US3716485A - Process and apparatus for destroying hexavalent chromium in solution - Google Patents

Process and apparatus for destroying hexavalent chromium in solution Download PDF

Info

Publication number
US3716485A
US3716485A US00105163A US3716485DA US3716485A US 3716485 A US3716485 A US 3716485A US 00105163 A US00105163 A US 00105163A US 3716485D A US3716485D A US 3716485DA US 3716485 A US3716485 A US 3716485A
Authority
US
United States
Prior art keywords
detention
circuit
solution
chamber
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00105163A
Inventor
R Robertson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ayteks International Corp
Original Assignee
Ayteks International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ayteks International Corp filed Critical Ayteks International Corp
Application granted granted Critical
Publication of US3716485A publication Critical patent/US3716485A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal
    • Y10S210/913Chromium

Definitions

  • ABSTRACT An apparatus and method for precipitating and/or destroying a chemical material comprising a source of material connected in series with an acidification unit, a reduction unit, and a pH adjustment unit and with detention chambers between each unit and a container to allow settling of the newly formed material.
  • This apparatus provides a circuit through which the reaction takes place within engineered volumes of piping surrounding the unit.
  • Another object of the invention is to provide a continuous chemical reaction unit.
  • FIG. 1 is an isometric view of the machine according to the invention.
  • FIG. 2 is a front view of the machine.
  • FIG. 3 is a right side view of the machine.
  • FIG. 4 is a left side view of the machine.
  • FIG. 5 is a top view of the machine.
  • FIG. 6 is a back view'of the machine.
  • FIG. 7 is a schematic view of the apparatus.
  • FIG. 8 is a schematic view of the tank.
  • FIG. 9 is a schematic view of the proportioning pump circuit.
  • the circuit shown in FIG. 7 is made up of the three detention chambers 17, 25 and 32, which are connected in series with the sight-glasses I4, 18, 26 and 33. These are, in turn, connected in series with the sump 11 and the holding tank 38.
  • a pump 13 circulates liquid from the sump 11 through the line 12 and through the system.
  • Acid isadded by means of a proportional acid injec tion pump 41 through line 16 and check valve V to the acid injection point in line 12.
  • the detection chamber 17 is sufflciently large in cross section and is internally baffled in such a manner to provide approximately one minute of turbulent detention in a typical example.
  • a pH cell 19 senses the pH of the liquid after it passes through sight-glass l8 and controls a valve 2O so that when the pH is above a predetermined value, the liquid is recirculated through line 21 back to the sump 11. If the pH is at or below the proper value, it proceeds into line 22. pH cell 19 passes an electrical signal to proportional controller 44 which, in turn, transmits a signal to proportional acid injection pump 41. The controller 44 will balance the pump 41 output rate such that said rate will stabilize at the desired setpoint to obtain correct pH at pH sensing cell 19. The liquid thence passes through line 22 to the reducing agent addition point 23 where a reducing agent injection pump 42 feeds reducing agent through check valve V and valve 24 and line 24'.
  • ORP cell 27 passes an electrical signal to proportional controller 45 which, in turn, transmits a signal to reducing agent injection proportional pump 42.
  • the controller 45 will balance the pump 42 output rate such that said rate will stabilize at the desired setpoint to obtain correct ORP at sensing cell 27.
  • pH cell 34 passes an electrical signal to proportional controller 46 which, in turn, transmits a signal to proportional caustic injection pump 43.
  • the controller 46 will balance the pump 43 output rate such that said rate will stabilize at the desired setpoint to obtain correct pH at pH sensing cell 34.
  • the newly formed solids in the fluid are allowed to settle, for example, for 2 hours thence clear water is discharged through a pH cell and recorder 39 which will indicate the pH of the water discharged from the unit.
  • EXAMPLE A typical example of operation will be hexavalent chrome of 1,200 ppm Cr at tank 11 which will be pumped by pump 13 at a rate of 5 gallons per minute through sight-glass 14, chrome liquid will be yellow in color, and will have 60 cc. per minute of 66 Be- Sulfuric Acid injected at 15 and it will be detained for a period of one minute at 17 where its color will become a reddish-orange, which may be observed at sight-glass 18.
  • the liquid will proceed past point 23 where 12.6 pounds per hour of 98 percent purity sodium bisulfite will be injected and shall be detained and mixed for a period of five minutes at 25 thus changing the color of the fluid to emerald green which can be observed at sight-glass 26. If the oxidation reduction potential at ORP cell 27 is less than 2l0 mv and greater than mv, the liquid shall then proceed past point 30 where 6.8 pounds per hour of 98 percent sodium hydroxide will be injected and shall be detained and mixed for a period of one minute at 32 thus changing the color of the fluid to powder blue which can be observed at sight-glass 33.
  • the pH of the liquid at pH cell 34 is greater than 8.0, it shall pass into tank 38 where it shall be held for two hours to allow the chrome hydroxide to settle and allow the clear supernate to pass through pH recorder 39. Periodic removal of settled sludge will be accomplished through blowdown port 40.
  • CIRCUIT l v a third detention chamber and a second pH sensing umt, 2Na2Cr04+ zHzsOt: H2cr2o7+ H2O+2Na2so4 said second pH sensing unit having means thereon 2 2H2CrO4+2Na2SO4 for selectively directing material from said third CIRCUIT 2; 5 detention chamber to said settling chamber and to recirculate said material to said caustic unit if the pH is below a predetermined level, said second pH sensing unit being connected to a CIRCUIT 3; third proportional controller'w'hereby regulation is I achieved to inject exactly'the correct amount of al- '2 03 6N80H )s l' 2 4 kaline material to obtain desired pH.
  • the embodiments ofthe invention in which an exclu- The apparatus rclted m clalm 3 "Y a first sive property or privilege is claimed are defined as folslght'glas s a Second gi -glass, a th rd sight-glass, and lows: 1 a fourth sight-glass are disposed in said circuit, said first An apparatus for destroying hexavalem chrome sight-glass being disposed prior to said acid injection comprising,
  • a pH correction means 6.
  • a reducameans ofdiverting unacceptable material, ing agent injection means is connected in series with and a second detention chamber connected in Series said circuit between said acidaddition unit and said with said first detention chamber, third Circuit element,
  • said pH sensor being connected to control means on and F retenflon cham ber and a diversion valve actuated by Said pH Sensor oxldation reduction potential umt 1s connected to whereby Said material is recirculated to said 0 said circuit and means connected to said oxidation chrome Source when the pH of said material is reduction potential unit whereby said material will above a predetermined value, be diverted when the oxidation reduction potential said pH sensor being connected to a proportional atapredetermmed valuecontroller whereby exactly the amount of acid PP rlemoving a chemical ingredient required is injected to achieve desired pH. from a Solutlo" Compnsmg,
  • a reduca Source of Said Solution ing agent additive unit is connected in series with said a Settling tank, first detention unit, a means of detecting oxidation, a plurality Oflarge Pipes and a plurality of Small P p reduction potential, and a means of correcting amount 40 connected in Series with each other and disposed of reducing agent additive by means ofa proportionate around Said tank, controller in order to achieve exactly the correct Said Pipes each being disposed generally in the form amount of reduction agent, Ofa hBllX around Said tank,
  • each said large pipe having a diameter and length 3.
  • a third sufficient p i e a predetermined detention series of circuit elements is connected in series with t m u ing which said solution is in the particular said mentioned elements, said large pipe,
  • said third circuit elements comprising a caustic addisaid large pipes having sufficient volume to provide tive unit, 7 said detention time of a predetermined interval for a third detention chamber and a second pH sensing Said liquid flowing in Said Circuit,
  • a hro at destr ction module comprising a raw detention chamber to said settling chamber and to Waste Source, recirculate said material to said caustic unit if the 3 treated Waste p, pH is below a predetermined level, a circuit connecting said treated waste sump to said said second pH sensing unit being connected to a raw waste source,
  • said circuit further comprises means to inject caustic into said circuit between said second detention means and said third detention means and means for recirculating said liquid from said circuit between said third detention means and said second detention means when the pH of said liquid at said treated waste sump has a pH below a predetermined value and transferring said liquid from said circuit between said third detention means and said treated waste sump when the pH of said liquid has a pH above a predetermined value.
  • circuit recited in claim 8 wherein said circuit comprises a second detention means between said first detention means and said third detention means,
  • said enlarged size pipes comprise a retention chamber.
  • a process of destroying hexavalent chromium in solution comprising circulating said solution from a source through a series of lines and detention chambers,

Abstract

An apparatus and method for precipitating and/or destroying a chemical material comprising a source of material connected in series with an acidification unit, a reduction unit, and a pH adjustment unit and with detention chambers between each unit and a container to allow settling of the newly formed material. This apparatus provides a circuit through which the reaction takes place within engineered volumes of piping surrounding the unit.

Description

United States Patent 1191 Robertson 1451 Feb. 13, 1973 1 1 PROCESS AND APPARATUS FOR DESTROYING HEXAVALENT CHROMIUM IN SOLUTION [75] Inventor: Richard G. Robertson, Parma Heights, Ohio [73] Assignee: Ayteks International Corporation,
Midina, Ohio [22] Filed: Jan. 11, 1 971 21 App1.No.i 105,163
[52] US. Cl. ..210/50, 210/60, 210/61,
210/96, 210/195, 210/256 51 Int. Cl ..C02c 5/02 [58] Field of Search ..210/50, 62, 42, 60, 63, 96, 210/195, 256, 513, 61
[56] References Cited UNITED STATES PATENTS 3,005,554 10/1961 Kuntz ..210/96 3,459,303 8/1969 Bradley ..210/96 OTHER PUBLICATIONS Sweglar, C., Plating Solutions, ldustrial Wastes, May 1959, PP. 4042 Pinkerton, H. L., Waste Disposal, Chapt. 11 of Electroplating Engineering Handbook, pp. 285-287, 290, 294 and 301-305 relied on Vohmann et al. ..210/54 Primary ExaminerMichael Rogers AttorneyCharles L. Lovercheck, Esq.
[ 5 7] ABSTRACT An apparatus and method for precipitating and/or destroying a chemical material comprising a source of material connected in series with an acidification unit, a reduction unit, and a pH adjustment unit and with detention chambers between each unit and a container to allow settling of the newly formed material. This apparatus provides a circuit through which the reaction takes place within engineered volumes of piping surrounding the unit.
14 Claims, 9 Drawing Figures PROCESS AND APPARATUS FOR DESTROYING HEXAVALENT CHROMIUM IN SOLUTION GENERAL DESCRIPTION OF THE INVENTION The apparatus disclosed herein operates on the principle of acidification, reduction and then pH adjustment to allow settling of the newly formed material. The chemical reactions take, place within engineered volumes of piping surrounding the module. The final settling of sludge takes place within the main holding vessel.
OBJECTS OF THE INVENTION It is an object of the invention to provide a destruction unit which is continuous and automatic in operation.
Another object of the invention is to provide a continuous chemical reaction unit.
GENERAL DESCRIPTION OF THE DRAWINGS FIG. 1 is an isometric view of the machine according to the invention.
FIG. 2 is a front view of the machine.
FIG. 3 is a right side view of the machine.
4 FIG. 4 is a left side view of the machine.
FIG. 5 is a top view of the machine.
FIG. 6 is a back view'of the machine.
FIG. 7 is a schematic view of the apparatus.
FIG. 8 is a schematic view of the tank.
FIG. 9 is a schematic view of the proportioning pump circuit.
DETAILED DESCRIPTION OF THE DRAWINGS The circuit shown in FIG. 7 is made up of the three detention chambers 17, 25 and 32, which are connected in series with the sight-glasses I4, 18, 26 and 33. These are, in turn, connected in series with the sump 11 and the holding tank 38.
A pump 13 circulates liquid from the sump 11 through the line 12 and through the system.
Acid isadded by means of a proportional acid injec tion pump 41 through line 16 and check valve V to the acid injection point in line 12. The detection chamber 17 is sufflciently large in cross section and is internally baffled in such a manner to provide approximately one minute of turbulent detention in a typical example.
A pH cell 19 senses the pH of the liquid after it passes through sight-glass l8 and controls a valve 2O so that when the pH is above a predetermined value, the liquid is recirculated through line 21 back to the sump 11. If the pH is at or below the proper value, it proceeds into line 22. pH cell 19 passes an electrical signal to proportional controller 44 which, in turn, transmits a signal to proportional acid injection pump 41. The controller 44 will balance the pump 41 output rate such that said rate will stabilize at the desired setpoint to obtain correct pH at pH sensing cell 19. The liquid thence passes through line 22 to the reducing agent addition point 23 where a reducing agent injection pump 42 feeds reducing agent through check valve V and valve 24 and line 24'. The liquid then continues through the detention chamber 25 where it is held and mixed for a period of five minutes in a typical installation, thence through sight-glass 26 to the oxidation reduction potential detector 27. If the ORP reading is above or below the proper oxidation reduction potential range, the fluid is diverted through valve 28 into line 21 which recycles to sump II. If the oxidation reduction potential falls within the acceptable range, the fluid will continue into line 29. ORP cell 27 passes an electrical signal to proportional controller 45 which, in turn, transmits a signal to reducing agent injection proportional pump 42. The controller 45 will balance the pump 42 output rate such that said rate will stabilize at the desired setpoint to obtain correct ORP at sensing cell 27. The liquid thence passes through line 29 to the caustic addition point 30 where caustic is added by way of a proportional caustic injectiorr pump 43 through check valve V and through line 31 and valve 31'. The liquid then continues through the detention unit 32 where it is held and mixed for a period of one minute in a typical installation, thence through sight-glass 33 and pH sensor 34 and into detention tank 38 primary chamber 35. If the pH is below a predetermined level, the liquid is recirculated through pump 36 and line 37 to a point of injection in line 29 prior to caustic injection point 30. If the liquid is within the desired limits of pH, the liquid passes undisturbed from primary chamber 35 into sump 38. pH cell 34 passes an electrical signal to proportional controller 46 which, in turn, transmits a signal to proportional caustic injection pump 43. The controller 46 will balance the pump 43 output rate such that said rate will stabilize at the desired setpoint to obtain correct pH at pH sensing cell 34. The newly formed solids in the fluid are allowed to settle, for example, for 2 hours thence clear water is discharged through a pH cell and recorder 39 which will indicate the pH of the water discharged from the unit.
EXAMPLE A typical example of operation will be hexavalent chrome of 1,200 ppm Cr at tank 11 which will be pumped by pump 13 at a rate of 5 gallons per minute through sight-glass 14, chrome liquid will be yellow in color, and will have 60 cc. per minute of 66 Be- Sulfuric Acid injected at 15 and it will be detained for a period of one minute at 17 where its color will become a reddish-orange, which may be observed at sight-glass 18. If the pH is below 2.5 at pH cell 19, the liquid will proceed past point 23 where 12.6 pounds per hour of 98 percent purity sodium bisulfite will be injected and shall be detained and mixed for a period of five minutes at 25 thus changing the color of the fluid to emerald green which can be observed at sight-glass 26. If the oxidation reduction potential at ORP cell 27 is less than 2l0 mv and greater than mv, the liquid shall then proceed past point 30 where 6.8 pounds per hour of 98 percent sodium hydroxide will be injected and shall be detained and mixed for a period of one minute at 32 thus changing the color of the fluid to powder blue which can be observed at sight-glass 33. If the pH of the liquid at pH cell 34 is greater than 8.0, it shall pass into tank 38 where it shall be held for two hours to allow the chrome hydroxide to settle and allow the clear supernate to pass through pH recorder 39. Periodic removal of settled sludge will be accomplished through blowdown port 40.
Typical chemical reactions that will occur within the above circuitry are as follows:
CIRCUIT l: v a third detention chamber and a second pH sensing umt, 2Na2Cr04+ zHzsOt: H2cr2o7+ H2O+2Na2so4 said second pH sensing unit having means thereon 2 2H2CrO4+2Na2SO4 for selectively directing material from said third CIRCUIT 2; 5 detention chamber to said settling chamber and to recirculate said material to said caustic unit if the pH is below a predetermined level, said second pH sensing unit being connected to a CIRCUIT 3; third proportional controller'w'hereby regulation is I achieved to inject exactly'the correct amount of al- '2 03 6N80H )s l' 2 4 kaline material to obtain desired pH.
The embodiments ofthe invention in which an exclu- The apparatus rclted m clalm 3 "Y a first sive property or privilege is claimed are defined as folslght'glas s a Second gi -glass, a th rd sight-glass, and lows: 1 a fourth sight-glass are disposed in said circuit, said first An apparatus for destroying hexavalem chrome sight-glass being disposed prior to said acid injection comprising,
a series circuit including a first circuit element, Second slght'glass bemg dlsposed followmg 531d a chrome Source first detention chamber,
a first pump said third sight-glass being disposed in circuit adan acid injection means, jacent said second detention chamber,
afirst detention and chemical reaction chamber, and Said fourth sightglass being disposed adjacent a PH Sensor means said third detention chamber.
a pH correction means, 6. The apparatus recited in claim 3 wherein a reducameans ofdiverting unacceptable material, ing agent injection means is connected in series with and a second detention chamber connected in Series said circuit between said acidaddition unit and said with said first detention chamber, third Circuit element,
said pH sensor being connected to control means on and F retenflon cham ber and a diversion valve actuated by Said pH Sensor oxldation reduction potential umt 1s connected to whereby Said material is recirculated to said 0 said circuit and means connected to said oxidation chrome Source when the pH of said material is reduction potential unit whereby said material will above a predetermined value, be diverted when the oxidation reduction potential said pH sensor being connected to a proportional atapredetermmed valuecontroller whereby exactly the amount of acid PP rlemoving a chemical ingredient required is injected to achieve desired pH. from a Solutlo" Compnsmg,
2. The apparatus recited in claim 1 wherein a reduca Source of Said Solution ing agent additive unit is connected in series with said a Settling tank, first detention unit, a means of detecting oxidation, a plurality Oflarge Pipes and a plurality of Small P p reduction potential, and a means of correcting amount 40 connected in Series with each other and disposed of reducing agent additive by means ofa proportionate around Said tank, controller in order to achieve exactly the correct Said Pipes each being disposed generally in the form amount of reduction agent, Ofa hBllX around Said tank,
and said second detention unit is connected in series means for adding materials to Said Solution Withinwith said reducing agent additive unit and said Said "8 P p sensing and controlling means. each said large pipe having a diameter and length 3. The apparatus recited in claim 1 wherein a third sufficient p i e a predetermined detention series of circuit elements is connected in series with t m u ing which said solution is in the particular said mentioned elements, said large pipe,
said third circuit elements comprising a caustic addisaid large pipes having sufficient volume to provide tive unit, 7 said detention time of a predetermined interval for a third detention chamber and a second pH sensing Said liquid flowing in Said Circuit,
unit, said material being adapted to precipitate solid said second pH sensing unit having means thereon material whereby said solids will settle in said tank. for selectively directing material from said third 8. A hro at destr ction module comprising a raw detention chamber to said settling chamber and to Waste Source, recirculate said material to said caustic unit if the 3 treated Waste p, pH is below a predetermined level, a circuit connecting said treated waste sump to said said second pH sensing unit being connected to a raw waste source,
third proportional controller whereby regulation is said circuit comprising a first detention means and a achieved to inject exactly the correct amount of a]- second detention means, and a third detention kaline material to obtain desired pH. means, 4. The apparatus recited in claim 2 wherein a third means connecting said detention means in series with series of circuit elements is connected in series with each other, said mentioned elements, and said means connecting said detention means in said third circuit elements comprising acaustic addiseries comprising a first pH sensing device for tive unit, selectively recirculating said liquid to said raw waste source when said pH is above a predetermined value and connecting said circuit to said second detention means when said pH is below a predetermined value and continuously adjusting volume of pH adjusting additive such that proper pH is obtained,
said circuit further comprises means to inject caustic into said circuit between said second detention means and said third detention means and means for recirculating said liquid from said circuit between said third detention means and said second detention means when the pH of said liquid at said treated waste sump has a pH below a predetermined value and transferring said liquid from said circuit between said third detention means and said treated waste sump when the pH of said liquid has a pH above a predetermined value.
9. The circuit recited in claim 8 wherein said circuit comprises a second detention means between said first detention means and said third detention means,
, and means to inject a reducing agent into said circuit at the end of said first detention means adjacent said second detention means.
10. The circuit recited in claim 9 wherein means is provided to recirculate said material from said second detention means to said chrome source when the ORP thereof is outside of a predetermined range and a means of continuously adjusting the volume of ORP adjustiveadditive such that stabilized proper oxidation reduction potential is obtained and a means of circulating said material from said second detention means to said third detention means when the oxidation reduction potential thereof is within a predetermined range.
1 1. The circuit recited in claim 8 wherein said circuit comprises enlarged size pipes connected by reduced size pipes,
and said enlarged size pipes comprise a retention chamber.
12. The circuit recited in claim 1 1 wherein said pipes are connected to a tank and said pipes are arranged generally in the form of a helix around said tank.
13. A process of destroying hexavalent chromium in solution comprising circulating said solution from a source through a series of lines and detention chambers,
and adding acid and caustic to said solution in predetermined amounts to said solution comprising,
sensing said solution in said lines at a point subsequent to a first detention chamber and recirculating said solution when the pH varies above a predetermined value,
passing said solution to an electrical signal means to proportionally control an acid injection pump controlling the acidity of said solution,
passing said solution through a reducing agent addition point and adding a reducing agent to said solution,
passing said solution through a detention chamber to a pH detector and recirculating said solution when the pH thereof downstream of the point where said caustic is added is below a predetermined amount and allowing said liquid to pass through said line when the pH thereof is between predetermined 14 'l" l method recited in claim 13 wherein said liquid is passed from said caustic addition unit through an electrical signal to a proportional controller which transmits the signal to said caustic injection means whereby the rate of addition of caustic to said solution is controlled.

Claims (13)

1. An apparatus for destroying hexavalent chrome comprising, a series circuit including a first circuit element, a chrome source, a first pump, an acid injection means, a first detention and chemical reaction chamber, a pH sensor means, a pH correction means, a means of diverting unacceptable material, and a second detention chamber connected in series with said first detention chamber, said pH sensor being connected to control means on a diversion valve actuated by said pH sensor whereby said material is recirculated to said chrome source when the pH of said material is above a predetermined value, said pH sensor being connected to a proportional controller whereby exactly the amount of acid required is injected to achieve desired pH.
2. The apparatus recited in claim 1 wherein a reducing agent additive unit is connected in series with said first detention unit, a means of detecting oxidation, reduction potential, and a means of correcting amount of reducing agent additive by means of a proportionate controller in order to achieve exactly the correct amount of reduction agent, and said second detention unit is connected in series with said reducing agent additive unit and said sensing and controlling means.
3. The apparatus recited in claim 1 wherein a third series of circuit elements is connected in series with said mentioned elements, said third circuit elements comprising a caustic additive unit, a third detention chamber and a second pH sensing unit, said second pH sensing unit having means thereon for selectively directing material from said third detention chamber to said settling chamber and to recirculate said material to said caustic unit if the pH is below a predetermined level, said second pH sensing unit being connected to a third proportional controller whereby regulation is achieved to inject exactly the correct amount of alkaline material to obtain desired pH.
4. The apparatus recited in claim 2 wherein a third series of circuit elements is connected in series with said mentioned elements, said third circuit elements comprising a caustic additive unit, a third detention chamber and a second pH sensing unit, said second pH sensing unit having means thereon for selectively directing material from said third detention chamber to said settling chamber and to recirculate said material to said caustic unit if the pH is below a predetermined level, said second pH sensing unit being connected to a third proportional controller whereby regulation is achieved to inject exactly the correct amount of alkaline material to obtain desired pH.
5. The apparatus recited in claim 3 wherein a first sight-glass, a second sight-glass, a third sight-glass, and a fourth sight-glass are disposed in said circuit, said first sight-glass being disposed prior to said acid injection point, said second sight-glass being disposed following said first detention chamber, said third sight-glass being disposed in circuit adjacent said second detention chamber, and said fourth sight-glass being disposed adjacent said third detention chamber.
6. The apparatus recited in claim 3 wherein a reducing agent injection means is connected in series with said circuit between said acid addition unit and said third circuit element, and a second retention chamber is provided and an oxidation reduction potential unit is connected to said circuit and means connected to said oxidation reduction potential unit whereby said material will be diverted when the oxidation reduction potential is at a predetermined value.
7. An apparatus for removing a chemical ingredient from a solution comprising, a source of said solution, a settling tank, a plurality of large pipes and a plurality of small pipes connected in series with each other and disposed around said tank, said pipes each being disposed generally in the form of a helix around said tank, means for adding materials to said solution within said large pipes, each said large pipe having a diameter and length sufficient to provide a predetermined detention time during which said solution is in the particular said large pipe, said large pipes having sufficient volume to provide said detention time of a predetermined interval for said liquid flowing in said circuit, said material being adapted to precipitate solid material whereby said solids will settle in said tank.
8. A chromate destruction module comprising a raw waste source, a treated waste sump, a circuit connecting said treated waste sump to said raw waste source, said circuit comprising a first detention means and a second detention means, and a third detention means, means connecting said detention means in series with each other, and said means connecting said detention means in series comprising a first pH sensing device for selectively recirculating said liquid to said raw waste source when said pH is above a predetermined value and connecting said circuit to said second detention means when said pH is below a predetermined value and continuously adjusting volume of pH adjusting additive such that proper pH is obtained, said circuit further comprises means to inject caustic into said circuit between said second detention means and said third detention means and means for recirculating said liquid from said circuit between said third detention means and said second detention means when the pH of said liquid at said treated waste sump has a pH below a predetermined value and transferring said liquid from said circuit between said third detention means and said treated waste sump when the pH of said liquid has a pH above a predetermined value.
9. The circuit recited in claim 8 wherein said circuit comprises a second detention means between said first detention means and said third detention means, and means to inject a reducing agent into said circuit at the end of said first detention means adjacent said second detention means.
10. The circuit recited in claim 9 wherein means is provided to recirculate said material from said second detention means to said chrome source when the ORP thereof is outside of a predetermined range and a means of continuously adjusting the volume of ORP adjustive additive such that stabilized proper oxidation reduction potential is obtained and a means of circulating said material from said second detention means to said third detention means when the oxidation reduction potential thereof is within a predetermined range.
11. The circuit recited in claim 8 wherein said circuit comprises enlarged size pipes connected by reduced size pipes, and said enlarged size pipes comprise a retention chamber.
12. The circuit recited in claim 11 wherein said pipes are connected to a tank and said pipes are arranged generally in the form of a helix around said tank.
13. A process of destroying hexavalent chromium in solution comprising circulating said solution from a source through a series of lines and detention chambers, and adding acid and caustic to said solution in predetermined amounts to said solution comprising, sensing said solution in said lines at a point subsequent to a first detention chamber and recirculating said solution when the pH varies above a predetermined value, passing said solution to an electrical signal means to proportionally control an acid injection pump controlling the acidity of said solution, passing said solution through a reducing agent addition point and adding a reducing agent to said solution, passing said solution through a detention chamber to a pH detector and recirculating said solution when the pH thereof downstream of the point where said caustic is added is below a predetermined amount and allowing said liquid to pass through said line when the pH thereof is between predetermined limits.
US00105163A 1971-01-11 1971-01-11 Process and apparatus for destroying hexavalent chromium in solution Expired - Lifetime US3716485A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10516371A 1971-01-11 1971-01-11

Publications (1)

Publication Number Publication Date
US3716485A true US3716485A (en) 1973-02-13

Family

ID=22304392

Family Applications (1)

Application Number Title Priority Date Filing Date
US00105163A Expired - Lifetime US3716485A (en) 1971-01-11 1971-01-11 Process and apparatus for destroying hexavalent chromium in solution

Country Status (1)

Country Link
US (1) US3716485A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901805A (en) * 1973-10-24 1975-08-26 Dow Badische Co Removing toxic chromium from industrial effluents
US3933642A (en) * 1974-03-18 1976-01-20 Wilson George E Flocculation apparatus
US4033867A (en) * 1974-07-19 1977-07-05 Betz Laboratories, Inc. Chromate reduction in aqueous medium
US4113619A (en) * 1973-03-22 1978-09-12 Arrington Co., Inc. Waste fluid treatment system
US4170554A (en) * 1973-12-26 1979-10-09 United Aircraft Products, Inc. Wastewater treatment method
US4312758A (en) * 1979-06-14 1982-01-26 Commissariat A L'energie Atomique Effluent treatment process
US4324656A (en) * 1978-10-24 1982-04-13 Godar Serge E Installation for the withdrawal and purification treatment of waters and aqueous effluents
US4332687A (en) * 1978-09-21 1982-06-01 Pca International, Inc. Removal of complexed heavy metals from waste effluents
US4642192A (en) * 1984-04-30 1987-02-10 Heskett Don E Method of treating fluids
US4818412A (en) * 1986-04-01 1989-04-04 Betz Laboratories, Inc. Apparatus and process for feeding hypochlorite solution
US4824561A (en) * 1986-12-18 1989-04-25 Basf Corporation Wastewater treatment
EP0409140A1 (en) * 1989-07-17 1991-01-23 Coltec Industries Inc Method for removing hexavalent chromium from water
US5122274A (en) * 1984-04-30 1992-06-16 Kdf Fluid Treatment, Inc. Method of treating fluids
US5269932A (en) * 1984-04-30 1993-12-14 Kdf Fluid Treatment, Inc. Method of treating fluids
US5292435A (en) * 1992-09-28 1994-03-08 Klaus Schwitzgebel Equipment and process for solid waste minimization in chromium and heavy metal removal from groundwater
US5688401A (en) * 1994-03-04 1997-11-18 Eastman Kodak Company Apparatus for removing silver from spent photoprocessing solution
US6607651B2 (en) 1998-09-10 2003-08-19 Cws Parts Company Process and system for treating the discharge stream from an ion exchanger
US20030209449A1 (en) * 2001-01-23 2003-11-13 Cws Parts Company Process and system for treating the discharge stream from an ion exchanger
US20110147283A1 (en) * 2009-12-17 2011-06-23 John Victor Taylor Water treatment for cooling towers and large commercial ponds using a non-chemical residual program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2069024A (en) * 1933-01-05 1937-01-26 Forderanlagen Ernst Heckel Mit Process and apparatus for clarifying coal slurry and the like
US3005554A (en) * 1957-09-25 1961-10-24 Phillips Petroleum Co Measurement and control of b.s. and w. in oil
US3459303A (en) * 1967-05-09 1969-08-05 Yeomans Brothers Co Waste treatment system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2069024A (en) * 1933-01-05 1937-01-26 Forderanlagen Ernst Heckel Mit Process and apparatus for clarifying coal slurry and the like
US3005554A (en) * 1957-09-25 1961-10-24 Phillips Petroleum Co Measurement and control of b.s. and w. in oil
US3459303A (en) * 1967-05-09 1969-08-05 Yeomans Brothers Co Waste treatment system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Pinkerton, H. L., Waste Disposal, Chapt. 11 of Electroplating Engineering Handbook, pp. 285 287, 290, 294 and 301 305 relied on *
Sweglar, C., Plating Solutions, Idustrial Wastes, May 1959, PP. 40 42 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113619A (en) * 1973-03-22 1978-09-12 Arrington Co., Inc. Waste fluid treatment system
US3901805A (en) * 1973-10-24 1975-08-26 Dow Badische Co Removing toxic chromium from industrial effluents
US4170554A (en) * 1973-12-26 1979-10-09 United Aircraft Products, Inc. Wastewater treatment method
US3933642A (en) * 1974-03-18 1976-01-20 Wilson George E Flocculation apparatus
US4033867A (en) * 1974-07-19 1977-07-05 Betz Laboratories, Inc. Chromate reduction in aqueous medium
US4332687A (en) * 1978-09-21 1982-06-01 Pca International, Inc. Removal of complexed heavy metals from waste effluents
US4324656A (en) * 1978-10-24 1982-04-13 Godar Serge E Installation for the withdrawal and purification treatment of waters and aqueous effluents
US4312758A (en) * 1979-06-14 1982-01-26 Commissariat A L'energie Atomique Effluent treatment process
US5122274A (en) * 1984-04-30 1992-06-16 Kdf Fluid Treatment, Inc. Method of treating fluids
US4642192A (en) * 1984-04-30 1987-02-10 Heskett Don E Method of treating fluids
US5269932A (en) * 1984-04-30 1993-12-14 Kdf Fluid Treatment, Inc. Method of treating fluids
US4818412A (en) * 1986-04-01 1989-04-04 Betz Laboratories, Inc. Apparatus and process for feeding hypochlorite solution
US4824561A (en) * 1986-12-18 1989-04-25 Basf Corporation Wastewater treatment
US5000858A (en) * 1989-07-17 1991-03-19 Coltec Industries Inc. Method for removing hexavalent chromium from water
EP0409140A1 (en) * 1989-07-17 1991-01-23 Coltec Industries Inc Method for removing hexavalent chromium from water
US5292435A (en) * 1992-09-28 1994-03-08 Klaus Schwitzgebel Equipment and process for solid waste minimization in chromium and heavy metal removal from groundwater
US5688401A (en) * 1994-03-04 1997-11-18 Eastman Kodak Company Apparatus for removing silver from spent photoprocessing solution
US5695645A (en) * 1994-03-04 1997-12-09 Eastman Kodak Company Methods for removing silver from spent photoprocessing solution
US6607651B2 (en) 1998-09-10 2003-08-19 Cws Parts Company Process and system for treating the discharge stream from an ion exchanger
US20030209449A1 (en) * 2001-01-23 2003-11-13 Cws Parts Company Process and system for treating the discharge stream from an ion exchanger
US20110147283A1 (en) * 2009-12-17 2011-06-23 John Victor Taylor Water treatment for cooling towers and large commercial ponds using a non-chemical residual program

Similar Documents

Publication Publication Date Title
US3716485A (en) Process and apparatus for destroying hexavalent chromium in solution
US4465593A (en) Recovery of metal from waste water by chemical precipitation
CA1178720A (en) Continuous polymer feed system for a waste water treatment plant
US3679053A (en) Batch sewage treatment system
US5000858A (en) Method for removing hexavalent chromium from water
US4349435A (en) Control of anaerobic filter
CN108117238B (en) Full-automatic system for treating industrial wastewater of automobile and control method
JPS60202788A (en) Treating apparatus for waste water containing fluorine and phosphorus
Temmink et al. Biological early warning systems for toxicity based on activated sludge respirometry
CN110642454A (en) Full-automatic pesticide wastewater treatment system and control method
JPS625040B2 (en)
CN105700569A (en) Method to control a process variable
CN111056690A (en) Full-automatic control system for treating wastewater generated in mobile phone production
US3931008A (en) Apparatus for the treatment of liquid wastes
CN111115944A (en) Full-automatic chemical wastewater treatment system and control method
Wilmoth Limestone and lime neutralization of ferrous iron acid mine drainage
CN216337045U (en) Acid effluent disposal system in mine
LU503889B1 (en) A desulfurization wastewater treatment system and process
CN209367995U (en) Integrated decleaning tank
CN111115942A (en) Full-automatic control system for automobile production wastewater treatment
CN111056686A (en) Full-automatic control system for treating automobile production wastewater
Some Reverse osmosis: A cost-effective, versatile water purification tool
CN111056692A (en) Full-automatic control system for treating toy production wastewater
FR2294135A1 (en) Liquids, esp waste waters, treated with reagents - at dose rates automatically regulated to correct changing conditions of continuous flow
Kimbrough et al. Wastewater Treatment Design: NAS Fallon WWTP