US3719025A - Resolving gas mixtures - Google Patents

Resolving gas mixtures Download PDF

Info

Publication number
US3719025A
US3719025A US00196604A US3719025DA US3719025A US 3719025 A US3719025 A US 3719025A US 00196604 A US00196604 A US 00196604A US 3719025D A US3719025D A US 3719025DA US 3719025 A US3719025 A US 3719025A
Authority
US
United States
Prior art keywords
zone
pressure
gas mixture
gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00196604A
Inventor
G Heinze
R Sarnes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Application granted granted Critical
Publication of US3719025A publication Critical patent/US3719025A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • Oxygen-enriched air is required for example for intensifying oxidation reactions in chemical processes, for use in metallurgy, for accelerating fermentative processes and for producing hot flames.
  • the advantage of adsorptive methods for producing oxygen-enriched air is embodied in the simplicity of the processes, which are generally carried out at ambient temperature. Since no high-percentage oxygen or even liquid oxygen is formed in the plants, plants of this kind can be operated in the complete absence of danger and the safety precautions normally taken in liquid air plants are unnecessary. By virtue of the simplicity of the installations, it is also possible to build economically operating units, even down to extremely low capacities.
  • Installations for the adsorptive enrichment of constituents of a gas mixture on the pressure-variation principle function in the pressure range between the inlet or entry pressure p of the gas to be separated, which can be available either at atmospheric pressure or at excess pressure, and the desorption pressure p which is produced by a vacuum pump.
  • the desorption pressure p can also be atmospheric pressure, in other words the gas is allowed to expand to atmospheric pressure in the absence of a vacuum pump. Accordingly, pressure-variation installations can be operated in the excess pressure normal pressure, normal pressure vacuum or excess pressure vacuum ranges. In installations for enriching the oxygen in air, it is preferred to operate by evacuation with a vacuum pump because the N -desorption at atmospheric pressure is inadequate.
  • Installations of this kind can consist of a single adsorption system communicating with a storage vessel, or of two or more parallel adsorption systems functioning in sequence so that a constant stream of oxygen-enriched air is obtained as the product gas.
  • the overflow, evacuation and pressure-buildup cycles follow one another in chronological rotation.
  • Adsorptive enrichment processes for oxygen are based on the principle that different molecular sieve zeolites adsorb nitrogen to a greater extent than they adsorb oxygen. Since only a few percent by weight of nitrogen are adsorbed at ambient temperature, the charging cycles are so short that the nitrogen cannot be thermally desorbed. Accordingly, the zeolite is regenerated by pressure reduction, optionally combined with the application of a purge gas.
  • the air can adequately be predried in adsorbers filled with molecular sieve zeolites which are thermally regenerated after saturation with water.
  • a drying installation of this kind with the associated regenerating apparatus is relatively complex and also has the disadvantage that a considerable, undesirable increase in the temperature of the air stream occurs during the adsorptive removal of water, especially when air at atmospheric pressure is being dried, on account of the heat of adsorption.
  • the separating efficiency of an adsorptive oxygen enrichment installation decreases with increasing temperature.
  • DAS 1,259,857 to dry the air by passing it through low temperature recuperators until its water content amounts to less than 201p mg/Nm (p is the pressure in kg/cm).
  • p is the pressure in kg/cm
  • a process of this kind can only be worked economically in cases where adsorptive oxygen enrichment is to be carried out at low temperatures of, for example, from -60 to -100C.
  • DAS 1,259,844 It has also been proposed (DAS 1,259,844) to have the actual oxygen enrichment installation for drying the air preceded by an independently operating, adsorption installation functioning on the pressure-variation principle which is filled with any drying agent suitable for this purpose, for example activated alumina, and which delivers the dried air to a storage vessel from which the actual separating plant is fed.
  • any drying agent suitable for this purpose for example activated alumina
  • a process of this kind has the disadvantage of high energy consumptionv because, to regenerate the drying towers, some of the previously compressed air has to be continuously vented to the atmosphere.
  • the process also includes intermittently discontinuing passage of the gas mixture through the first and second zones, reducing the pressure in the first zone relative to the second zone by withdrawing gas from said first zone, whereby the gaseous component adsorbed in said second zone is desorbed, passes into said first zone, replaces the adsorbed gas therein and the now desorbed, previously adsorbed gas in the first zone is withdrawn from the first zone, discontinuing the reduction of pressure in said first zone, reinitiating passage of the gas mixture to said first zone and from there into said second zone,.and temporarily delaying the flow of said gas mixture from said first zone into said second zone so that the pressure in said first zone builds up prior to build-up of pressure in said second zone.
  • the process according to the invention obviates the disadvantages of earlier processes and enables the oxygen content of moist air to be enriched without an appreciable energy requirement for drying.
  • the process according to the invention can be carried out as follows for example using zeolites as adsorbents: a zeolite-filled adsorber and an adsorber filled with a drying agent are associated with one another and connected by a pipe provided with a throttle means.
  • afairly high resistance is put up to the gas flowing through the connecting pipe in alternating directions as it flows from the drying agent to the zeolite (adsorption), at least during the period of pressure increase in the zeolite adsorber from the desorption pressure to at most the working pressure, with the throttle means more closed than open.
  • a lower resistance is offered to the gas stream during the period of pressure decrease from the working pressure to the desorption pressure with the throttle means more open than closed.
  • zone I after regeneration of the adsorption system and resumption of the flow of gas to the first zone (zone I) the flow of gas from zone I to the second zone (zone ll) is altogether interrupted, rather than being merely throttled, until the pressure in zone I approaches or reaches its normal working level.
  • predrying of the air and the separation of nitrogen are carried out in a single process stage.
  • the drying agent and the adsorbent for nitrogen are arranged in separate vessels, one dryer and one nitrogen adsorber together form a unit through which the gases to be dried and enriched and, in the opposite direction, the regeneration gases flow chronologically in the same cycle.
  • the moist gas enters the dryer, gives off its moisture to the drying agent and then flows through the separating column.
  • the gas flows through the dryer in the opposite direction from the separating column and carries the moisture previously stored there into the open.
  • the throttle means arranged between the two zones I and II is substantially or completely closed so that the entry pressure p of the air is adjusted relatively quickly in the dryer, while the increase of pressure in the zeolite adsorber, by virtue of the throttle effect, only takes place after some delay.
  • the advantage of this measure is that drying of the entry air, taken as an average over the inflow time, takes place at a higher pressure than in the absence of the throttle means. Since, at the same time as the pressure, the H 0 partial pressure is also increased accordingly, greater charging of the drying agent and hence a shorter adsorption zone are obtained. In addition, the effective rate of flow in the dryer is reduced which also improves the drying effect.
  • the pressure would fall more rapidly in the dryer than in the zeolite adsorber if the throttle means were substantially closed. Basically, this would promote the desorption of water from the drying agent because, in the event of a rapid drop in pressure, an effectively larger quantity of regenerating gas would flow through the drying agent.
  • it is actually the desorption stage, providing it is carried out by evacuation with a vacuum pump, which is the principal energy-consuming stage in oxygen enrichment processes.
  • the flow of gas between the zones II and I is kept as free as possible from interference in the process according to the invention during the desorption stage in order to reduce flow resistances, especially for as long as the vacuum pump is functioning effectively, i.e. during the fall in pressure from the working pressure to the desorption pressure, at least from that point in time at which atmospheric pressure is approximately reached in the drying agent adsorber.
  • FIG. 1 is a schematic illustration of an apparatus in accordance with the invention having a time-controlled throttled valve between first and second zones;
  • FIG. 2 is a similar view of another embodiment with a one-way valve in a by-pass pipe extending between the first and second zones;
  • FIG. 3 is a similar view of still another embodiment of valving to delay pressure build-up in the second zone
  • FIG. 4 is a schematic illustration of a system comprising two banks of adsorption zones arranged in parallel, one undergoing desorption while the other is undergoin g adsorption;
  • FIG. 5 is a schematic illustration of a system with three banks arranged in parallel, one undergoing adsorption, one desorption and the third pressure buildup after desorption and prior to renewed adsorption.
  • variable throttle means can consist of a non-return flap which is installed in a bypass pipe to the connecting pipe as shown in FIG. 2.
  • the reference I denotes the adsorber filled with drying agent while the reference II denotes the zeolite adsorber for the adsorption of N
  • the two adsorbers are connected to the regulating valve 5 through the pipe 3.
  • the regulating valve 5 is fixedly adjusted to the required through-flow cross section.
  • a bypass pipe 4 with the non-return valve 6 leads around the valve 5.
  • the non-return valve When the gas is flowing from I to II (adsorption), the non-return valve is closed, whereas when the gases are flowing in the opposite direction (desorption) it is automatically opened so that the total cross-sectional area of pipe for flow of gas is larger than during adsorption.
  • the throttle means can also consist of an electrically or pneumatically controlled valve 5 which is accommodated in the connecting pipe 3 between the two zones.
  • the valve is actuated, i.e. more or less widely opened, by a timedependent regulating system.
  • the throttle valve 5 is regulated directly as a function of the pressure difference between zones I and II, rather than by a time control system.
  • the throttle valve 5 remains less widely open until the pressure prevailing in thezeolite column II has approached the entry pressure of the air adjusted in the drying column I.
  • This method of regulation has the advantage that any changes in the operating parameters of the installation, such as the throughput, entry pressure, cycle time, pump efficiency, etc., do not necessitate readjustment of the setting of the throttle valve 5.
  • FIG. 3 Another embodiment is shown in FIG. 3.
  • a regulating valve 5 is arranged in the connecting pipe 3 between the two zones I and I], being completely closed during charging and completely open during desorption.
  • An overflow valve is installed in the bypass pipe 4 parallel to this regulating valve, remaining initially closed during charging to produce a particularly rapid build up of pressure in the dryer I. Only after a certain pre-adjusted pressure has been reached does the overflow valve open, allowing the adsorber II to fill up while maintaining the pressure in the dryer I.
  • the combination of one dryer with one nitrogen adsorber according to the invention into a unit which functions in time in the adsorption cycle, and the principle of regulating the flow resistance in the connecting line between both vessels by a throttle means in the manner described above, can be applied to oxygen enrichment plants with 2,3 or more nitrogen adsorbers.
  • the principle of the invention is not confined to a certain construction of pressure-variation systems or to application within certain pressure ranges. It can function generally at pressures of from 5.0 Torr to 15 atmospheres. Regeneration is preferably carried out at reduced pressures of down to 50 Torr, preferably of from 50 to 400 Torr, while gas removal is preferably carried out at atmospheric pressure.
  • the process as a whole and the gas-removal stage in particular can be carried out at elevated working pressure, i.e. up to pressures of 15 and preferably up to 6 atmospheres.
  • regeneration is carried out either by expansion to atmospheric pressure or even at reduced pressure.
  • Drying agents suitable for use in installations implementing the process according to the invention include various adsorbents such as, for example, silica gels, activated alumina and molecular sieve zeolites, providing they can be reversibly charged and discharged under the operating conditions of the pressure-variation system which is also known as cold regeneration.
  • Molecular sieve zeolites suitable for the N adsorbers include natural and synthetic zeolites providing they show sufficiently high selectivity and absorptivity for nitrogen at the working temperatures of the process. It is preferred to use type A zeolites exchanged with divalent cations or faujasite in granular form.
  • Synthetic faujasites and type 5 A zeolites are preferably used for removing carbon dioxide from combustion or cracked gases.
  • Throttle means as shown in FIG. 2 with the nonreturn valves 6a and 6b were installed in a laboratory installation of the kind shown in FIG. 4 comprising two nitrogen adsorbers (Na and IIb) and the associated dryers (la and lb). 7a and 7b are further non-return flaps at the outlet end of the nitrogen adsorbers which close during evacuation of the adsorbers.
  • the magnetic valves 8a, 9a, 8b and 9b are controlled by a time relay.
  • the air to be enriched with oxygen is removed at the valve 10 of a compressed air line.
  • 11 is a water saturator in which the air is saturated with water vapor at room temperature.
  • 12 is a relief pressure valve which throughout the entire system only admits an excess pressure corresponding to the water column in 12.
  • 13 is a non-return valve which prevents the water from rising back from the relief pressure valve 12.
  • the dryers Ia and lb are each filled with 200 g of silica gel in bead form with a moisture indicator, so-called Blaugel.
  • the nitrogen adsorbers Ila and 11b each contain 477 g of a calcium-strontium zeolite A in bead.
  • the vacuum pump 18 is a gas ballast pump with an intake of 1100 liters per hour.
  • a time relay changes the setting of the magnetic valves 8a, 9a, 8b and 9b every 55 seconds.
  • the valves 8a and 9b are opened and the valves 9a and 8b closed.
  • air saturated with moisture flows through pipe 16 and the magnetic valve 8a into the previously evacuated adsorbers Ia and [la until the pressure is equalized.
  • the non-return flap 6a closes, thus causing a fairly rapid build up of pressure in the dryer Ia.
  • the non-return flap 7a opens and oxygenrich dry product gas flows through pipe 14 to a gasometer 15.
  • the adsorbers lb and llb, with the non-return flap 7b closed are evacuated through the magnetic valve 9b and the pipe 17 by the vacuum pump 18 which gives ofi' nitrogenrich moist gas to the atmosphere.
  • the same operations take place with the magnetic valves 8b and 9a opened and the magnetic valves 8a and 9b closed, only the adsorption systems a and b exchanging their functions. For an average rate of flow of the entry air of 420 N-l/hour, 150 N-l/hour of dry product gas with an oxygen content of 43 percent by volume are obtained.
  • the vacuum reached at the end of each switching cycle in the nitrogen adsorber amounts to 105 Torr.
  • the indicator color of the silica gel in the dryers Ia and lb showed that, after a few hours operation, the charging front did not move any further forwards, but remained stationary.
  • the non-retum valves 6a and 6b were forcefully prevented from closing through jamming of the cones, the Ibo-charging zone moved through the dryers which were not adequate for this operational state.
  • the function of the non-return flaps 6a and 6b was restored, the water-charging zone returned again and settled at the original stationary value.
  • EXAMPLE 2 In an industrial installation comprising three adsorber units of the kind shown in FIG. 5, 1 13 liters (90 kg) of silica gel in bead form with so-called Blaugel as the moisture indicator were accommodated in each of the containers 1a, b and c, while 190 liters (125 kg) of calcium zeolite A in head form were accommodated in each of the containers Ila, b and c.
  • the containers la, b and were used to dry the incoming atmospheric air, while the containers Ila, b and c were used for nitrogen adsorption and oxygen enrichment.
  • valves 7a, 7b and 7c at the head of the zeolite containers were non-return valves.
  • the vacuum pump had a delivery of approximately 500 mlh.
  • valve 8b was adjusted with atmospheric air flowing in through pipe 16 and the opened valve 8b from an absolute pressure of approximately to 100 Torr to atmospheric pressure.
  • the valves 5b and 9b were closed during this operation.
  • the overflow valve 6b was also initially closed and, as a result, caused the rapid build up of atmospheric pressure in container lb. After this pressure had been reached valve 6b permitted gas to escape into container llb so that its pressure also rose to atmospheric whereupon valve 5b could be opened for resumption of normal flow during adsorption.
  • the containers la, b and c were provided with one transparent wall. Even after continuous operation for several weeks, it was impossible to detect any local change in the mass-transfer zone, i.e. the zone in which the Blaugel undergoes a change in color to pink, remained stationary.
  • the improvement which comprises intermittently discontinuing passage of the gas mixture through the first and second zones, reducing the pressure in the first zone relative to the second zone by withdrawing gas from said first zone, whereby the gaseous component adsorbed in said second zone is desorbed, passes into said first zone, replaces the adsorbed gas therein and the now desorbed, previously adsorbed gas in the first zone is withdrawn from the first zone, discontinuing the reduction of pressure in said first zone, reinitiating passage of the gas mixture to said first zone and from there into said second zone, and temporarily delaying the flow of said gas mixture from said

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

In the resolution of air containing water vapor by the pressurevariation technique wherein the air is passed successively through first and second separation zones, the water vapor being removed from the air in the first zone and the nitrogen being selectively removed from the balance of the air mixture in the second zone, the air leaving the second zone being enriched in oxygen and improvement which comprises intermittently discontinuing passage of the air the first and second zones, reducing the pressure in the first zone relative to the second zone by withdrawing air from said first zone, whereby the nitrogen adsorbed in said second zone is desorbed, passes into said first zone, replaces the water vapor therein and the now desorbed, previously adsorbed water vapor in the first zone is withdrawn from the first zone, discontinuing the reduction of pressure in said first zone, reinitiating passage of air to said first zone and from there into said second zone, and temporarily delaying the flow of air from said first zone into said second zone so that the pressure in said first zone builds up prior to build-up of pressure in said second zone. The delay of air flow can be due to a complete interruption of flow or a throttling of flow from the first to the second zone. Other gas mixtures may be similarly resolved.

Description

United States Patent [191 Heinze et al.
[ March 6, 1973 RESOLVING GAS MIXTURES [75] Inventors: Gerhard Heinze, Schildgen; Reiner Sarnes, Nellingen, both of Germany [73] Assignees: Bayer Aktiengesellschaft, Leverkusen; J. F. Mahler, Apparate-Und Ofenbau Kommandite-Gesellschaft, Esslingen, Germany 221 Filed: Nov.8,197l
21 Appl.No.: 196,604
[30] Foreign Application Priority Data Nov. 11, 1970 Germany ..P 20 55 425.0
[52] U.S. Cl. ..55/31, 55/58, 55/75 [51 Int. Cl. ..B0ld 53/04 [58] Field of Search ..55/30-32, 58, 74, 55/75, I79, 389
[56] References Cited UNITED STATES PATENTS 3,242,651 3/1966 Arnoldi ..55/3l 3,674,429 7/1972 Collins ..55/3l Primary ExaminerCharles N. Hart Attorney-Burgess, Dinklage & Sprung [57] ABSTRACT In the resolution of air containing water vapor by the pressure-variation technique wherein the air is passed successively through first and second separation zones, the water vapor being removed from the air in the first zone and the nitrogen being selectively removed from the balance of the air mixture in the second zone, the air leaving the second zone being enriched in oxygen and improvement which comprises intermittently discontinuing passage of the air the first and second zones, reducing the pressure in the first zone relative to the second zone by withdrawing air from said first zone, whereby the nitrogen adsorbed in said second zone is desorbed, passes into said first zone, replaces the water vapor therein and the now desorbed, previously adsorbed water vapor in the first zone is withdrawn from the first zone, discontinuing the reduction of pressure in said first zone, reinitiating passage of air to said first zone and from there into said second zone, and temporarily delaying the flow of air from said first zone into said second zone so that the pressure in said first zone builds up prior to buildup of pressure in said second zone. The delay of air flow can be due to a complete interruption of flow or a throttling of flow from the first to the second zone. Other gas mixtures may be similarly resolved.
, RESOLVING GAS MIXTURES The so-called pressure-variation process has recently been introduced into practice for resolving, i.e. drying and separating, gas mixtures. This adsorptive process can generally be used for separating gas mixtures whose components differ from one another in their affinity for adsorption. The pressure-variation process was proposed in particular for the production of inert gases and for dissociating air. In the following, reference is made essentially to the production of oxygen-enriched air because this process is of considerable commercial significance. However, the statements are also applicable to the separation of other gas mixtures containing water vapor.
Oxygen-enriched air is required for example for intensifying oxidation reactions in chemical processes, for use in metallurgy, for accelerating fermentative processes and for producing hot flames. The advantage of adsorptive methods for producing oxygen-enriched air is embodied in the simplicity of the processes, which are generally carried out at ambient temperature. Since no high-percentage oxygen or even liquid oxygen is formed in the plants, plants of this kind can be operated in the complete absence of danger and the safety precautions normally taken in liquid air plants are unnecessary. By virtue of the simplicity of the installations, it is also possible to build economically operating units, even down to extremely low capacities.
Installations for the adsorptive enrichment of constituents of a gas mixture on the pressure-variation principle function in the pressure range between the inlet or entry pressure p of the gas to be separated, which can be available either at atmospheric pressure or at excess pressure, and the desorption pressure p which is produced by a vacuum pump. In the case of installations where the gases enter under excess pressure, the desorption pressure p can also be atmospheric pressure, in other words the gas is allowed to expand to atmospheric pressure in the absence of a vacuum pump. Accordingly, pressure-variation installations can be operated in the excess pressure normal pressure, normal pressure vacuum or excess pressure vacuum ranges. In installations for enriching the oxygen in air, it is preferred to operate by evacuation with a vacuum pump because the N -desorption at atmospheric pressure is inadequate. Installations of this kind can consist of a single adsorption system communicating with a storage vessel, or of two or more parallel adsorption systems functioning in sequence so that a constant stream of oxygen-enriched air is obtained as the product gas. In the case of three units, the overflow, evacuation and pressure-buildup cycles follow one another in chronological rotation.
Adsorptive enrichment processes for oxygen are based on the principle that different molecular sieve zeolites adsorb nitrogen to a greater extent than they adsorb oxygen. Since only a few percent by weight of nitrogen are adsorbed at ambient temperature, the charging cycles are so short that the nitrogen cannot be thermally desorbed. Accordingly, the zeolite is regenerated by pressure reduction, optionally combined with the application of a purge gas.
Molecular sieve zeolites only show an adequate v charging capacity for nitrogen in anhydrous form. In
cases where, as is normally the case, atmospheric air is used for separation, therefore, the adsorbent would gradually become saturated with water vapor so that it could not be used for separation. For this reason, one feature common to all conventional separating processes for adsorptive dissociation of air is that dried air is used. Stringent requirements are imposed on the completeness of drying because the molecular sieve zeolites used for separation are highly effective drying agents and would gradually become saturated with water even from air that has been dried by conventional techniques. For example, the equilibrium load of a calcium zeolite A with a pore width of 5 A in air with a dew point of minus 40C still amounts to approximately 17 g of water per g of anhydrous zeolite at room temperature. Accordingly, predrying of the air represents a difficult problem which hitherto has not been satisfactorily solved. More particularly, the economy of the enrichment process as a whole is largely determined by the predrying stage of the air.
The air can adequately be predried in adsorbers filled with molecular sieve zeolites which are thermally regenerated after saturation with water. Unfortunately, a drying installation of this kind with the associated regenerating apparatus is relatively complex and also has the disadvantage that a considerable, undesirable increase in the temperature of the air stream occurs during the adsorptive removal of water, especially when air at atmospheric pressure is being dried, on account of the heat of adsorption. Unfortunately, the separating efficiency of an adsorptive oxygen enrichment installation decreases with increasing temperature.
For this reason, it has already been proposed (DAS 1,259,857) to dry the air by passing it through low temperature recuperators until its water content amounts to less than 201p mg/Nm (p is the pressure in kg/cm However, a process of this kind can only be worked economically in cases where adsorptive oxygen enrichment is to be carried out at low temperatures of, for example, from -60 to -100C.
It has also been proposed (DAS 1,259,844) to have the actual oxygen enrichment installation for drying the air preceded by an independently operating, adsorption installation functioning on the pressure-variation principle which is filled with any drying agent suitable for this purpose, for example activated alumina, and which delivers the dried air to a storage vessel from which the actual separating plant is fed. Apart from the outlay it involves in terms of apparatus, a process of this kind has the disadvantage of high energy consumptionv because, to regenerate the drying towers, some of the previously compressed air has to be continuously vented to the atmosphere.
In an experiment which has also been described, air at a pressure of 5.3 kg/cm and with water content of from 3000 to 6000 ppm was processed in an oxygenenrichment apparatus on the pressure-variation principle into an oxygen-rich product gas which only contained from 2 to 6 ppm of water. In this case, the adsorber was completely filled with molecular sieve zeolites and the entry zone acted as a drying zone, while the rest of the filling was available for the actual oxygen enrichment process. However, this basically simple arrangement gives only inadequate separation based on the energy consumed, because experience has shown that the water-charging zone in pressure-variation systems has no sharp limitation, but runs along the adsorber in the form of a flat abatement zone and on the other hand zeolites precharged even with only a few percent of water are almost completely ineffective so far as oxygen enrichment is concerned.
Another serious disadvantage of this arrangement is that, in the event of prolonged inoperative periods, the H O-charge of the entry zone is distributed by diffusion throughout the entire filling of the adsorber, making it unsuitable for oxygen enrichment.
It is accordingly an object of the invention to provide a process and apparatus for resolving gas mixtures, which is economical in its energy requirements and simple to carry out.
These and other objects and advantages are realized in accordance with the present invention which relates to the resolution of'a gas mixture containing water vapor and at least two additional gases by the pressurevariation technique wherein the gas mixture is passed successively through first and second separation zones, the water vapor being removed from the gas mixture in the first zone and a more readily adsorbable component being removed from the balance of the gas mixture in the second zone, the gas leaving the second zone being enriched" in the non-adsorbed gaseous component relative to the initial gas mixture. In accordance with the invention the process also includes intermittently discontinuing passage of the gas mixture through the first and second zones, reducing the pressure in the first zone relative to the second zone by withdrawing gas from said first zone, whereby the gaseous component adsorbed in said second zone is desorbed, passes into said first zone, replaces the adsorbed gas therein and the now desorbed, previously adsorbed gas in the first zone is withdrawn from the first zone, discontinuing the reduction of pressure in said first zone, reinitiating passage of the gas mixture to said first zone and from there into said second zone,.and temporarily delaying the flow of said gas mixture from said first zone into said second zone so that the pressure in said first zone builds up prior to build-up of pressure in said second zone.
The process according to the invention obviates the disadvantages of earlier processes and enables the oxygen content of moist air to be enriched without an appreciable energy requirement for drying. The process according to the invention can be carried out as follows for example using zeolites as adsorbents: a zeolite-filled adsorber and an adsorber filled with a drying agent are associated with one another and connected by a pipe provided with a throttle means. In the course of one complete adsorption and desorption cycle, afairly high resistance is put up to the gas flowing through the connecting pipe in alternating directions as it flows from the drying agent to the zeolite (adsorption), at least during the period of pressure increase in the zeolite adsorber from the desorption pressure to at most the working pressure, with the throttle means more closed than open. When the gas flows in the opposite direction from the zeolite to the drying agent (desorption), a lower resistance is offered to the gas stream during the period of pressure decrease from the working pressure to the desorption pressure with the throttle means more open than closed.
In another advantageous embodiment, after regeneration of the adsorption system and resumption of the flow of gas to the first zone (zone I) the flow of gas from zone I to the second zone (zone ll) is altogether interrupted, rather than being merely throttled, until the pressure in zone I approaches or reaches its normal working level.
In the process according to the invention, predrying of the air and the separation of nitrogen are carried out in a single process stage. Although the drying agent and the adsorbent for nitrogen are arranged in separate vessels, one dryer and one nitrogen adsorber together form a unit through which the gases to be dried and enriched and, in the opposite direction, the regeneration gases flow chronologically in the same cycle. During adsorption, the moist gas enters the dryer, gives off its moisture to the drying agent and then flows through the separating column. During desorption, the gas flows through the dryer in the opposite direction from the separating column and carries the moisture previously stored there into the open.
When the moist air flows into the dryer/adsorber combination adjusted beforehand to a low desorption pressure, the throttle means arranged between the two zones I and II is substantially or completely closed so that the entry pressure p of the air is adjusted relatively quickly in the dryer, while the increase of pressure in the zeolite adsorber, by virtue of the throttle effect, only takes place after some delay. The advantage of this measure is that drying of the entry air, taken as an average over the inflow time, takes place at a higher pressure than in the absence of the throttle means. Since, at the same time as the pressure, the H 0 partial pressure is also increased accordingly, greater charging of the drying agent and hence a shorter adsorption zone are obtained. In addition, the effective rate of flow in the dryer is reduced which also improves the drying effect. During desorption, the pressure would fall more rapidly in the dryer than in the zeolite adsorber if the throttle means were substantially closed. Basically, this would promote the desorption of water from the drying agent because, in the event of a rapid drop in pressure, an effectively larger quantity of regenerating gas would flow through the drying agent. On the other hand, it is actually the desorption stage, providing it is carried out by evacuation with a vacuum pump, which is the principal energy-consuming stage in oxygen enrichment processes. In order to use a minimum of energy, therefore, the flow of gas between the zones II and I is kept as free as possible from interference in the process according to the invention during the desorption stage in order to reduce flow resistances, especially for as long as the vacuum pump is functioning effectively, i.e. during the fall in pressure from the working pressure to the desorption pressure, at least from that point in time at which atmospheric pressure is approximately reached in the drying agent adsorber.
The invention will be further described with reference to the accompanying drawings, wherein:
FIG. 1 is a schematic illustration of an apparatus in accordance with the invention having a time-controlled throttled valve between first and second zones;
FIG. 2 is a similar view of another embodiment with a one-way valve in a by-pass pipe extending between the first and second zones;
FIG. 3 is a similar view of still another embodiment of valving to delay pressure build-up in the second zone;
FIG. 4 is a schematic illustration of a system comprising two banks of adsorption zones arranged in parallel, one undergoing desorption while the other is undergoin g adsorption; and
FIG. 5 is a schematic illustration of a system with three banks arranged in parallel, one undergoing adsorption, one desorption and the third pressure buildup after desorption and prior to renewed adsorption.
Referring now more particularly to the drawings, in the simplest case, the variable throttle means can consist of a non-return flap which is installed in a bypass pipe to the connecting pipe as shown in FIG. 2. In the Figure, the reference I denotes the adsorber filled with drying agent while the reference II denotes the zeolite adsorber for the adsorption of N The two adsorbers are connected to the regulating valve 5 through the pipe 3. The regulating valve 5 is fixedly adjusted to the required through-flow cross section. A bypass pipe 4 with the non-return valve 6 leads around the valve 5. When the gas is flowing from I to II (adsorption), the non-return valve is closed, whereas when the gases are flowing in the opposite direction (desorption) it is automatically opened so that the total cross-sectional area of pipe for flow of gas is larger than during adsorption.
As shown in FIG. I, however, the throttle means can also consist of an electrically or pneumatically controlled valve 5 which is accommodated in the connecting pipe 3 between the two zones. In this case, the valve is actuated, i.e. more or less widely opened, by a timedependent regulating system. In a preferred embodiment, the throttle valve 5 is regulated directly as a function of the pressure difference between zones I and II, rather than by a time control system. When the air flow into the previously evacuated vessel in the direction from I to II, the throttle valve 5 remains less widely open until the pressure prevailing in thezeolite column II has approached the entry pressure of the air adjusted in the drying column I. This method of regulation has the advantage that any changes in the operating parameters of the installation, such as the throughput, entry pressure, cycle time, pump efficiency, etc., do not necessitate readjustment of the setting of the throttle valve 5.
Another embodiment is shown in FIG. 3. A regulating valve 5 is arranged in the connecting pipe 3 between the two zones I and I], being completely closed during charging and completely open during desorption. An overflow valve is installed in the bypass pipe 4 parallel to this regulating valve, remaining initially closed during charging to produce a particularly rapid build up of pressure in the dryer I. Only after a certain pre-adjusted pressure has been reached does the overflow valve open, allowing the adsorber II to fill up while maintaining the pressure in the dryer I.
The combination of one dryer with one nitrogen adsorber according to the invention into a unit which functions in time in the adsorption cycle, and the principle of regulating the flow resistance in the connecting line between both vessels by a throttle means in the manner described above, can be applied to oxygen enrichment plants with 2,3 or more nitrogen adsorbers. The principle of the invention is not confined to a certain construction of pressure-variation systems or to application within certain pressure ranges. It can function generally at pressures of from 5.0 Torr to 15 atmospheres. Regeneration is preferably carried out at reduced pressures of down to 50 Torr, preferably of from 50 to 400 Torr, while gas removal is preferably carried out at atmospheric pressure. In cases where gas mixtures under elevant pressure are available or in cases where product gases under elevated pressure are required, the process as a whole and the gas-removal stage in particular, can be carried out at elevated working pressure, i.e. up to pressures of 15 and preferably up to 6 atmospheres. In this case, regeneration is carried out either by expansion to atmospheric pressure or even at reduced pressure.
Drying agents suitable for use in installations implementing the process according to the invention include various adsorbents such as, for example, silica gels, activated alumina and molecular sieve zeolites, providing they can be reversibly charged and discharged under the operating conditions of the pressure-variation system which is also known as cold regeneration. Molecular sieve zeolites suitable for the N adsorbers include natural and synthetic zeolites providing they show sufficiently high selectivity and absorptivity for nitrogen at the working temperatures of the process. It is preferred to use type A zeolites exchanged with divalent cations or faujasite in granular form.
Synthetic faujasites and type 5 A zeolites are preferably used for removing carbon dioxide from combustion or cracked gases.
The process according to the invention is illustrated by the following examples:
EXAMPLE 1 Throttle means as shown in FIG. 2 with the nonreturn valves 6a and 6b were installed in a laboratory installation of the kind shown in FIG. 4 comprising two nitrogen adsorbers (Na and IIb) and the associated dryers (la and lb). 7a and 7b are further non-return flaps at the outlet end of the nitrogen adsorbers which close during evacuation of the adsorbers. The magnetic valves 8a, 9a, 8b and 9b are controlled by a time relay. The air to be enriched with oxygen is removed at the valve 10 of a compressed air line. 11 is a water saturator in which the air is saturated with water vapor at room temperature. 12 is a relief pressure valve which throughout the entire system only admits an excess pressure corresponding to the water column in 12. 13 is a non-return valve which prevents the water from rising back from the relief pressure valve 12.
The dryers Ia and lb are each filled with 200 g of silica gel in bead form with a moisture indicator, so-called Blaugel. The nitrogen adsorbers Ila and 11b each contain 477 g of a calcium-strontium zeolite A in bead.
form. The vacuum pump 18 is a gas ballast pump with an intake of 1100 liters per hour. A time relay changes the setting of the magnetic valves 8a, 9a, 8b and 9b every 55 seconds. In the first switching cycle, the valves 8a and 9b are opened and the valves 9a and 8b closed. As a result, air saturated with moisture flows through pipe 16 and the magnetic valve 8a into the previously evacuated adsorbers Ia and [la until the pressure is equalized. At the same time, the non-return flap 6a closes, thus causing a fairly rapid build up of pressure in the dryer Ia.
After atmospheric pressure has been reached in the adsorber Ila, the non-return flap 7a opens and oxygenrich dry product gas flows through pipe 14 to a gasometer 15. During the same switching cycle, the adsorbers lb and llb, with the non-return flap 7b closed, are evacuated through the magnetic valve 9b and the pipe 17 by the vacuum pump 18 which gives ofi' nitrogenrich moist gas to the atmosphere. In the second switching cycle, the same operations take place with the magnetic valves 8b and 9a opened and the magnetic valves 8a and 9b closed, only the adsorption systems a and b exchanging their functions. For an average rate of flow of the entry air of 420 N-l/hour, 150 N-l/hour of dry product gas with an oxygen content of 43 percent by volume are obtained.
The vacuum reached at the end of each switching cycle in the nitrogen adsorber amounts to 105 Torr.
Despite complete saturation of the entry air with water, the indicator color of the silica gel in the dryers Ia and lb showed that, after a few hours operation, the charging front did not move any further forwards, but remained stationary. When the non-retum valves 6a and 6b were forcefully prevented from closing through jamming of the cones, the Ibo-charging zone moved through the dryers which were not adequate for this operational state. When the function of the non-return flaps 6a and 6b was restored, the water-charging zone returned again and settled at the original stationary value.
EXAMPLE 2 In an industrial installation comprising three adsorber units of the kind shown in FIG. 5, 1 13 liters (90 kg) of silica gel in bead form with so-called Blaugel as the moisture indicator were accommodated in each of the containers 1a, b and c, while 190 liters (125 kg) of calcium zeolite A in head form were accommodated in each of the containers Ila, b and c. The containers la, b and were used to dry the incoming atmospheric air, while the containers Ila, b and c were used for nitrogen adsorption and oxygen enrichment. As in FIG. 3, one
' regulating valve a, b and c and one overflow valve 60,
b and c was arranged between each drying-agent container and the associated zeolite container. The valves 7a, 7b and 7c at the head of the zeolite containers were non-return valves. At the beginning of the cycle, the
pair of containers Ia and Ila were simultaneously evacuated through the opened valves 5a and 9a, the pipe 17 and the vacuum pump -l8. Accordingly, the reduction in pressure in the containers Ia and Ila took place in the same way. The vacuum pump had a delivery of approximately 500 mlh.
During the same period, the containers lb and llb which had been previously evacuated were adjusted with atmospheric air flowing in through pipe 16 and the opened valve 8b from an absolute pressure of approximately to 100 Torr to atmospheric pressure. The valves 5b and 9b were closed during this operation. The overflow valve 6b was also initially closed and, as a result, caused the rapid build up of atmospheric pressure in container lb. After this pressure had been reached valve 6b permitted gas to escape into container llb so that its pressure also rose to atmospheric whereupon valve 5b could be opened for resumption of normal flow during adsorption.
Again during the same period, atmospheric air flowed through pipe 16 and the opened valve 80 into the container Ic and further through the opened overflow valve 60 into the zeolite container [I0 and further through the opened non-retum valve and the pipe 14 into the collecting vessel 15.
The operations described above were then repeated with the difference that the group of containers 0 were evacuated, the group of containers 0 adjusted to atmospheric pressure by the admission of air and the group of containers b traversed by air in order to give off oxygen-enriched gas to the collecting vessel 15, etc.
Approximately 22 Nm /hr of product gas with an average oxygen content of 60 percent by volume flowed constantly through the pipe 14 into the collecting vessel 15.
In order to monitor drying, the containers la, b and c were provided with one transparent wall. Even after continuous operation for several weeks, it was impossible to detect any local change in the mass-transfer zone, i.e. the zone in which the Blaugel undergoes a change in color to pink, remained stationary.
It will be appreciated that the instant specification and examples are set forth by way of illustration and not limitation, and that various modifications and changes may be made without departing from the spirit and scope of the present invention.
What is claimed is:
I. In the resolution of a gas mixture containing water vapor and at least two additional gases by the pressurevariation technique wherein the gas mixture is passed successively through first and second separation zones, the water vapor being removed from the gas mixture in the first zone and a more readily adsorbable component being removed from the balance of the gas mixture in the second zone, the gas leaving the second zone being enriched in the non-adsorbed gaseous component relative to the initial gas mixture, the improvement which comprises intermittently discontinuing passage of the gas mixture through the first and second zones, reducing the pressure in the first zone relative to the second zone by withdrawing gas from said first zone, whereby the gaseous component adsorbed in said second zone is desorbed, passes into said first zone, replaces the adsorbed gas therein and the now desorbed, previously adsorbed gas in the first zone is withdrawn from the first zone, discontinuing the reduction of pressure in said first zone, reinitiating passage of the gas mixture to said first zone and from there into said second zone, and temporarily delaying the flow of said gas mixture from said first zone into said second zone so that the pressure in said first zone builds up prior to build-up of pressure in said second zone.
2. The process according to claim 1, wherein the temporary delay of flow of said gas mixture from said first zone to said second zone is effected by sealing off said zones from one another until the pressure in said first zone approaches its normal working level.
3. The process according to claim 1, wherein the temporary delay of flow in said gas mixture from said first zone to said second zone is effected by throttling the flow of gas from said first zone to said second zone until the pressure in said first zone approaches its normal working level.
4. The process according to claim 1, wherein the gas mixture is supplied to said first zone during adsorption at a positive pressure up to about 15 atmospheres, the gas desorbed in said first zone being withdrawn therefrom at about atmospheric pressure.
5. The process according to claim 1, wherein the gas mixture is supplied to said first zone during adsorption at about atmospheric pressure, the gas desorbed in said first zone being withdrawn therefrom by a vacuum.
6. The process according to claim 1, wherein the gas mixture is supplied to said first zone during adsorption at a positive pressure up to about 15 atmospheres, the gas desorbed in said first zone being withdrawn therefrom by a vacuum.
7. The process according to claim 1, wherein the temporary delay of flow of said gas mixture from said first zone to said second zone is discontinued when the pressure in said first zone reaches a predetermined level.
8. The process according to claim 1, wherein the temporary delay of flow of said gas mixture from said first zone to said second zone is discontinued after a predetermined time interval.
9. The process according to claim 1, wherein said gas mixture is air.
10. The process according to claim 1, wherein said gas mixture contains carbon dioxide and a selective adsorbent therefor is located in said second zone for its removal.

Claims (9)

1. In the resolution of a gas mixture containing wAter vapor and at least two additional gases by the pressure-variation technique wherein the gas mixture is passed successively through first and second separation zones, the water vapor being removed from the gas mixture in the first zone and a more readily adsorbable component being removed from the balance of the gas mixture in the second zone, the gas leaving the second zone being enriched in the non-adsorbed gaseous component relative to the initial gas mixture, the improvement which comprises intermittently discontinuing passage of the gas mixture through the first and second zones, reducing the pressure in the first zone relative to the second zone by withdrawing gas from said first zone, whereby the gaseous component adsorbed in said second zone is desorbed, passes into said first zone, replaces the adsorbed gas therein and the now desorbed, previously adsorbed gas in the first zone is withdrawn from the first zone, discontinuing the reduction of pressure in said first zone, reinitiating passage of the gas mixture to said first zone and from there into said second zone, and temporarily delaying the flow of said gas mixture from said first zone into said second zone so that the pressure in said first zone builds up prior to build-up of pressure in said second zone.
2. The process according to claim 1, wherein the temporary delay of flow of said gas mixture from said first zone to said second zone is effected by sealing off said zones from one another until the pressure in said first zone approaches its normal working level.
3. The process according to claim 1, wherein the temporary delay of flow in said gas mixture from said first zone to said second zone is effected by throttling the flow of gas from said first zone to said second zone until the pressure in said first zone approaches its normal working level.
4. The process according to claim 1, wherein the gas mixture is supplied to said first zone during adsorption at a positive pressure up to about 15 atmospheres, the gas desorbed in said first zone being withdrawn therefrom at about atmospheric pressure.
5. The process according to claim 1, wherein the gas mixture is supplied to said first zone during adsorption at about atmospheric pressure, the gas desorbed in said first zone being withdrawn therefrom by a vacuum.
6. The process according to claim 1, wherein the gas mixture is supplied to said first zone during adsorption at a positive pressure up to about 15 atmospheres, the gas desorbed in said first zone being withdrawn therefrom by a vacuum.
7. The process according to claim 1, wherein the temporary delay of flow of said gas mixture from said first zone to said second zone is discontinued when the pressure in said first zone reaches a predetermined level.
8. The process according to claim 1, wherein the temporary delay of flow of said gas mixture from said first zone to said second zone is discontinued after a predetermined time interval.
9. The process according to claim 1, wherein said gas mixture is air.
US00196604A 1970-11-11 1971-11-08 Resolving gas mixtures Expired - Lifetime US3719025A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2055425A DE2055425B2 (en) 1970-11-11 1970-11-11 Adsorption process for the decomposition of gas mixtures

Publications (1)

Publication Number Publication Date
US3719025A true US3719025A (en) 1973-03-06

Family

ID=5787769

Family Applications (1)

Application Number Title Priority Date Filing Date
US00196604A Expired - Lifetime US3719025A (en) 1970-11-11 1971-11-08 Resolving gas mixtures

Country Status (8)

Country Link
US (1) US3719025A (en)
JP (1) JPS5117146B1 (en)
BE (1) BE775175A (en)
DE (1) DE2055425B2 (en)
FR (1) FR2114554A5 (en)
GB (1) GB1375728A (en)
IT (1) IT944819B (en)
NL (1) NL172027C (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3796022A (en) * 1971-11-30 1974-03-12 Air Liquide Method of and installation for the fractionation of a gaseous mixture by adsorption
US3866428A (en) * 1971-05-03 1975-02-18 Air Liquide Cryogenic separation of an air feed using multi-zone adsorption units
DE2443072A1 (en) * 1973-12-12 1975-07-03 Air Prod & Chem PROCEDURE FOR OXYGEN ENRICHMENT
US3923477A (en) * 1973-10-24 1975-12-02 British Oxygen Co Ltd Adsorption system
US4000990A (en) * 1975-04-16 1977-01-04 Nrg Nufuel Company Adsorption process
US4065272A (en) * 1975-01-02 1977-12-27 Boc International Limited Oxygen-enriched air
JPS5454989A (en) * 1977-10-07 1979-05-01 Nippon Denshi Zairiyou Kk Method and apparatus for enriching oxygen
US4190424A (en) * 1975-07-17 1980-02-26 Boc Limited Gas separation
US4222750A (en) * 1976-08-16 1980-09-16 Champion Spark Plug Company Oxygen enrichment system for medical use
US4299596A (en) * 1976-02-04 1981-11-10 Linde Aktiengesellschaft Adsorption process for the separation of gaseous mixtures
US4321069A (en) * 1979-10-26 1982-03-23 Ritter Robert A Multiple vessel cascade gas enrichment system
US4326858A (en) * 1977-06-01 1982-04-27 Linde Aktiengesellschaft Pressure buildup technique in pressure swing adsorption process
US4331455A (en) * 1979-05-11 1982-05-25 Osaka Oxygen Industries, Ltd. Method of producing oxygen rich gas utilizing an oxygen concentrator having good start-up characteristics
US4406675A (en) * 1981-12-10 1983-09-27 Union Carbide Corporation RPSA Process
US4432774A (en) * 1977-06-30 1984-02-21 Bergwerksverband Gmbh Adsorption-desorption process for the recovery of hydrogen
US4449990A (en) * 1982-09-10 1984-05-22 Invacare Respiratory Corp. Method and apparatus for fractioning oxygen
US4477264A (en) * 1983-03-30 1984-10-16 Air Products And Chemicals, Inc. Pressure swing adsorption process for a medical oxygen generator for home use
US4478714A (en) * 1983-01-10 1984-10-23 Ciba-Geigy Ag Pressurized filtration system
US4491459A (en) * 1983-05-04 1985-01-01 Pinkerton Charles J Portable oxygen enrichment and concentration system
US4552571A (en) * 1984-04-05 1985-11-12 Vbm Corporation Oxygen generator with two compressor stages
US4627856A (en) * 1983-12-15 1986-12-09 Linde Aktiengesellschaft Process for the adsorptive separation of steam and a less readily adsorbable component from a gaseous stream
US4636225A (en) * 1984-03-23 1987-01-13 Linde Aktiengesellschaft Drying of gases with multi-layer adsorption beds
US4711645A (en) * 1986-02-10 1987-12-08 Air Products And Chemicals, Inc. Removal of water and carbon dioxide from atmospheric air
US4756723A (en) * 1987-03-04 1988-07-12 Air Products And Chemicals, Inc. Preparation of high purity oxygen
US4784672A (en) * 1987-10-08 1988-11-15 Air Products And Chemicals, Inc. Regeneration of adsorbents
US4812147A (en) * 1985-11-08 1989-03-14 Union Carbide Corporation Multicomponent adsorption process
US4822383A (en) * 1987-04-30 1989-04-18 United Technologies Corporation Method and apparatus for removing carbon dioxide from air
US4950311A (en) * 1988-03-07 1990-08-21 White Jr Donald H Heaterless adsorption system for combined purification and fractionation of air
US4973339A (en) * 1989-10-18 1990-11-27 Airsep Corporation Pressure swing absorption process and system for gas separation
US5061455A (en) * 1987-04-30 1991-10-29 United Technologies Corporation Apparatus for removing carbon dioxide from air
US5531809A (en) * 1994-09-14 1996-07-02 Air Products And Chemicals, Inc. Pretreatment layer for CO-VSA
US6158580A (en) * 1999-08-27 2000-12-12 Kenneth Davis Container having a humidity control system
US20050000428A1 (en) * 2003-05-16 2005-01-06 Shero Eric J. Method and apparatus for vaporizing and delivering reactant
US20100266765A1 (en) * 2009-04-21 2010-10-21 White Carl L Method and apparatus for growing a thin film onto a substrate
US20110053383A1 (en) * 2009-08-26 2011-03-03 Asm America, Inc. High concentration water pulses for atomic layer deposition
EP2563496A1 (en) * 2010-03-29 2013-03-06 Wearair Oxygen, Inc. Contaminant mitigation in psa air fractionation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1439614A (en) * 1972-08-23 1976-06-16 Cjb Developments Ltd Selective removal of constituents from fluids
DE3122701A1 (en) * 1981-06-06 1982-12-23 Bergwerksverband Gmbh, 4300 Essen METHOD FOR SEPARATING GAS MIXTURES BY MEANS OF PRESSURE CHANGE TECHNOLOGY
JP3677086B2 (en) * 1995-06-30 2005-07-27 ペルメレック電極株式会社 Electrolysis method
FR3023730B1 (en) * 2014-07-16 2020-06-12 Nitrocraft DEVICE FOR PURIFYING A GASEOUS MIXTURE, GENERATOR AND METHOD THEREOF

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242651A (en) * 1961-04-24 1966-03-29 United Aircraft Corp Purification system with equalizing valve
US3674429A (en) * 1971-01-06 1972-07-04 Union Carbide Corp Adsorption process for water and nitrogen oxides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL288999A (en) * 1962-02-26
DE1519968C3 (en) * 1966-12-08 1975-08-21 Bergwerksverband Gmbh, 4300 Essen Process for the separation of oxygen-nitrogen mixtures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242651A (en) * 1961-04-24 1966-03-29 United Aircraft Corp Purification system with equalizing valve
US3674429A (en) * 1971-01-06 1972-07-04 Union Carbide Corp Adsorption process for water and nitrogen oxides

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866428A (en) * 1971-05-03 1975-02-18 Air Liquide Cryogenic separation of an air feed using multi-zone adsorption units
US3796022A (en) * 1971-11-30 1974-03-12 Air Liquide Method of and installation for the fractionation of a gaseous mixture by adsorption
US3923477A (en) * 1973-10-24 1975-12-02 British Oxygen Co Ltd Adsorption system
DE2443072A1 (en) * 1973-12-12 1975-07-03 Air Prod & Chem PROCEDURE FOR OXYGEN ENRICHMENT
US3957463A (en) * 1973-12-12 1976-05-18 Air Products And Chemicals, Inc. Oxygen enrichment process
US4065272A (en) * 1975-01-02 1977-12-27 Boc International Limited Oxygen-enriched air
US4000990A (en) * 1975-04-16 1977-01-04 Nrg Nufuel Company Adsorption process
US4190424A (en) * 1975-07-17 1980-02-26 Boc Limited Gas separation
US4299596A (en) * 1976-02-04 1981-11-10 Linde Aktiengesellschaft Adsorption process for the separation of gaseous mixtures
US4222750A (en) * 1976-08-16 1980-09-16 Champion Spark Plug Company Oxygen enrichment system for medical use
US4326858A (en) * 1977-06-01 1982-04-27 Linde Aktiengesellschaft Pressure buildup technique in pressure swing adsorption process
US4432774A (en) * 1977-06-30 1984-02-21 Bergwerksverband Gmbh Adsorption-desorption process for the recovery of hydrogen
JPS5454989A (en) * 1977-10-07 1979-05-01 Nippon Denshi Zairiyou Kk Method and apparatus for enriching oxygen
US4331455A (en) * 1979-05-11 1982-05-25 Osaka Oxygen Industries, Ltd. Method of producing oxygen rich gas utilizing an oxygen concentrator having good start-up characteristics
US4321069A (en) * 1979-10-26 1982-03-23 Ritter Robert A Multiple vessel cascade gas enrichment system
US4406675A (en) * 1981-12-10 1983-09-27 Union Carbide Corporation RPSA Process
US4449990A (en) * 1982-09-10 1984-05-22 Invacare Respiratory Corp. Method and apparatus for fractioning oxygen
US4478714A (en) * 1983-01-10 1984-10-23 Ciba-Geigy Ag Pressurized filtration system
US4477264A (en) * 1983-03-30 1984-10-16 Air Products And Chemicals, Inc. Pressure swing adsorption process for a medical oxygen generator for home use
US4491459A (en) * 1983-05-04 1985-01-01 Pinkerton Charles J Portable oxygen enrichment and concentration system
US4627856A (en) * 1983-12-15 1986-12-09 Linde Aktiengesellschaft Process for the adsorptive separation of steam and a less readily adsorbable component from a gaseous stream
US4636225A (en) * 1984-03-23 1987-01-13 Linde Aktiengesellschaft Drying of gases with multi-layer adsorption beds
US4552571A (en) * 1984-04-05 1985-11-12 Vbm Corporation Oxygen generator with two compressor stages
US4812147A (en) * 1985-11-08 1989-03-14 Union Carbide Corporation Multicomponent adsorption process
US4711645A (en) * 1986-02-10 1987-12-08 Air Products And Chemicals, Inc. Removal of water and carbon dioxide from atmospheric air
US4756723A (en) * 1987-03-04 1988-07-12 Air Products And Chemicals, Inc. Preparation of high purity oxygen
US5061455A (en) * 1987-04-30 1991-10-29 United Technologies Corporation Apparatus for removing carbon dioxide from air
US4822383A (en) * 1987-04-30 1989-04-18 United Technologies Corporation Method and apparatus for removing carbon dioxide from air
US4784672A (en) * 1987-10-08 1988-11-15 Air Products And Chemicals, Inc. Regeneration of adsorbents
US4950311A (en) * 1988-03-07 1990-08-21 White Jr Donald H Heaterless adsorption system for combined purification and fractionation of air
US4973339A (en) * 1989-10-18 1990-11-27 Airsep Corporation Pressure swing absorption process and system for gas separation
US5531809A (en) * 1994-09-14 1996-07-02 Air Products And Chemicals, Inc. Pretreatment layer for CO-VSA
US6158580A (en) * 1999-08-27 2000-12-12 Kenneth Davis Container having a humidity control system
US20050000428A1 (en) * 2003-05-16 2005-01-06 Shero Eric J. Method and apparatus for vaporizing and delivering reactant
US20100266765A1 (en) * 2009-04-21 2010-10-21 White Carl L Method and apparatus for growing a thin film onto a substrate
US20110053383A1 (en) * 2009-08-26 2011-03-03 Asm America, Inc. High concentration water pulses for atomic layer deposition
US9117773B2 (en) 2009-08-26 2015-08-25 Asm America, Inc. High concentration water pulses for atomic layer deposition
EP2563496A1 (en) * 2010-03-29 2013-03-06 Wearair Oxygen, Inc. Contaminant mitigation in psa air fractionation
EP2563496A4 (en) * 2010-03-29 2014-04-30 Wearair Oxygen Inc Contaminant mitigation in psa air fractionation

Also Published As

Publication number Publication date
GB1375728A (en) 1974-11-27
FR2114554A5 (en) 1972-06-30
NL172027C (en) 1983-07-01
NL7115352A (en) 1972-05-15
IT944819B (en) 1973-04-20
JPS5117146B1 (en) 1976-05-31
DE2055425B2 (en) 1979-09-06
DE2055425A1 (en) 1972-05-18
BE775175A (en) 1972-05-10
NL172027B (en) 1983-02-01

Similar Documents

Publication Publication Date Title
US3719025A (en) Resolving gas mixtures
US4950311A (en) Heaterless adsorption system for combined purification and fractionation of air
US5755857A (en) Purification apparatus
EP0008619B1 (en) Rapid adiabatic pressure swing adsorption process
US3237377A (en) Oxygen concentration process
US5232474A (en) Pre-purification of air for separation
US3957463A (en) Oxygen enrichment process
US4539019A (en) Control system for air fractionation by selective adsorption
US4026680A (en) Air separation by adsorption
FI85953B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN SYREPRODUKT MED EN RENHETSGRAD AV 95% FRAON OMGIVANDE LUFT.
KR960004604B1 (en) Duplex absorption process
US5176722A (en) Pressure swing adsorption method for separating gaseous mixtures
US3973931A (en) Air separation by adsorption
US4685939A (en) Production of oxygen enriched air
US3221476A (en) Adsorption-desorption method
JPH11518A (en) Temperature swing adsorption method
JPH0587286B2 (en)
JP2000317244A (en) Method and device for purifying gas
US3498025A (en) Adsorption process and apparatus
JPH04225813A (en) Pressure swing adsorption process for removing impurity composed of water vapor and carbon dioxide from air
US10427090B2 (en) Control of swing adsorption process cycle time with ambient CO2 monitoring
US3355859A (en) Selective adsorption of gases at low temperature
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
JP2004148315A (en) Process and device for removing nitrous oxide from feed gas stream
CA1322972C (en) Heaterless adsorption system for combined purification and fractionation of air