Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3729784 A
Tipo de publicaciónConcesión
Fecha de publicación1 May 1973
Fecha de presentación19 May 1971
Fecha de prioridad7 Oct 1969
También publicado comoUS3613186
Número de publicaciónUS 3729784 A, US 3729784A, US-A-3729784, US3729784 A, US3729784A
InventoresC Mazzone, H Pike
Cesionario originalStevens & Co Inc J P
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Process for producing sculptured effects on thermoplastic pile fabrics
US 3729784 A
Imágenes(4)
Previous page
Next page
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent 1191 Mazzone et al.

[ PROCESS FOR PRODUCING FOREIGN PATENTS 0R APPLICATIONS SCULPTURED EFFECTS ON 127,163 3/1948 Australia ..26/2 R THERMOPLASTIC PILE FABRICS 1,158,033 11/1963 Gennany.... ..26/2 R [75] Inventors: Charles P. Mazzone, Doverf Herbert J. Pike, Martinsville, Primary Examiner-Robert R. Mackey both fNJ, Attorney-Robert Ames Norton, Michael T. Frimer and Saul Leitner [73] Asslgneez J. P. Stevens & Co., Inc., New

York, 57 ABSTRACT [22] Filed: May'1'9,"1971 i A process is described for moving a series of jets in [21] AppL NOJ 144,957 two directions over a fabric, which may also be moving, or in one direction if the fabric motion provides Related US. Application Data the other, or the jets may be stationary and the fabric moving in one or more directions. The jets are in a [62] 1969 heater manifold and individually supplied by connectors having individual micrometric valve adjustments, 52 us. 01. ..26/2 R the heater head being adiacem the Jets and the and 51 1111. c1. ..D06c 23/00, D06c 29/00 valves being mated where are 58 Field 6: Search ..26/2 R, 69 R; 69/28; high temperature Tilting the j heads is also 72 p described so that the jets may direct hot fluid, such hot air, at an angle which is adjustable from 90. The [56] Reference Cit d blast of hot fluid from the heated jets softens the nap or pile of the fabric and also bends it down, so that a UNITED STATES PATENTS sculptured effect is produced which resists numerous 1,811,750 6/1931 Furgang ..69/28 x Washings- Typical fabrics are mapped acetates and 2 035 0 3 9 Dickie et alm other synthetic fabrics with thermoplastic threads. 2,163,674 6/1939 Gentle 2,338,792 1/1944 Whitehead 6 Claims 6 Drawing Figures 3,152,381 10/1964 Priester,.lr. et al... 3,256,581 6/1966 Thal et al ..26/2 R FABR/C 1451 May 1, 1973 Patented May 1, 1973 3,729,784

4 Sheets-Sheet 1 INVENTOR. CHARL E5 P. MAZZO/VE BYHERBERT J. PIKE Patented Ma 1, 1973 3,729,784

4 Sheets-Shae. 2

| l I l Z: 27 i I ll INVENTOR. J 15 4 CHARLES R MAZZO/VE BY HERBERT J PIKE ATTORNEY Patented May 1, 1973 3,729,784

4 Sheets-Sheet 5 i i i- I! INVENTOR. CHARLES R MAZZO/VE' $5 B HERBERT J. PIKE A r romvn Patented May 1, 1973 3,729,784

4 Sheets-Sheet 4 INVENTOR.

A TTORNEY PROCESS FOR PRODUCING SCULPTURED EFFECTS ON THERMOPLASTIC PILE FABRICS RELATED APPLICATION BACKGROUND OF THE INVENTION There is a considerable demand for pile or napped fabrics which have sculptured designs. In the past this has often been done by cutting nap or pile threads to form depressed lines or valleys. Very beautiful designs can be produced, but the cost is high and the machinery required very expensive and complicated. This high cost has seriously restricted the field of use of such sculptured fabrics.

Numerous pile or napped fabrics are made with threads of synthetic materials which are thermoplastics, such as cellulose acetate, polyesters, polyamides, and the like. It was proposed to emboss designs with heated gravure rolls but the procedure has presented a number of practical limitations. The rolls are very expensive, and of course a separate roll is needed for each particular design. Other and even more serious limitations are imposed by the fact that there is a direct contact of the metal roll with the threads of the pile fabric and this has required very critical temperature control, as if the roll is too hot, ends of threads can melt instead of soften, and stick to the roll. This has necessitated as a practical matter using temperatures sufficiently low so that this does not occur. However, when this is done, the sculptured designs may not be permanent, particularly with acetate fabrics, and disappear after one or a small number of washings and have never been practical with napped fabrics in which the nap is brushed, resulting in breaking of the ends of the threads, and practical sculptured designs in acetates, such as triacetate, have not been achieved. Where a fabric is to resist a number of washings, for example five or more, the gravure roll embossing process has not been practically successful.

An interesting apparatus has been proposed and is described in the Thal et al. U.S. Pat. No., 3,256,581, of June 21, 1966. This apparatus involves a combustion chamber in which fuel and air is burned to produce hot gases which are then manifolded and led through individual flexible pipes to individual jets. The jets can be moved along or across a fabric and can slide on rods being guided by the jets moving in slots of a metal guide. The shape of the slots of course causes the jets to slide sideways on their rods where the slots are curved. It is possible to use the Thal et a1 device to produce sculptured pile fabrics without touching the fabric with hot metal as in the hot roll process described above. However, in certain respects the Thal et al. device has given rise to a number of problems, with the solution of which the present invention deals. When hot gaseous jets are used, it is essential that an exact and precise control of temperature and gas flow to each jet be maintained, because, contrary to an engraved roll, where there is a firm metal design pressing intoa pile fabric, the threads have to be softened and blown down by contact with the hot gas blasts from the jets. This precision of control is very difficult to achieve in a Thal et al device and practically impossible to maintain exactly uniform. The combustion of fuel in the burning chamber of Thal et al. produces gases the exact temperature of which is difficult to control. The problem is made more difficult by the fact that each jet receives the hot gases through relatively long, flexible pipes or tubes, which are quite long and introduce an amount of cooling which in practice will result in variation in temperature for different jets during operation.

An equally serious problem raised by the Thal et al. device is an exactly uniform gas flow. Micrometric flow valves are very difficult to maintain at the high temperature of the combustion gases. in the Thal et al. device there are no individual micrometric valves. This makes precise flow control impractical to maintain, just as the long flexible conduits make exact temperature control to individual jets equally impractical. This is not to say that the Thal et al. machine cannot be used to produce sculptured effects on deep pile fabrics, but the precision of control is seriously compromised, and so far as is known, the Thal et al. device has never been practically usable to produce sculptured fabrics with brushed napped fabrics, and particularly with such fabrics of triacetate. With very deep sculpturing in deep pile fabrics, the variation from jet to jet might be tolerated better, although, of course, such variation is not desirable.

Another practical problem presented by the Thal et al. device is that the jets have to be in a fixed position at right angles to the fabric in order to follow the guiding slots. For some purposes, particularly with brushed napped fabrics, better results can be obtained if the jets are somewhat slanted. Also, because the jets have to follow slots, this imposes a certain limit on machine output due to the relatively high friction in the curved slots. Furthermore, Thal et al. describes an intermittent, rather than a continuous operation.

SUMMARY OF THE INVENTION The present invention covers a process which in one aspect may be considered as an improvement over the process of the Thal et al. patent. It is an advantage that improvement is obtained without any sacrifice of any of the desirable features of the patent. The invention will first be described in its apparatus aspect.

Instead of individually movable jets, in the present invention the jets are rigidly mounted in a heater head and heated by indirect contact, such as electrical heating elements and the like. The rigid, hot head is connected to a similar rigid air manifold by tubes for each jet, which are preferably quite short, each tube .being provided with a micrometrically controllable flow valve, the structure including hot heater head, and the relatively cool air mainfold is moved as a whole in two directions by sliding the manifolds on slide bars in a frame and moving the whole frame at right angles to this motion.

It is also possible to tilt the manifold and the head, together with the jets, to permit discharging the fluid, such as air, from each jet at an angle to the fabric which moves below the head. Positive and precise tilting conthe manifold and head by cables. The length of each movement can be individually controlled by stops and suitable microswitches which control conventional solenoid-operated air valves on the cylinders. Speed of each movement is adjustable by throttling adjustments on the two pairs of cylinders, and may be varied so that there will be a different speed of movement in one direction from that in another where this is desired for certain particular patterns. Speed, and hence output, is not restricted by high friction guide slots and can be as high as the effective temperature and air jet velocities permit with particular fabrics. The designs which can be sculptured on brushed fabrics, such as brushed acetates, acrylics, and the like, are quite permanent and withstand many washings without significant loss of the sculptured appearance.

Variation in design can also be introduced by having somewhat different air flows in some of the jets than in others. This can be precisely adjusted because the adjustment valves are operating at low temperature and they stay in adjustment once set.

For certain designs the motion of the fabric itself, in at least one direction, may be synchronized with the movements of the air manifold and heater head, or these may be stationary.

Because the flow to each jet is controlled by a micrometric valve of its own operating in a low temperature environment, it becomes practical to cut off the flow in certain jets altogether in order to produce a different design or pattern. This confers an added versatility which is not practical with jets which are sup- 9 plied each with their individual non-adjustable flexible tubing.

Since the action of the preferred air cylinder drive or of others is electrically controllable, this makes it possible to control patterns by simple computers, which permits an extremely wide choice of patterns. It is not necessary to use different slotted plates for each pattern, and this is an additional advantage of the present invention.

Another practical operating advantage is presented by the fact that many of the components, such as air cylinder drives, electric heating elements, and the like, are commercially available products, which further reduces the cost of the machines of the present invention.

Reference has been made above to performing the process with a continuous movement of the fabric being sculptured. For many purposes and with many designs this is desirable, but the invention is in no sense limited thereto as it is perfectly possible to move the fabric intermittently, in which case compound motion of framework and manifold and head within it is usually necessary. If desired, during the intermittent movement, flow through the jets can be temporarily shut off by a suitable ON and OFF valve to the compressed air supply. It is also possible, of course, to lift up the jets, but this requires further complications if it is to be effected during the operation of the machine, and is, in general, not preferred.

The present invention involves an improved process, as it makes practical, for the first time, sculpturing fabrics with thermoplastic surfaces, such as brushed nap triacetates, to produce sculptured effects which are washable. The principal use of the present invention is for producing actual sculptured effects; however, in

some cases it may be used for producing a design on the surfaces which shows up later on dyeing.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an elevation in semi-diagrammatic form;

FIG. 2 is a similar elevation at right angles to FIG. 1;

FIG. 3 is an enlarged detail similar to FIG. 2 but showing tilt adjustment;

FIG. 4 is a section through the heater head at one jet;

FIG. 5 is a plan view looking down at the same location as FIG. 4, and

FIG. 6 is a diagrammatic representation of a fabric with a simple design being produced.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Looking at FIG. 6, the fabric, which is shown as moving, is designated 1. In the figure a heater block head 2 is shown with jets 3 which produce a wavy pattern 30 as the fabric moves from let-off rolls 29 to take-up rolls 31. As FIG. 6 is purely diagrammatic, the means for imparting motion to the heater block and its jets and their particular design is not shown.

FIGS. 1 and 2 show the motion of the air manifold, heater block and jets in somewhat greater detail. The block and jets bear the same reference numerals as above in FIG. 6. Air is introduced into an air manifold 4 from a source of compressed air, (not shown). Each jet is connected from the air manifold 4 through the heater block 2 by individual tubes 5, which in FIG. 1 are shown diagrammatically as lines. The tubes are very short as compared to the manfold and heater lengths, for example about an order of magnitude shorter. The unitary structure of manifold and heater block can slide on guide bars 12 by slides 11 which are connected to it and which, in turn, are connected to each other with a rod 13. The guide bars 12 are mounted in a movable framework 10 which'can move at right angles to the movement of the manifold and heater block on wheels 18 which run on triangular tracks 19 on the floor 20 on which the whole machine is mounted. Reciprocation of the rod 13 is by a double acting air cylinder 14 which, being of well known design, is shown more or less diagrammatically. The cylinder moves a cable 16 which drives the rod 13 through a projection 32. Reciprocation of the air cylinder is effected by a standard design of control valve and air regulator 15, which is sold, for example, by the Schrader Company, and as it is a well known design is shown in FIG. I in purely diagrammatic form. Heat is applied to the heater block by wires 34 controlled by a temperature control 33. As these devices are standard elements, the showing is purely diagrammatic.

Turning now to FIGS. 2 and 3, it will be seen that the pipes connecting the air manifold 4 are provided with micrometric air flow control valves 6. Thbse valves are also of known design and are actuated by a micrometric vernier knob 35 similar in design to that appearing on micrometer calipers. As these valves are of a known desigmthey are shown only in outline since the internal structure is not changed by .their incorporation into the present invention.

FIG. 3 shows the manifold 4 attached to a plate 7 which can be adjustably tilted by bolts 8 and cams 9 bearing on extensions of the slides 11. FIG. 3 shows an adjustment which has slightly tilted the jets 3 in the heater block 2. This figure also shows the electric heating rods 27.

FIG. 2 illustrates the motion of the framework in more detail than is shown in FIG. 1. The frame, which is carried bythe wheels 18, as has been described, is moved by another air cylinder 21 of the same design as the air cylinder 14 in FIG. 1, which also drives a cable 22 that attaches to a projection 23 on the frame. The length of travel both of the framework 10 in FIG. 2 and of the manifold and heater block within the frame in FIG. 1 is controlled by adjustable stops 17 in FIG. 1 and 24 in FIG. 2. In the latter figure it will be seen that at the extremes of travel they strike microswitches 25. The same is true of the stops 17 in FIG. 1, but in order to maintain the clarity of the figure and its semi-diagrammatic form, the microswitches are not shown. The switches of course control the Schrader motion control valves by conventional electric control, which is, therefore, also not shown.

FIG. 4 is a cross-section through the heater block 2 taken at one of the jets and showing the passage 26 for the jet, which has been removed from FIG. 4 in order not to confuse the drawing. In order to produce more effective heating surface from the rods 27, they are in heat conducting relations with projections 28, which are best seen in FIG. 5. These projections break up the air stream passing through the passage 26 to its jet. This also increases the hot surface in contact with the air.

Various different designs can be produced by placement of the stops 17 and 24, which stops are fastened by set screws in the particular positions, the screws not being shown. As the stops actuate microswitches in FIGS. 1 and 2, their control is essentially electric, and so, if it is desired to operate a machine by computer or other device which sends its commands out electrically, the switches can be bypassed and the cylinder control valves directly operated by the computer-steered electric control. As the simple designs of computers for patterns are well known, they are not shown in the drawings. It is, however, noted that where desirable an all-external electric control can be used in place of the stops and microswitches which have been described.

When the fabric shown in FIGS. 2 and 6 is a brushed nap synthetic fabric, for example a triacetate fabric, the design is sculptured into the nap and is quite wash fast, without showing any significant change in design or appearance.

For certain fabric designs it is desirable to cut out of operation some of the jets, and this is simply done by closing their micrometric valves. Since these valves have numbered positions, they can be brought back to any particular flow rate which is desired where a design is changed to one which uses all of the jets. The exact temperature and air flow through the jets depends on the particular fabric in which the sculptured design is to be made and also on the rate at which the fabric moves and the jets move, which is determined by the practically achievable output of the machine. For any particular fabric the valves 6 are adjusted for a particular flow together with a particular temperature on the temperature control 33. When an entirely new fabric is to be sculptured, it is sometimes necessary to adjust the valves and temperature as well as speed of motion of the jets to achieve the desired results. Once the desired pattern has been achieved by a few routine experiments, the settings of the temperature controller 33, the valves 6, and the controls for air cylinder operation are noted, for of course all of these controls have marks or dials, and whenever a similar fabric design is to be produced, the controls are set to the predetermined points for the particular fabric. Once set, they remain fixed and there is no problem of variable cooling through long flexible connecting tubes and the like. The pattern is accurately reproduced every time. While the particular temperature used and air flow, which determines, among other things, the actual temperature of the air leaving the jets, will vary with the particular fabric and type of design, the invention is not limited to any particular temperature or air flow. The factors should be adjusted always within the range below that at which the nap of the fabric is melted to too great a degree. This is, of course, determined for every new fabric by the short series of routine tests for optimum temperatures which have been referred to above.

It has been proposed in the past to actually burn sculptured patterns into the pile of fabrics, either by heat or by chemical action. While with great care sculptured patterns can be produced, control is critical, and it is almost impossible to operate without some damage or weakening of the fabric itself. In the process of the present invention, patterns can be produced with no damage to the fabric itself and with reliably reproducible conditions, which do not even change with some changes in ambient temperature because the jets are so near to the fabric that external conditions within the range normally encountered in a factory have no effect. Of course some elementary common sense must be used, and a violent blast of cold air across the jets as the pattern is being developed should be avoided.

While the description of the apparatus emphasizes the flow of hot fluids through the jets, this flow may also include finely divided solids, such as pigments.

While the process is primarily useful with brushed nap or pile fabrics, it can be used with other fabrics having a thermoplastic surface, either of thermoplastic fibers or a finish.

We claim:

1. A process of producing a sculptured design in a fabric of thermoplastic fibers which comprises producing relative movement between the fabric and a line of jets of heated fluid closely adjacent to the fabric, the relative motion of the fabric and jets being in a predetermined design pattern, the temperature of the jets being uniform and sufficiently high to soften the fibers but insufficiently high to melt them and cause them to stick together, and thev heat to the fluid jets being applied thereto at a point adjacent the fabric, the heat being transferred to the fluid of the jets by indirect contact from a source of uniform temperature, the indirect heat transfer to the jets being over a path so short that no substantial cooling of the fluid of the jets takes place before they strike the fabric.

2. A process according to claim 1 in which the relative movement of fabric and jets is effected by moving both the fabric and the jets independently.

3. A process according to claim 2 in which the fabric is a brushed nap cellulose acetate fabric.

4. A process according to claim 1 in which the fabric is a brushed nap cellulose acetate fabric.

5. A process according to claim 4 in which the fluid of the jets is unchanged in phase by transfer of heat into the fluid and from the fluid to the thermoplastic fibers. 5

6. A process according to claim 1 in which the fluid of the jets is unchanged in phase by transfer of heat into the fluid and from the fluid to the thermoplastic fibers.

* t tt k

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US1811750 *20 Jul 192923 Jun 1931Furgang BenjaminFur treating device
US2035640 *12 Oct 193231 Mar 1936Celanese CorpTextile operation and machine therefor
US2163674 *29 Ene 193827 Jun 1939Celanese CorpTreatment of pile fabrics
US2338792 *16 Abr 194011 Ene 1944Celanese CorpMethod of preparing textile fabric
US3152381 *9 May 196213 Oct 1964Callaway Mills CoMethod for producing fabric
US3256581 *7 Ene 196421 Jun 1966 Apparatus for creating designs in pile fabrics
AU127163A * Título no disponible
DE1158033B *21 Oct 195928 Nov 1963Calwer Decken Und TuchfabrikenVerfahren zum Herstellen von flauschigen, hochflorigen und lammfellaehnlichen Wollgeweben und eine Vorrichtung zum Ausueben des Verfahrens
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US4383404 *26 Ago 198117 May 1983Milliken Research CorporationMethod and apparatus to produce post heated textured yarn
US4418451 *23 Ene 19816 Dic 1983Milliken Research CorporationMethods for the production of multi-level surface patterned materials
US4471514 *10 Jul 198118 Sep 1984Milliken Research CorporationApparatus for imparting visual surface effects to relatively moving materials
US4497095 *26 Mar 19795 Feb 1985Teijin LimitedApparatus for preparing a suede-like raised woven or knitted fabric
US4499637 *14 Dic 197919 Feb 1985Milliken Research CorporationMethod for the production of materials having visual surface effects
US5148583 *26 Nov 199122 Sep 1992Milliken Research CorporationMethod and apparatus for patterning of substrates
US5202077 *10 Jul 199013 Abr 1993Milliken Research CorporationDipping in a chemical solution of mixture of acrylic resin, melamine-acyrlic polymer and for providing hardened finish, separation at weakened water recesses
US5404626 *25 Oct 199311 Abr 1995Milliken Research CorporationMethod and apparatus to create an improved moire fabric by utilizing pressurized heated gas
US5553364 *31 May 199510 Sep 1996Nakagawa; ChiekoHeat processing apparatus for pile sheet
US5674581 *15 Abr 19967 Oct 1997Milliken Research CorporationFabric treated with acrylic melamine resin and acrylic polymer to provide hardened finish
US5857665 *19 Dic 199612 Ene 1999Fichtel & Sachs AgSelf-pumping hydropneumatic shock absorbing strut with internal level regulation
US5865933 *12 Nov 19962 Feb 1999Milliken Research CorporationMethod for selectively carving color contrasting patterns in textile fabric
US20120186720 *1 Dic 201126 Jul 2012Macpi S.P.A. Pressing DivisionSimplified method for making an impermeable joining on three-layer or bi-layer fabric materials, either with or without a complex construction on a Joining side thereof and being preliminarily joined by a stitching or ultrasound joining arrangement
DE3046544A1 *10 Dic 198010 Sep 1981Milliken Res CorpTextiles flaechengebilde mit visuellen oberflaecheneffekten sowie verfahren und vorrichtung zum herstellen desselben
EP0010546A1 *19 Nov 197914 May 1980Teijin LimitedMethod of and apparatus for fabricating pile fabric having suede-like appearance
EP0057999A2 *22 Ene 198218 Ago 1982Milliken Research CorporationProduction of multi-level surface patterned materials
EP0059029A1 *22 Ene 19821 Sep 1982Milliken Research CorporationImproved apparatus for imparting visual surface effects to relatively moving materials
EP0099639A1 *10 Jun 19831 Feb 1984Milliken Research CorporationApparatus and method for visual surface effect enhancement
Clasificaciones
Clasificación de EE.UU.26/2.00R
Clasificación internacionalD06C23/00
Clasificación cooperativaD06C2700/31, D06C23/00
Clasificación europeaD06C23/00
Eventos legales
FechaCódigoEventoDescripción
25 Jul 1994ASAssignment
Owner name: J.P. STEVENS & CO., INC., GEORGIA
Free format text: RELEASE SECURITY INTEREST & ASSIGNMENT.;ASSIGNOR:BANKERS TRUST COMPANY;REEL/FRAME:007074/0390
Effective date: 19931210
22 Feb 1990ASAssignment
Owner name: BANKERS TRUST COMPANY, A NY BANKING CORP., NEW YO
Free format text: SECURITY INTEREST;ASSIGNOR:J.P. STEVENS & CO.;REEL/FRAME:005271/0777
Effective date: 19891020