to 200 parts per million of said alkali metal silicate and about 2 to about 1000 parts per million of said gluconate.
  • polyphosphate salt is an alkali metal hexametaphosphate.
  • a method according to claim 4 in which an alkali metal or ammonium polyphosphate salt is also added to said water in an amount giving a concentration of 0 to about 100 parts per million of said polyphosphate in said corrosion inhibited aqueous solution.
  • a method of inhibiting oxidative corrosion in a circulating cooling water system which comprises forming a corrosion inhibited aqueous solution consisting essentially of water having oxygen dissolved therein, about 2 to 200 parts per million of an alkali metal silicate, about 2 to 1000 parts per million of a water-soluble alkali metal or ammonium gluconate salt, and about 0 to 100 parts per million of a water-soluble alkali metal or ammonium polyphosphate salt, and circulating said solution through said system.

Abstract

OXIDATIVE CORROSION IN COOLING WATER SYSTEMS IS SUBSTANTIALLY REDUCED BY THE ADDITION OF SMALL AMOUNTS OF A SILICATE AND A GLUCONATE. A POLYPHOSPHATE CAN ALSO BE ADDED IF DESIRED.

Description

United States Patent M US. Cl. 212.7 7 Claims ABSTRACT OF THE DISCLOSURE Oxidative corrosion in cooling water systems is substantially reduced by the addition of small amounts of a silicate and a gluconate. A polyphosphate can also be added if desired.
BACKGROUND OF THE INVENTION This invention relates to methods of preventing oxidative corrosion of metals by aqueous solutions. In particular, this invention relates to methods of inhibiting oxidative corrosion in recirculating cooling water systems.
Cooling water systems are widely used in oil refineries and in chemical plants, as well as in homes, factories and public buildings. Each day huge volumes of water are circulated through tremendous numbers of such systems. This obviously represents a large dollar volume in capital investment and operating expense.
Cooling water systems may be classified generally into two types. One type is the once-through cooling system, where cooling water is picked up from a convenient source, such as a river, sent once through the cooling equipment, and then discharged. Corrosion problems in such systems are generally minor. However, in most localities cooling water is not sufiiciently abundant to permit the use of a once-through system and the number of such systems is on the decrease.
The other general type of cooling water system is the recirculating cooling water system. Recirculating systems include a cooling tower or equivalent type of equipment. Heat picked up by the water in such systems is passed on to the atmosphere by passing air through the heated water in the cooling tower or equivalent equipment. However, during the course of such contact with the air, a substantial amount of air dissolves in the cooling water and is ciirculated throughout the cooling system. The oxygen dissolved in the water dilfuses to the water-metal interface and will produce corrosion in the heat exchangers and on the metal pipes and vessels in the cooling system. Admiralty metal, copper, and steel, particularly carbon steels, are the most commonly used materials in such systems, and unfortunately such materials are particularly prone to oxidative attack.
The prior art has recognized this problem and has attempted to inhibit this oxidative corrosion in water cooling systems by introducing various inorganic inhibitor systems which produce thin metal oxide films on the metal surfaces of the cooling systems so as to retard or hopefully prevent the diffusion of oxygen to the metal surfaces. Substances which have achieved wide acceptance in the art for this purpose include chromate and phosphate salts. Silicate salts have also been used for this purpose. Unfortunately, these substances have serious drawbacks when used as corrosion inhibitors.
Chromates under certain conditions can give rise to accelerated corrosion. For example, chromates can promote pitting when introduced in low concentrations. This pitting attack may be quite serious and may result in perforation, particularly in areas of breaks or discon- 3,711,246 Patented Jan. 16, 12%73 tinuities in the film produced by the chromate inhibitor. Since setting up virtually perfect thin film in large scale equipment with high flow rates is tricky to say the least, it is safe to say that effective inhibition will be most unpredictable from unit to unit, and even from day to day in the same unit.
:A further and most serious drawback in the use of chromates as inhibitors arises from the fact that chromates are pollutants. Chromates have toxic properties and their presence in streams and rivers is coming under everstricter control in new anti-pollution laws. Thus, in order to be able to circulate used cooling water with an environmental sewage system, it would be necessary for the cooling system operator to install adequate purification equipment to remove the chromate prior to water disposal. This procedure adds substantially to plant investment and operating costs. As a practical matter, it is very difiicult and prohibitively expensive to remove chromate to an adequately low level, with the result that chromate is rapidly falling into disuse as a corrosion inhibitor.
Polyphosphates have also been used as corrosion inhibitors. These substances have the further advantage of acting as sequestering agents for calcium and magnesium ions which are frequently present in cooling water. However, it is known that polyphosphates are quite corrosive in concentrated solutions and that under certain conditions when used in high concentrations they sufier from conversion to orthophosphates with the resulting formation of sludge or scale which can promote serious corrosion. In addition, polyphosphates are also stream pollutants when discharged into a sewage system, although the acceptable concentration of phosphates is considerably higher than the acceptable concentration of chromates.
Alkali metal silicates have also been suggested as corrosion inhibitors. A problem with alkali metal silicates is that they promote the formation of scale in pipes and cooling equipment, especially when calcium or magnesium is present in the cooling water, thereby promoting corrosion and fouling.
There exists a need for a new and effective corrosion inhibitor combination which will effectively inhibit corrosion of metal surfaces in cooling water systems While at the same time does not result in excessive concentrations of pollutants which cannot be discharged into environmental sewage ssytems. It has previously been proposed to inhibit the corrosion of metal surfaces in cooling water systems by adding to the water an alkali metal or ammonium gluconate. Sodium gluconate has been particularly suggested for this purpose. The gluconate salts are not toxic in the concentrations utilized and do not pose pollution problems if discharged into environmental waste water systems. Gluconates are suitable for preventing corrosion of soft waters having low concentrations of calcium or magnesium, although the minimum concentration required is generally somewhat higher than in the case of polyphosphates. The gluconates are not quite effective in inhibiting corrosion in hard waters having substantial concentrations of calcium and magnesium. Hence, the art is seeking new corrosion inhibitor combinations for cooling water systems which will effectively inhibit corrosion and at the same time will not cause stream pollution when waste water is discharged from the system.
SUMMARY OF THE INVENTION It has now been found that small amounts of an inhibitor combination comprising a water-soluble inorganic silicate salt and a water-soluble inorganic gluconate salt is effective as an oxidative corrosion inhibitor in recirculating cooling water systems. A small amount of a water-soluble polyphosphate salt can also be included in the inhibitor combination. Cooling water systems can be inhibited against corrosion simply by adding the silicate salt, the gluconate salt, and the polyphosphate salt also where desired, to the cooling water in elfective corrosion inhibiting amounts.
DESCRIPTION OF THE PREFERRED EMBODIMENT The Water-soluble silicate salts for use in the present invention are the water-soluble alkali metal silicates. These may be represented generically by the formula Na O-xSiO -yH O, where x is in the range of about 1 to about 3.5. Commercial sodium silicate solutions in which the mole ratio of silica to soda is about 3.3 may be used to advantage. However, more alkaline solutions having an SiO :Na O mole ratio as low as about 1:1, or less alkaline solutions having an SiO :Na O mole ratio up to about 3.5:1 can also be used.
The preferred inorganic water-soluble gluconate salts are the alkali metal gluconates and ammonium gluconate. The term, inorganic gluconate, as used herein denotes a gluconate salt having an inorganic cation, such as an alkali metal or ammonium. The suitable alkali metal gluconates include lithium gluconate, sodium gluconate and potassium gluconate. Sodium gluconate is especially preferred because it gives an effective inhibition and is an article of commerce which is readily available at relatively low cost.
Preferred polyphosphates for use in the present invention are the water-soluble inorganic hexametaphosphates, and particularly the alkali metal and ammonium hexametaphosphates. Sodium hexametaphosphate is a preferred salt of this type. Sodium hexametaphosphate is a readily available article of commerce which is used as the chelating agent in aqueous systems containing calcium and magnesium ions. Polyphosphates are primarily useful in cooling Water systems using hard water, since they prevent or minimize calcium precipitation. In addition, they improve the corrosion inhibiting properties of the silicate-gluconate combination at concentrations low enough to be acceptable from the standpoint of stream pollution.
The concentration of alkali metal silicate in the cooling water according to this invention is in the range of about 2 to about 200 p.p.m., and preferably about 10 to about 80 p.p.m. The water-soluble gluconate salt is present in a concentration of about 2 to about 1000 p.p.m., and preferably about 20 to about 90 p.p.m. The watersoluble polyphosphate is present in a concentration of about to about 100 p.p.m.
The silicate, gluconate, and polyphosphate where used, can be added as either solids or as aqueous solutions to the cooling water system in amounts which will give the above-specified concentrations. The alkali metal silicate, for example, may be a commercially available sodium silicate (water glass) solution containing approximately 3.3 moles of silica per mole of soda; other silicate solutions or alkali metal silicates in solid form may be used instead. The gluconate and polyphosphate salts will most often be added as solids, although again aqueous solutions are acceptable.
It is believed that the contact of the cooling water containing dissolved silicate, gluconate, and (optionally) phosphate salts in the desired concentration range with metal surfaces of the cooling water system results in the formation of a thin protective film on these metal surfaces. This film serves to inhibit the diffusion of oxygen from the water phase to the metal surfaces, thereby substantially lowering the corrosion rate of the metal.
In some applications, a single treatment with the inhibitor combination will be sufficient to adequately protect a cooling water system up to two or three weeks. However, in cases where there is unusually turbulent flow or a vessel configuration which makes it difficult to preserve film integrity on the metal surfaces, or in instances where inhibitor and water losses are excessive, it may be necessary to repeat the addition of inhibitors on occasion or alternatively to maintain a continuous inhibitor concentration in the desired range by constant addition of inhibitors in order to preserve the protective film. Generally, a higher concentrationof inhibitor is required on startup of a cooling water system than is required thereafter. Thus, it is generally desirable to add enough inhibitor to establish a total inhibitor concentration of at least about 50 p.p.m. when a system is being started up. This will cause a protective film to form on the metal surfaces in the system. Once this film is formed, it can frequently be maintained at lower inhibitor concentrations, in many cases as low as about 25 totalinhibitor concentration.
The present invention will be described more fully with reference to the following example.
Example This example describes the efiicacy of a mixture of sodium silicate and sodium gluconate as an inhibitor of oxidative corrosion in carbon steel exposed to water saturated with dissolved oxygen.
The test procedure involves placing a small specimen of known weight of 1020 carbon steel (1" x 4" x A") in tap water through which air is constantly being bubbled. The concentration of dissolved oxygen will thus be kept at a very high level and will duplicate a long period of exposure of the-metal in a cooling water system environment. A second specimen of 1020 carbon steel of known weight is placed in water which is also saturated with air by means of a bubbler. A desired quantity of the corrosion inhibitor is dissolved in this Water. The temperature of both the blank and the testsolutions is maintained at 120 F.
The specimens before their introduction into the solutions are abraded through 4-0 emery paper, degreased in benzene, pickled in dilute sulfuric acid and washed in distilled water.
After six days the samples are removed, cleaned with a soft brush, washed with Water and then acetone, and are weighed after drying. The amount of corroded metal is determined by weight loss by weighing before and after the test. The corrosion rate is calculated in mils per year, a mil being .001 inch. The effectiveness of an inhibitor to reduce corrosion is expressed as percentage inhibitor efiiciency where E equals inhibitor elficiency, I is the corrosion rate without inhibitor, and I is the corrosion rate with inhibitor.
The inhibitor salts in this example were sodium silicate and sodium gluconate. The sodium silicate was commercial sodium silicate having an Na O:SiO mole ratio of 1:1. The sodium gluconate'wascommercial anhydrous sodium gluconate. For comparison purposes a blank run (no inhibitor) and samples using sodium silicate alone and sodium gluconate alone were also tested by the same procedure.
Results of representative experiments using the above procedure and inhibitor combination are summarized in Table I below.
Good corrosion inhibition is also obtained in solutions containing a silicate, a gluconate, and a polyphosphate. For example, a solution containing 50 p.p.m. of sodium silicate, 25 p.p.m. of sodium gluconate, and 25 p.p.m. of sodium hexametaphosphate, when tested under the conditions of the above example, gave a corrosion rate of 5.7 mils per year and an inhibitor efiiciency of 70%. This inhibitor efliciency is nearly as great as the inhibitor efliciency obtained with 50 p.p.m. of sodium silicate and 50 p.p.m. of sodium gluconate, in spite of the lower combined concentrations of silicate and gluconate. Sodium hexametaphosphate appears to make some contribution to the corrosion inhibiting properties of the solution in addition to serving as a sequestering agent for calcium ions.
What is claimed is:
1. A method of inhibiting oxidative corrosion in a circulating cooling water system in which the cooling water contains substantial amounts of dissolved oxygen, said method comprising adding an alkali metal silicate and an alkali metal or ammonium gluconate salt to said water in amounts giving a corrosion inhibited aqueous solution containing about 2 to 200 parts per million of said alkali metal silicate and about 2 to about 1000 parts per million of said gluconate.
2. A method according to claim 1 in which an alkali metal or ammonium polyphosphate salt is also added to said water in an amount giving a concentration of to about 100 parts per million of said polyphosphate in said corrosion inhibited aqueous solution.
3. A method according to claim 2 in which said polyphosphate salt is an alkali metal hexametaphosphate.
4. A method according to claim 1 in which said silicate and said gluconate are added in amounts giving a corrosion inhibited aqueous solution containing about to about 80 parts per million of said alkali metal silicate and about to about 90 parts per million of said gluconate.
5. A method according to claim 4 in which an alkali metal or ammonium polyphosphate salt is also added to said water in an amount giving a concentration of 0 to about 100 parts per million of said polyphosphate in said corrosion inhibited aqueous solution.
6. The method according to claim 1 in which said silicate and said gluconate are added in amounts of about 10 to about parts by weight of said silicate and about 20 to about parts by weight of said gluconate, based on parts of combined weight of said silicate and said gluconate,
7. A method of inhibiting oxidative corrosion in a circulating cooling water system which comprises forming a corrosion inhibited aqueous solution consisting essentially of water having oxygen dissolved therein, about 2 to 200 parts per million of an alkali metal silicate, about 2 to 1000 parts per million of a water-soluble alkali metal or ammonium gluconate salt, and about 0 to 100 parts per million of a water-soluble alkali metal or ammonium polyphosphate salt, and circulating said solution through said system.
References Cited UNITED STATES PATENTS 3,235,404 2/1966 Mickelson et al. 204-38 B 3,110,684 11/1963 Miller 21-2.7 2,481,977 9/1949 Cinamon 252-387 2,909,490 10/1959 Metziger 252-387 3,580,934 5/1971 Murray et al 252-387 LEON D. ROSDO'L, Primary Examiner I. GLUCK, Assistant Examiner U.S. Cl. X.'R.
US00104477A 1971-01-06 1971-01-06 Inhibition of corrosion in cooling water systems with mixtures of gluconate salts and silicate salts Expired - Lifetime US3711246A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10447771A 1971-01-06 1971-01-06

Publications (1)

Publication Number Publication Date
US3711246A true US3711246A (en) 1973-01-16

Family

ID=22300704

Family Applications (1)

Application Number Title Priority Date Filing Date
US00104477A Expired - Lifetime US3711246A (en) 1971-01-06 1971-01-06 Inhibition of corrosion in cooling water systems with mixtures of gluconate salts and silicate salts

Country Status (1)

Country Link
US (1) US3711246A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085063A (en) * 1976-10-06 1978-04-18 Westinghouse Electric Corporation Non-chromate pitting and general corrosion inhibitors for aluminum products and method
US4110128A (en) * 1975-12-17 1978-08-29 International Lead Zinc Research Organization, Inc. Solution and procedure for depositing a protective coating on galvanized steel parts, and solution regeneration procedure
DE3023701A1 (en) * 1979-10-01 1981-05-14 Chemed Corp., Cincinnati, Ohio CORROSION INHIBITOR MADE OF ALUMINUM-GLUCONIC ACID COMPLEX, AND A METHOD FOR INHIBITING CORROSION ON IRON AND STEEL SURFACES
US4512915A (en) * 1981-08-31 1985-04-23 Roquette Freres Composition and method of inhibiting corrosion by water of metal substrates
US5077925A (en) * 1990-04-23 1992-01-07 Herrera Barbaranne D Message frame
US5137657A (en) * 1991-04-24 1992-08-11 Merck & Co., Inc. Synergistic combination of sodium silicate and orthophosphate for controlling carbon steel corrosion
US5244600A (en) * 1992-03-02 1993-09-14 W. R. Grace & Co.-Conn. Method of scavenging oxygen in aqueous systems
US5330683A (en) * 1992-04-16 1994-07-19 Nalco Chemical Company Method of inhibiting corrosion in brine solutions
US5589106A (en) * 1995-02-14 1996-12-31 Nalco Chemical Company Carbon steel corrosion inhibitors
EP0807695A1 (en) * 1996-05-15 1997-11-19 Nalco Chemical Company A non-phosphorus corrosion inhibitor for industrial cooling water systems and airwasher systems
US20010004461A1 (en) * 1998-06-01 2001-06-21 Moore Robert M. Continuous processes for preparing concentrated aqueous liquid biocidal compositions
US6299909B1 (en) 1998-06-01 2001-10-09 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US6348219B1 (en) 1998-06-01 2002-02-19 Albemarle Corporation Processes for preparing concentrated aqueous liquid biocidal compositions
US6352725B1 (en) 1998-06-01 2002-03-05 Albemarle Corporation Continuous processes for preparing concentrated aqueous liquid biocidal composition
US6375991B1 (en) 2000-09-08 2002-04-23 Albemarle Corporation Production of concentrated biocidal solutions
US6506418B1 (en) 1999-09-24 2003-01-14 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US6511682B1 (en) 1998-06-01 2003-01-28 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US20030113402A1 (en) * 2001-06-28 2003-06-19 Howarth Jonathan N. Microbiological control in animal processing
US20030211210A1 (en) * 2001-06-28 2003-11-13 Howarth Jonathan N. Microbiological control in poultry processing
US6652889B2 (en) 1998-06-01 2003-11-25 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation and use
US20040265445A1 (en) * 2003-06-24 2004-12-30 Liimatta Eric W. Microbiocidal control in the processing of poultry
US20040265446A1 (en) * 2003-06-24 2004-12-30 Mcnaughton James L. Microbiocidal control in the processing of poultry
US20050061197A1 (en) * 2001-10-09 2005-03-24 Nalepa Christopher J. Control of biofilms in industrial water systems
US7087251B2 (en) 1998-06-01 2006-08-08 Albemarle Corporation Control of biofilm
US20060278586A1 (en) * 2005-06-10 2006-12-14 Nalepa Christopher J Highly concentrated, biocidally active compositions and aqueous mixtures and methods of making the same
US20070141974A1 (en) * 2005-12-01 2007-06-21 Solution Biosciences, Inc. Microbiocidal Control in the Processing of Meat-Producing Four-Legged Animals
US20080099716A1 (en) * 2006-10-27 2008-05-01 Robert Scott Koefod Deicer compositions including corrosion inhibitors for galvanized metal
US20090053327A1 (en) * 2004-09-07 2009-02-26 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US20090131259A1 (en) * 2007-11-15 2009-05-21 Kiely Donald E Hydroxypolyamide Gel Forming Agents
US20090250653A1 (en) * 2006-08-07 2009-10-08 Kiely Donald E Hydroxycarboxylic Acids and Salts
US7828908B1 (en) 2010-03-31 2010-11-09 Ecolab USA, Inc. Acid cleaning and corrosion inhibiting compositions comprising gluconic acid
CN102303926A (en) * 2011-08-17 2012-01-04 武汉大学 Corrosion inhibitor for one-stage reverse osmosis water produced from sea water desalinization
US8293795B1 (en) 1998-06-01 2012-10-23 Albemarle Corporation Preparation of concentrated aqueous bromine solutions and biocidal applications thereof
US8414932B2 (en) 1998-06-01 2013-04-09 Albemarie Corporation Active bromine containing biocidal compositions and their preparation
US8536106B2 (en) 2010-04-14 2013-09-17 Ecolab Usa Inc. Ferric hydroxycarboxylate as a builder
US9096787B2 (en) 2012-11-28 2015-08-04 Rivertop Renewables Corrosion inhibiting, freezing point lowering compositions
US9162959B2 (en) 2006-08-07 2015-10-20 The University Of Montana Method of oxidation using nitric acid
US9187398B2 (en) 2013-03-13 2015-11-17 Rivertop Renewables, Inc. Nitric acid oxidation processes
US9346736B2 (en) 2013-03-13 2016-05-24 Rivertop Renewables, Inc. Oxidation process
US9347024B2 (en) 2011-04-21 2016-05-24 Rivertop Renewables, Inc. Calcium sequestering composition
US9404188B2 (en) 2010-11-11 2016-08-02 Rivertop Renewables Corrosion inhibiting composition
US9670124B2 (en) 2013-03-13 2017-06-06 Rivertop Renewables, Inc. Nitric acid oxidation process
DE102019126497A1 (en) * 2019-10-01 2021-04-01 Bwt Ag Inhibitor solution for corrosion protection for water pipes and installation systems
US11634635B2 (en) 2017-05-24 2023-04-25 Bl Technologies, Inc. Polyacrylate polymers for low carbon steel corrosion control

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110128A (en) * 1975-12-17 1978-08-29 International Lead Zinc Research Organization, Inc. Solution and procedure for depositing a protective coating on galvanized steel parts, and solution regeneration procedure
US4085063A (en) * 1976-10-06 1978-04-18 Westinghouse Electric Corporation Non-chromate pitting and general corrosion inhibitors for aluminum products and method
DE3023701A1 (en) * 1979-10-01 1981-05-14 Chemed Corp., Cincinnati, Ohio CORROSION INHIBITOR MADE OF ALUMINUM-GLUCONIC ACID COMPLEX, AND A METHOD FOR INHIBITING CORROSION ON IRON AND STEEL SURFACES
US4512915A (en) * 1981-08-31 1985-04-23 Roquette Freres Composition and method of inhibiting corrosion by water of metal substrates
US5077925A (en) * 1990-04-23 1992-01-07 Herrera Barbaranne D Message frame
US5137657A (en) * 1991-04-24 1992-08-11 Merck & Co., Inc. Synergistic combination of sodium silicate and orthophosphate for controlling carbon steel corrosion
US5244600A (en) * 1992-03-02 1993-09-14 W. R. Grace & Co.-Conn. Method of scavenging oxygen in aqueous systems
EP0644274A1 (en) * 1992-03-02 1995-03-22 W.R. Grace & Co.-Conn. Method of scavenging oxygen in aqueous systems
US5330683A (en) * 1992-04-16 1994-07-19 Nalco Chemical Company Method of inhibiting corrosion in brine solutions
US5589106A (en) * 1995-02-14 1996-12-31 Nalco Chemical Company Carbon steel corrosion inhibitors
EP0807695A1 (en) * 1996-05-15 1997-11-19 Nalco Chemical Company A non-phosphorus corrosion inhibitor for industrial cooling water systems and airwasher systems
US5976414A (en) * 1996-05-15 1999-11-02 Nalco Chemical Company Non-Phosphorus corrosion inhibitor program for air washer system
US8409630B2 (en) 1998-06-01 2013-04-02 Albermarle Corporation Continuous processes for preparing concentrated aqueous liquid biocidal compositions
US8679548B2 (en) 1998-06-01 2014-03-25 Albemarle Corporation Active bromine containing biocidal compositions and their preparation
US6306441B1 (en) 1998-06-01 2001-10-23 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US6322822B1 (en) 1998-06-01 2001-11-27 Albemarle Corporation Biocidal applications of concentrated aqueous bromine chloride solutions
US6348219B1 (en) 1998-06-01 2002-02-19 Albemarle Corporation Processes for preparing concentrated aqueous liquid biocidal compositions
US6352725B1 (en) 1998-06-01 2002-03-05 Albemarle Corporation Continuous processes for preparing concentrated aqueous liquid biocidal composition
US7087251B2 (en) 1998-06-01 2006-08-08 Albemarle Corporation Control of biofilm
US6495169B1 (en) 1998-06-01 2002-12-17 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US20050147696A1 (en) * 1998-06-01 2005-07-07 Moore Robert M.Jr. Concentrated aqueous bromine solutions and their preparation and use
US6511682B1 (en) 1998-06-01 2003-01-28 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US7195782B2 (en) 1998-06-01 2007-03-27 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US20030104074A1 (en) * 1998-06-01 2003-06-05 Moore Robert M. Concentrated aqueous bromine solutions and their preparation
US20010004461A1 (en) * 1998-06-01 2001-06-21 Moore Robert M. Continuous processes for preparing concentrated aqueous liquid biocidal compositions
US8293795B1 (en) 1998-06-01 2012-10-23 Albemarle Corporation Preparation of concentrated aqueous bromine solutions and biocidal applications thereof
US6652889B2 (en) 1998-06-01 2003-11-25 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation and use
US6299909B1 (en) 1998-06-01 2001-10-09 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US8414932B2 (en) 1998-06-01 2013-04-09 Albemarie Corporation Active bromine containing biocidal compositions and their preparation
US8048435B2 (en) 1998-06-01 2011-11-01 Albemarle Corporation Preparation of concentrated aqueous bromine solutions and biocidal applications thereof
US20090246295A1 (en) * 1998-06-01 2009-10-01 Albemarle Corporation Preparation of concentrated aqueous bromine solutions and biocidal applications thereof
US6506418B1 (en) 1999-09-24 2003-01-14 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US6869620B2 (en) 2000-09-08 2005-03-22 Albemarle Corporation Production of concentrated biocidal solutions
US20040219231A1 (en) * 2000-09-08 2004-11-04 Moore Robert M Production of concentrated biocidal solutions
US6551624B2 (en) 2000-09-08 2003-04-22 Albemarle Corporation Production of concentrated biocidal solutions
US6375991B1 (en) 2000-09-08 2002-04-23 Albemarle Corporation Production of concentrated biocidal solutions
US20050271779A1 (en) * 2001-06-28 2005-12-08 Howarth Jonathan N Microbiological control in poultry processing
US7767240B2 (en) 2001-06-28 2010-08-03 Albemarle Corporation Microbiological control in poultry processing
US6986910B2 (en) 2001-06-28 2006-01-17 Albemarle Corporation Microbiological control in poultry processing
US6919364B2 (en) 2001-06-28 2005-07-19 Solution Biosciences, Inc. Microbiological control in animal processing
US20030113402A1 (en) * 2001-06-28 2003-06-19 Howarth Jonathan N. Microbiological control in animal processing
US7172782B2 (en) 2001-06-28 2007-02-06 Albemarle Corporation Microbiological control in poultry processing
US7182966B2 (en) 2001-06-28 2007-02-27 Albemarle Corporation Microbiological control in poultry processing
US6908636B2 (en) 2001-06-28 2005-06-21 Albermarle Corporation Microbiological control in poultry processing
US20070141973A1 (en) * 2001-06-28 2007-06-21 Albemarle Corporation Microbiological Control in Poultry Processing
US20030211210A1 (en) * 2001-06-28 2003-11-13 Howarth Jonathan N. Microbiological control in poultry processing
US20070237868A1 (en) * 2001-06-28 2007-10-11 Albemarle Corporation Microbiological Control in Poultry Processing
US20050100643A1 (en) * 2001-06-28 2005-05-12 Howarth Jonathan N. Microbiological control in poultry processing
US20050182117A1 (en) * 2001-06-28 2005-08-18 Howarth Jonathan N. Microbiological control in poultry processing
US20090178587A9 (en) * 2001-10-09 2009-07-16 Nalepa Christopher J Control of biofilms in industrial water systems
US20050061197A1 (en) * 2001-10-09 2005-03-24 Nalepa Christopher J. Control of biofilms in industrial water systems
US20040265446A1 (en) * 2003-06-24 2004-12-30 Mcnaughton James L. Microbiocidal control in the processing of poultry
US20040265445A1 (en) * 2003-06-24 2004-12-30 Liimatta Eric W. Microbiocidal control in the processing of poultry
US9005671B2 (en) 2004-09-07 2015-04-14 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US20090053327A1 (en) * 2004-09-07 2009-02-26 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US9452229B2 (en) 2005-06-10 2016-09-27 Albemarle Corporation Highly concentrated, biocidally active compositions and aqueous mixtures and methods of making the same
US20060278586A1 (en) * 2005-06-10 2006-12-14 Nalepa Christopher J Highly concentrated, biocidally active compositions and aqueous mixtures and methods of making the same
US7914365B2 (en) 2005-12-01 2011-03-29 Albemarle Corporation Microbiocidal control in the processing of meat-producing four-legged animals
US20070141974A1 (en) * 2005-12-01 2007-06-21 Solution Biosciences, Inc. Microbiocidal Control in the Processing of Meat-Producing Four-Legged Animals
US9162959B2 (en) 2006-08-07 2015-10-20 The University Of Montana Method of oxidation using nitric acid
US20090250653A1 (en) * 2006-08-07 2009-10-08 Kiely Donald E Hydroxycarboxylic Acids and Salts
US8961813B2 (en) 2006-08-07 2015-02-24 The University Of Montana Hydroxycarboxylic acids and salts
US20080099716A1 (en) * 2006-10-27 2008-05-01 Robert Scott Koefod Deicer compositions including corrosion inhibitors for galvanized metal
US7655153B2 (en) 2006-10-27 2010-02-02 Cargill, Incorporated Deicer compositions including corrosion inhibitors for galvanized metal
WO2008054663A1 (en) * 2006-10-27 2008-05-08 Cargill, Incorporated Deicer compositions including corrosion inhibitors for galvanized metal
US9315624B2 (en) 2007-11-15 2016-04-19 The University Of Montana Hydroxypolyamide gel forming agents
US8623943B2 (en) 2007-11-15 2014-01-07 The University Of Montana Hydroxypolyamide gel forming agents
US9505882B2 (en) 2007-11-15 2016-11-29 The University Of Montana Hydroxypolyamide gel forming agents
US20090131259A1 (en) * 2007-11-15 2009-05-21 Kiely Donald E Hydroxypolyamide Gel Forming Agents
US7828908B1 (en) 2010-03-31 2010-11-09 Ecolab USA, Inc. Acid cleaning and corrosion inhibiting compositions comprising gluconic acid
US9023780B2 (en) 2010-04-14 2015-05-05 Ecolab Usa Inc. Ferric hydroxycarboxylate as a builder
US8536106B2 (en) 2010-04-14 2013-09-17 Ecolab Usa Inc. Ferric hydroxycarboxylate as a builder
US9404188B2 (en) 2010-11-11 2016-08-02 Rivertop Renewables Corrosion inhibiting composition
US9347024B2 (en) 2011-04-21 2016-05-24 Rivertop Renewables, Inc. Calcium sequestering composition
CN102303926A (en) * 2011-08-17 2012-01-04 武汉大学 Corrosion inhibitor for one-stage reverse osmosis water produced from sea water desalinization
US9096787B2 (en) 2012-11-28 2015-08-04 Rivertop Renewables Corrosion inhibiting, freezing point lowering compositions
US9346736B2 (en) 2013-03-13 2016-05-24 Rivertop Renewables, Inc. Oxidation process
US9187398B2 (en) 2013-03-13 2015-11-17 Rivertop Renewables, Inc. Nitric acid oxidation processes
US9670124B2 (en) 2013-03-13 2017-06-06 Rivertop Renewables, Inc. Nitric acid oxidation process
US9758462B2 (en) 2013-03-13 2017-09-12 Rivertop Renewables, Inc. Nitric acid oxidation processes
US11634635B2 (en) 2017-05-24 2023-04-25 Bl Technologies, Inc. Polyacrylate polymers for low carbon steel corrosion control
DE102019126497A1 (en) * 2019-10-01 2021-04-01 Bwt Ag Inhibitor solution for corrosion protection for water pipes and installation systems

Similar Documents

Publication Publication Date Title
US3711246A (en) Inhibition of corrosion in cooling water systems with mixtures of gluconate salts and silicate salts
US3589859A (en) Gluconate salt inhibitors
US4108790A (en) Corrosion inhibitor
US3116105A (en) Zinc-sodium polyphosphate, sodium polyphosphate, chelating agent corrosion inhibiting composition
US4659481A (en) Water treatment polymers and methods of use thereof
US4659482A (en) Water treatment polymers and methods of use thereof
US3751372A (en) Scale and corrosion control in circulating water using polyphosphates and organophonic acids
US3766077A (en) Compositions and method for inhibiting scaling in aqueous systems
US4732698A (en) Water treatment polymers and methods of use thereof
US4717499A (en) Water treatment polymers and methods of use thereof
US4374733A (en) Method for treating aqueous mediums
US6156129A (en) Liquid metal cleaner for aqueous system
US4387027A (en) Control of iron induced fouling in water systems
US3666404A (en) Method of inhibiting corrosion in aqueous systems with high molecular weight alkylene oxide polymers
GB2027002A (en) Anti-corrosion composition
US3580934A (en) Corrosion prevention with sodium silicate and soluble zinc salts
US4944885A (en) Water treatment polymers and methods of use thereof
US5137657A (en) Synergistic combination of sodium silicate and orthophosphate for controlling carbon steel corrosion
US3580855A (en) Process for inhibition of scale and corrosion using a polyfunctional phosphated polyol ester having at least 75% primary phosphate ester groups
US3256203A (en) Cooling water treatment and compositions useful therein
US4869845A (en) Water treatment compositions
US4895663A (en) Water treatment polymers and methods of use thereof
US3296027A (en) Removal and inhibition of scale formation in steam generation
US4556493A (en) Composition and method for inhibiting scale
US4446045A (en) Composition for treating aqueous mediums