US3733179A - Method and apparatus for the quantitative determination of blood chemicals in blood derivatives - Google Patents

Method and apparatus for the quantitative determination of blood chemicals in blood derivatives Download PDF

Info

Publication number
US3733179A
US3733179A US00756098A US3733179DA US3733179A US 3733179 A US3733179 A US 3733179A US 00756098 A US00756098 A US 00756098A US 3733179D A US3733179D A US 3733179DA US 3733179 A US3733179 A US 3733179A
Authority
US
United States
Prior art keywords
blood
container
cholesterol
optical density
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00756098A
Inventor
P Guehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Application granted granted Critical
Publication of US3733179A publication Critical patent/US3733179A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/528Atypical element structures, e.g. gloves, rods, tampons, toilet paper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors

Definitions

  • the present invention relates to a method and apparatus for the quantitative determination of diagnostically significant chemicals in blood derivatives.
  • Abnormally high or low concentrations of certain blood chemicals may signal the onset or presence of many body illnesses.
  • abnormally low concentrations of cholesterol may signal a defective intestinal absorption of fats, liver disease, and overfunction of the thyroid gland.
  • Increased abnormally high concentrations of cholesterol may foretell coronary thrombosis and may denote hereditary defects in fat metabolism, under-function of the thyroid gland, diabetes, and jaundice due to bile duct obstruction.
  • Abnormal concentration of uric acid in blood are indicative of incipient gout and kidney stones.
  • the method of the present invention comprises the sequential steps of (1) providing a first container of a solution capable of extracting a blood chemical from a blood derivative to form a component capable of reacting with a test material to form a colored fluid having an optical density dependent upon the concentration of said blood chemical in said blood derivative;
  • FIG. 1 is a cross-sectional representation of the preferred apparatus of the present invention as viewed immediately prior to centrifugation;
  • FIG. 2 is a cross-section view of the apparatus of FIG. 1 taken along line 22 of FIG. 1;
  • FIG. 3 is a perspective exploded View of the apparatus of FIG. 1.
  • blood chemical refers to cholesterol and to such other diagnostically significant chemical ingredients of blood as, for example, uric acid, bilirubin, protein, glucose, urea, etc.
  • the reactants required for blood chemical analysis may be supplied in premeasured quantities in suitable containers to the laboratory technician who merely adds to one of the containers a sample of a blood derivative, joins the two containers together with the filter means, centrifuges the assembly, and measures the optical density of the resulting colored fluid, obviating the necessity of measuring and manually transferring the various reactants and thus reducing the human error associated with such manipulations.
  • the method and apparatus of the present invention are adapted to be used for blood chemicals, the determinations of which may be reduced to the process of (1) preparing a liquid which contains the blood chemical to be analyzed in reactive form; that is, in a form capable of reacting with a test material to form a colored fluid having an optical density dependent upon the concentration of the blood chemical;
  • the determination of total cholesterol by the procedure reported in Henry, supra, p. 855 may be carried out by the method of the present invention as follows:
  • a measured sample of blood serum containing cholesterol is added to a first compartment, e.g. a glass vial, containing a premeasured amount of ferric chloride/ acetic acid reagent. This reagent precipitates protein and extracts cholesterol and cholesterol esters from the serum.
  • a connector member having filter means is attached to the first compartment and this assembly is then attached to a second container, e.g. a second glass vial, containing a premeasured quantity of concentrated sulfuric acid.
  • the filter means permits the assembly to be inverted during attachment thereof to the second container, preventing escape of the contents of the first container and avoiding spillage of the sulfuric acid from the second container.
  • Centrifugation causes the contents of the first container to filter into the second container, forming two layers which, when subsequently mixed by gentle agitation, form a colored fluid.
  • the optical density of the colored fluid is then measured and is correlated with the concentration of total cholesterol by known algebraic or graphic methods.
  • a blood derivative containing cholesterol solely in ester form is substituted for the blood sample in the above example.
  • a blood derivative may be prepared, for example, by precipitating free cholesterol from a sample of blood serum in an ethanol ether solvent by addition of digitonin, evaporating the solution to dryness, extracting cholesterol esters from the residue with petroleum ether, evaporating the petroleum ether and dissolving the remaining cholesterol esters in acetic acid. This procedure is more fully described in Henry, supra, pp. 857-858.
  • Determinations of bilirubin in blood serum by a modification of the Malloy-Evelyn procedure may be carried out by the method of the present invention by adding a measured sample of blood serum containing bilirubin to a first compartment containing a premeasured quantity of a methanol-water-hydrochloric acid solution, attaching thereto the connector member having filter means, attaching this assembly to a second container containing a diazonium salt capable of reacting with bilirubin to form colored azobilirubin, centrifuging to cause the contents of the first compartment to filter into the second compartment to cause formation therein of a colored azobilirubin solution, and correlating the optical density of the colored azobilirubin solution with the concentration of bilirubin in the blood serum sample by known means, as described above.
  • the concentration of uric acid in blood serum may be determined by the method of the present invention by adding a blood serum sample to a tungstic acidphosphotungstic acid mixture in the first compartment, attaching this compartment by filter means to a second compartment of aqueous sodium carbonate, centrifuging the assembly to cause the contents of the first compartment to filter into the second compartment to form upon agitation, a colored fluid, and measuring the optical density of the colored fluid, which optical density may be correlated with the concentration of uric acid.
  • the container in which the colored fluid is formed by transparent and adapted for use in standard spectrophotometers, as in the apparatus hereinafter described.
  • the filter means of the present invention may be of any material which is resistant to the reagents employed in the desired determination; e.g. the filter means must not undergo significant chemical degradation nor significantly adsorb chemicals which pass therethrough during centrifugation.
  • the filter means When connected to One container, the filter means must be sufficiently compact to prevent the flow of reagents therethrough under normal gravitational force (e.g., when assemblying the apparatus), and must be sufficiently porous to permit the passage of such reagents therethrough under a force substantially greater than the normal gravitational force (e.g. during centrifugation).
  • Filters made from chemically-resistant polymers are useful in the method and apparatus of the present invention. Filters prepared from polyolefin fibers, especially polypropylene fibers, are preferred. It is desirable that such fibers have high surface/volume ratios. Fibers produced by the method described in U.S. Naval Research Laboratory Report No. 111,437, dated Apr. 15, 1954 and entitled Manufacture of Superfine Organic Fibers have been found to be especially useful and are preferred for filters of the present invention. Fibers produced by this method hereinafter are referred to as superfine fibers.
  • the filters of the present invention are preferably capable of removing precipitated protein from fluids passing therethrough during centrifugation.
  • Protein is precipitated from blood serum, for example, when blood serum is mixed into the ferric chloride-acetic acid reagent used in total" cholesterol determinations. Haziness caused by precipitated protein in the colored fluids obtained by the above-mentioned total cholesterol methods can noticeably but not seriously disturb accuracy.
  • Polypropylene fiber filters may be provided which filter out precipitated protein, however, by treating the filters with tap water having an analysis such as that referred to in Example 1 below. By use of such treated filters in the total cholesterol method of the present invention, excellent accuracy and precision may be obtained.
  • FIGS. 1-3 An apparatus for practicing the method of the present invention is shown in FIGS. 1-3 as assembled immediately prior to centrifugation.
  • a pair of glass vials 10 and 12 are provided containing respectively, a premeasured solution 14 capable of extracting a blood chemical from a blood derivative to form therewith a component capable of reacting with a test material to form a colored fluid, and a pre-measured test material 16 capable of forming with said component a colored fluid having an optical density dependent upon the concentration of the blood chemical in the blood derivative.
  • the open ends 18 and 20 of the vials 10 and 12 are provided with threaded outer diameters 22 and 24 respectively.
  • the glass vials 10 and 12 containing the solution 14 and the test material 16 are provided with threaded vial caps (not shown) for storage. Prior to centrifugation, as shown in FIG.
  • the vials 10 and 12 are connected by a connector member 26, the threaded ends 22 and 24 of the vials 10 and 12 threadingly engaging the threaded inner diameters 28 and 30 respectively of the open ends 32 and 34 of the connector member 26 to provide liquid-tight seals therewith.
  • the connector member 26 is provided with an inner surface 35 having at a point 36 along its length a support means 38, such as a perforated transverse diaphragm,
  • the filter 40 is air permeable and, when joined to one or both of the vials 10 and 12, is capable of preventing the passage therethrough of either the component formed in vial 10 or the test material 16 under the normal force of gravity and is further capable of permitting passage of the component or the material 16 therethrough under a force substantially greater than the normal force of gravity.
  • the method of the present invention may be practiced as follows, the blood chemical to be determined being total cholesteroli
  • the protective vial cap is removed from the vial 10 which contains 3.0 ml. of a 0.5% solution of ferric chloride in glacial acetic acid, and 0.020 ml. of blood serum is deposited therein.
  • the end 32 of connector member 26, having therein a filter 40, is threaded snugly onto the open end of the vial 10.
  • the assembly is inverted and is threaded onto the open end of a vial 12 containing 2.0 ml. of concentrated sulfuric acid.
  • the total assembly is then placed in a centrifuge, the vial 10 being nearest the center of rotation thereof, and is centrifuged to cause the contents of the vial 10 to filter into the sulfuric acid.
  • the two layers which are formed in the vial 12 are mixed by gentle agitation to form a colored fluid.
  • the vial 12 (still connected to the vial 10 by the connector member 26) is placed in a standard spectrophotometer and the optical density (O.D.) is measured and is correlated with the concentration of cholesterol by comparison with a graph of D. versus cholesterol concentration, which graph had been prepared by performing this procedure with standard solutions containing known concentrations of cholesterol.
  • EXAMPLE 1 Three acetic acid test solutions containing 100, 200 and 300 mg. of cholesterol per 100 ml. of solution, respectively, were prepared by dissolving known quantities of solid cholesterol (Matheson, Coleman and Bell Co.) in acetic acid. Each solution was tested in the illustrated apparatus as follows:
  • test solution 0.020 ml. of test solution was added to 3.0 ml. of glacial acetic acid containing 0.05% (w./v.) of FeCl '6H O in a first threaded glass vial.
  • Filter means identical to that illustrated in FIG. 1 was snugly threaded unto the glass vial, which filter means employed a filter pad which was prepared as follows:
  • Superfine polypropylene fibers 95% of which were greater than 2.9 in diameter and 5% of which were greater than 17.5,u. in diameter, were formed into a mat which was treated successively with methyl ethyl ketone and with tap water of pH 8.2-8.7, the tap water (city water supply, St. Paul, Minn.) having an analysis essentially the same as that reported in Durfor and Becker, Public Water Supplies of the 100 Largest Cities in the United States, 1962, US. Government Printing Oflice, 1964, p. 222. Filter pads of the desired diameter were then cut from the treated mat.
  • the glass vial-filter means assembly was then inverted and threaded onto a second transparent glass vial of 13.25 mm. average inner diameter which contained 2.0 ml. of concentrated sulfurc acid.
  • the apparatus was then centrifuged at a speed of 2000 revolutions per minute for 3 minutes in an International Centrifuge Model CL (International Equipment Co.) centrifuge. During centrifugation, the filter pad assumed a position 2.75 inches distant from the axis of rotation of the centrifuge. The force on the filter pad was calculated to be 170 times the normal force of gravity.
  • the filtrate which passed through the filter was transparent and formed a separate layer upon the sulfuric acid. The layers were mixed by gentle agitation of the apparatus, during which time the temperature of the resulting solution rose to about 60 C. and a red color developed therein.
  • the second glass vial (still attached to the first glass vial by the filter means) was placed in the cuvette well of a Coleman Junion Colorimeter (Coleman Instruments Co.) using a simple adaptor, and the optical density of the colored solution was measured at 560 m as follows:
  • EXAMPLES 25 By using the general procedure of Example 1, quantitative determinations of uric acid, protein, urea, and glucose may be obtained. Test parameters for these determinations are provided in Table II.
  • a method for the quantitative determination of a blood chemical comprising the sequential steps of (1) providing a first container of solution capable of extracting a blood chemical from a blood derivative to form a component capable of reacting with a test material to form a colored fluid having an optical density dependent upon the concentration of said blood chemical in said blood derivative;
  • a method for measuring the concentration of cholesterol in a blood derivative comprising (a) providing a first container of premeasured solution of ferric chloride and acetic acid;

Abstract

A METHOD FOR THE QUANTITATIVE DETERMINATION OF A BLOOD CHAMICAL IN A BLOOD DERIVATIVE WHEREIN A FIRST CONTAINER CONTAINING A BLOOD DERIVATIVE SAMPLE AND A SOLUTION CAPABLE OF FORMING THEREWITH A REACTIVE COMPONENT IS JOINED BY FILTER MEANS TO A SECOND CONTAINER OF TEST MATERIAL CAPABLE OF REACTING WITH THE REACTIVE COMPONENT TO FORM A COLORED SOLUTION HAVING AN OPTICAL DENSITY DEPENDENT UPON THE CONCENTRATION OF THE BLOOD CHEMICAL. THE CONTENTS OF THE COMPARTMENTS ARE COMBINED BY CENTRIFUGING THE ASSEMBLY. THE OPTICAL DENSITY OF THE COLORED FLUID IS MEASURED AND IS CORRELATED WITH THE CONCENTRATION

OF THE BLOOD CHEMICAL. APPARATUS FOR PRACTICING THIS METHOD.

Description

P. METHOD AND APPARATUS FOR THE QUANTITATIVE DETERMINATION OF May 15, 1973 F. GUEHLER BLOOD CHEMICALS IN BLOOD DERIVATIVES Filed Aug. 29, 1968 P404 fi' GUEHLER H i;: x l 1: ix n /H I IW V LTWQ L 6 a a wax M United States Patent (3 3,733,179 METHOD AND APPARATUS FOR THE QUANTITA- TIV E DETERMINATION OF BLOOD CHEMICALS IN BLOOD DERIVATIVES Paul F. Guehler, White Bear Lake Township, Ramsey County, Minm, assignor to Minnesota Mining and Manufacturing Company, St. Paul, Minn.
Filed Aug. 29, 1968, Ser. No. 756,098 Int. Cl. B65d 79/00; G01n 31/02, 33/16 US. Cl. 23-230 B 4 Claims ABSTRACT OF THE DISCLOSURE A method for the quantitative determination of a blood chemical in a blood derivative wherein a first container containing a blood derivative sample and a solution capable of forming therewith a reactive component is joined by filter means to a second container of test material capable of reacting with the reactive component to form a colored solution having an optical density dependout upon the concentration of the blood chemical. The contents of the compartments are combined by centrifuging the assembly. The optical density of the colored fluid is measured and is correlated with the concentration of the blood chemical. Apparatus for practicing this method.
The present invention relates to a method and apparatus for the quantitative determination of diagnostically significant chemicals in blood derivatives.
Abnormally high or low concentrations of certain blood chemicals may signal the onset or presence of many body illnesses. For example, abnormally low concentrations of cholesterol may signal a defective intestinal absorption of fats, liver disease, and overfunction of the thyroid gland. Continued abnormally high concentrations of cholesterol may foretell coronary thrombosis and may denote hereditary defects in fat metabolism, under-function of the thyroid gland, diabetes, and jaundice due to bile duct obstruction. Abnormal concentration of uric acid in blood are indicative of incipient gout and kidney stones. Methods for the quantitative determination of cholesterol and other blood chemicals constitute important clinical tool for the diagnosis of many body illnesses.
Heretofore, quantitative determinations of blood chemicals have been awkward and expensive and have required numerous time-consuming manipulative steps by experienced technicians. For example, in the determination of blood cholesterol by the modified method of Henly et a1. (as reported in Henry, R. J., Clinical Chemistry: Principles and Techniques, Harper and Row, New York, 1965, pp. 855-857), a technician must first measure out and combine quantities of a blood derivative (e.g. blood serum) and a solution of ferric chloride and acetic acid in a test tube. The ingredients are mixed by agitation and are set aside for -15 minutes. The test tube is then heated in a water bath for two minutes, cooled, and centrifuged to separate out precipitated protein. Into a measured quantity of the supernate is then mixed a measured amount of concentrated sulfuric acid. After again waiting for 10 minutes, the optical density of the resulting solution is photometrically measured and is correlated with the concentration of cholesterol in the blood derivative.
In similar fashion, determinations of such blood chemicals as uric acid, bilirubin, protein, glucose and urea have required such manipulative steps as measuring numerous ingredients together, preparing standard solutions immediately before use, etc.
Because of the time and skill needed for the many manipulative steps heretofore required for blood chemical analysis such as those described above, such analysis 3,733,179 Patented May 15., 1973 have been limited primarily to hospital medical laboratories.
It is an object of the present invention to provide a method and apparatus for the rapid quantitative determination of cholesterol and other diagnostically significant chemicals in blood derivatives.
It is another object of the present invention to provide a method and apparatus for the quantitative determination of cholesterol and other diagnostically significant chemicals in a blood derivative which requires few manipulative steps and minimum operator proficiency and which is simple and inexpensive.
Briefly, the method of the present invention comprises the sequential steps of (1) providing a first container of a solution capable of extracting a blood chemical from a blood derivative to form a component capable of reacting with a test material to form a colored fluid having an optical density dependent upon the concentration of said blood chemical in said blood derivative;
(2) adding to said first container a sample of said blood derivative containing said blood chemical to form said component;
(3) providing a second container containing said test material;
(4) joining said containers With connector means having air-permeable filter means chemically resistant to and normally separating the solution of said first container and the material of said second container, said filter means when joined to one of said containers, being capable of preventing the passage therethrough of one of said component and said material under normal gravitational force and being capable of permitting passage therethrough of said one of said component and said material under a force substantially greater than normal force of gravity such as a force generated during centrifugation (e.g., up to 1500 times the normal force of gravity);
(5) centrifuging said joined containers to cause to combine the contents thereof and to form, with agitation, a colored fluid; and
(6) measuring the optical density of said colored fluid.
Apparatus for practicing the method of the present invention is illustrated in the accompanying drawing wherein:
FIG. 1 is a cross-sectional representation of the preferred apparatus of the present invention as viewed immediately prior to centrifugation;
FIG. 2 is a cross-section view of the apparatus of FIG. 1 taken along line 22 of FIG. 1; and
FIG. 3 is a perspective exploded View of the apparatus of FIG. 1.
As used herein, the term blood chemical refers to cholesterol and to such other diagnostically significant chemical ingredients of blood as, for example, uric acid, bilirubin, protein, glucose, urea, etc.
By virtue of the present invention, the reactants required for blood chemical analysis may be supplied in premeasured quantities in suitable containers to the laboratory technician who merely adds to one of the containers a sample of a blood derivative, joins the two containers together with the filter means, centrifuges the assembly, and measures the optical density of the resulting colored fluid, obviating the necessity of measuring and manually transferring the various reactants and thus reducing the human error associated with such manipulations.
The method and apparatus of the present invention are adapted to be used for blood chemicals, the determinations of which may be reduced to the process of (1) preparing a liquid which contains the blood chemical to be analyzed in reactive form; that is, in a form capable of reacting with a test material to form a colored fluid having an optical density dependent upon the concentration of the blood chemical;
(2) combining this liquid with the test material to form the colored fluid; and
(3) photometrically measuring the optical density of the colored fluid.
For example, the determination of total cholesterol by the procedure reported in Henry, supra, p. 855, may be carried out by the method of the present invention as follows:
A measured sample of blood serum containing cholesterol is added to a first compartment, e.g. a glass vial, containing a premeasured amount of ferric chloride/ acetic acid reagent. This reagent precipitates protein and extracts cholesterol and cholesterol esters from the serum. A connector member having filter means is attached to the first compartment and this assembly is then attached to a second container, e.g. a second glass vial, containing a premeasured quantity of concentrated sulfuric acid. The filter means permits the assembly to be inverted during attachment thereof to the second container, preventing escape of the contents of the first container and avoiding spillage of the sulfuric acid from the second container. Centrifugation causes the contents of the first container to filter into the second container, forming two layers which, when subsequently mixed by gentle agitation, form a colored fluid. The optical density of the colored fluid is then measured and is correlated with the concentration of total cholesterol by known algebraic or graphic methods.
If the concentration of only cholesterol esters in blood is desired, a blood derivative containing cholesterol solely in ester form is substituted for the blood sample in the above example. Such a blood derivative may be prepared, for example, by precipitating free cholesterol from a sample of blood serum in an ethanol ether solvent by addition of digitonin, evaporating the solution to dryness, extracting cholesterol esters from the residue with petroleum ether, evaporating the petroleum ether and dissolving the remaining cholesterol esters in acetic acid. This procedure is more fully described in Henry, supra, pp. 857-858.
Determinations of bilirubin in blood serum by a modification of the Malloy-Evelyn procedure [Malloy and Evelyn, J. Biol. Chem. 119, 481 (1937)] may be carried out by the method of the present invention by adding a measured sample of blood serum containing bilirubin to a first compartment containing a premeasured quantity of a methanol-water-hydrochloric acid solution, attaching thereto the connector member having filter means, attaching this assembly to a second container containing a diazonium salt capable of reacting with bilirubin to form colored azobilirubin, centrifuging to cause the contents of the first compartment to filter into the second compartment to cause formation therein of a colored azobilirubin solution, and correlating the optical density of the colored azobilirubin solution with the concentration of bilirubin in the blood serum sample by known means, as described above.
Similarly, the concentration of uric acid in blood serum may be determined by the method of the present invention by adding a blood serum sample to a tungstic acidphosphotungstic acid mixture in the first compartment, attaching this compartment by filter means to a second compartment of aqueous sodium carbonate, centrifuging the assembly to cause the contents of the first compartment to filter into the second compartment to form upon agitation, a colored fluid, and measuring the optical density of the colored fluid, which optical density may be correlated with the concentration of uric acid.
To eliminate pouring of the colored fluid into a suitable cuvctte for optical density measurement, it is preferred that the container in which the colored fluid is formed by transparent and adapted for use in standard spectrophotometers, as in the apparatus hereinafter described.
The filter means of the present invention may be of any material which is resistant to the reagents employed in the desired determination; e.g. the filter means must not undergo significant chemical degradation nor significantly adsorb chemicals which pass therethrough during centrifugation. When connected to One container, the filter means must be sufficiently compact to prevent the flow of reagents therethrough under normal gravitational force (e.g., when assemblying the apparatus), and must be sufficiently porous to permit the passage of such reagents therethrough under a force substantially greater than the normal gravitational force (e.g. during centrifugation). It is believed that when the filter means is connected to one of the containers and the assembly is inverted to bring the fluid contents of the container into contact with the filter, a partial vacuum is created in the container as a small amount of the fluid contained therein seeps into the filter. The pressure across the filter is thereby equalized, preventing transfer of the fluid therethrough. During centrifugation, a large pressure differential develops across the filter means which causes substantially complete transfer therethrough of the fluid into the container furthest from the axis of rotation of the centrifuge.
Filters made from chemically-resistant polymers (e.g. polyolefins, fluorocarbon polymers, etc.) are useful in the method and apparatus of the present invention. Filters prepared from polyolefin fibers, especially polypropylene fibers, are preferred. It is desirable that such fibers have high surface/volume ratios. Fibers produced by the method described in U.S. Naval Research Laboratory Report No. 111,437, dated Apr. 15, 1954 and entitled Manufacture of Superfine Organic Fibers have been found to be especially useful and are preferred for filters of the present invention. Fibers produced by this method hereinafter are referred to as superfine fibers.
The filters of the present invention are preferably capable of removing precipitated protein from fluids passing therethrough during centrifugation. Protein is precipitated from blood serum, for example, when blood serum is mixed into the ferric chloride-acetic acid reagent used in total" cholesterol determinations. Haziness caused by precipitated protein in the colored fluids obtained by the above-mentioned total cholesterol methods can noticeably but not seriously disturb accuracy. Polypropylene fiber filters may be provided which filter out precipitated protein, however, by treating the filters with tap water having an analysis such as that referred to in Example 1 below. By use of such treated filters in the total cholesterol method of the present invention, excellent accuracy and precision may be obtained.
An apparatus for practicing the method of the present invention is shown in FIGS. 1-3 as assembled immediately prior to centrifugation.
Referring now to FIG. 1, a pair of glass vials 10 and 12 are provided containing respectively, a premeasured solution 14 capable of extracting a blood chemical from a blood derivative to form therewith a component capable of reacting with a test material to form a colored fluid, and a pre-measured test material 16 capable of forming with said component a colored fluid having an optical density dependent upon the concentration of the blood chemical in the blood derivative. The open ends 18 and 20 of the vials 10 and 12 are provided with threaded outer diameters 22 and 24 respectively. Prior to use, the glass vials 10 and 12 containing the solution 14 and the test material 16 are provided with threaded vial caps (not shown) for storage. Prior to centrifugation, as shown in FIG. 1, the vials 10 and 12 are connected by a connector member 26, the threaded ends 22 and 24 of the vials 10 and 12 threadingly engaging the threaded inner diameters 28 and 30 respectively of the open ends 32 and 34 of the connector member 26 to provide liquid-tight seals therewith. The connector member 26 is provided with an inner surface 35 having at a point 36 along its length a support means 38, such as a perforated transverse diaphragm,
against which is snugly seated a filter 40 which is chemically resistant to said solution 14 and to said test material 16. Upon centrifugation, the filter 40 is restrained from travel through the connector member 26 in the direction indicated by the arrow 42 by means of the perforated transverse diaphragm 38, which diaphragm readily permits, however, the passage of fluid material. The filter 40 is air permeable and, when joined to one or both of the vials 10 and 12, is capable of preventing the passage therethrough of either the component formed in vial 10 or the test material 16 under the normal force of gravity and is further capable of permitting passage of the component or the material 16 therethrough under a force substantially greater than the normal force of gravity.
Using the above-described apparatus, the method of the present invention may be practiced as follows, the blood chemical to be determined being total cholesteroli The protective vial cap is removed from the vial 10 which contains 3.0 ml. of a 0.5% solution of ferric chloride in glacial acetic acid, and 0.020 ml. of blood serum is deposited therein. The end 32 of connector member 26, having therein a filter 40, is threaded snugly onto the open end of the vial 10.
The assembly is inverted and is threaded onto the open end of a vial 12 containing 2.0 ml. of concentrated sulfuric acid. The total assembly is then placed in a centrifuge, the vial 10 being nearest the center of rotation thereof, and is centrifuged to cause the contents of the vial 10 to filter into the sulfuric acid. The two layers which are formed in the vial 12 are mixed by gentle agitation to form a colored fluid. After standing for 10 minutes, the vial 12 (still connected to the vial 10 by the connector member 26) is placed in a standard spectrophotometer and the optical density (O.D.) is measured and is correlated with the concentration of cholesterol by comparison with a graph of D. versus cholesterol concentration, which graph had been prepared by performing this procedure with standard solutions containing known concentrations of cholesterol.
The following examples are provided for illustrative purposes only and should not be construed as limiting the scope of the present invention.
EXAMPLE 1 Three acetic acid test solutions containing 100, 200 and 300 mg. of cholesterol per 100 ml. of solution, respectively, were prepared by dissolving known quantities of solid cholesterol (Matheson, Coleman and Bell Co.) in acetic acid. Each solution was tested in the illustrated apparatus as follows:
0.020 ml. of test solution was added to 3.0 ml. of glacial acetic acid containing 0.05% (w./v.) of FeCl '6H O in a first threaded glass vial. Filter means identical to that illustrated in FIG. 1 was snugly threaded unto the glass vial, which filter means employed a filter pad which was prepared as follows:
Superfine polypropylene fibers, 95% of which were greater than 2.9 in diameter and 5% of which were greater than 17.5,u. in diameter, were formed into a mat which was treated successively with methyl ethyl ketone and with tap water of pH 8.2-8.7, the tap water (city water supply, St. Paul, Minn.) having an analysis essentially the same as that reported in Durfor and Becker, Public Water Supplies of the 100 Largest Cities in the United States, 1962, US. Government Printing Oflice, 1964, p. 222. Filter pads of the desired diameter were then cut from the treated mat.
The glass vial-filter means assembly was then inverted and threaded onto a second transparent glass vial of 13.25 mm. average inner diameter which contained 2.0 ml. of concentrated sulfurc acid. The apparatus was then centrifuged at a speed of 2000 revolutions per minute for 3 minutes in an International Centrifuge Model CL (International Equipment Co.) centrifuge. During centrifugation, the filter pad assumed a position 2.75 inches distant from the axis of rotation of the centrifuge. The force on the filter pad was calculated to be 170 times the normal force of gravity. The filtrate which passed through the filter was transparent and formed a separate layer upon the sulfuric acid. The layers were mixed by gentle agitation of the apparatus, during which time the temperature of the resulting solution rose to about 60 C. and a red color developed therein.
After standing for 10 minutes at room temperature, the second glass vial (still attached to the first glass vial by the filter means) was placed in the cuvette well of a Coleman Junion Colorimeter (Coleman Instruments Co.) using a simple adaptor, and the optical density of the colored solution was measured at 560 m as follows:
Concentration, mg.,
cholesterol/ ml.: Optical density By plotting concentration versus optical density on rectangular coordinate paper, a standard curve Was obtained which was essentially linear.
The above procedure was repeated using samples of blood serum containing unknown quantities of cholesterol. The optical density of each colored solution was correlated with the cholesterol concentration by use of the standard curve obtained above. Concurrent tests were performed on these blood serum samples by the widelyused method of Abell et al., as reported by Henry, R. J., Clinical Chemistry: Principles and Techniques, Harper and Row, New York, 1965, pp. 852855. Results are reported in Table I.
TABLE I Mg. cholesterol/100 m1. of blood serum The data of Abell et al., were plotted on rectangular coordinate paper against the corresponding data resulting from the method of the present invention. A line was drawn through the data points by the method of least squares and was found to have a slope of 1.023. A correlation coefficient (Dixon, W. J. and Massey, F. 1., Introduction to Statistical Analysis, 2d ed. McGraw-Hill, New York, 1957, Chap. 11) of 0.286 mg./ 100 ml. was
computed from the above data, indicating excellent corre- I lation between the method of the present invention and the method of Abell et al.
EXAMPLES 25 By using the general procedure of Example 1, quantitative determinations of uric acid, protein, urea, and glucose may be obtained. Test parameters for these determinations are provided in Table II.
TABLE II.-REACTANTS Ex. Blood chemical 1st vial 2d vial at denslty measured Reference 2 Uric acid (0.1 ml. of blood Tungstic acid/phospho- 14% aqueous N fizCOa 660 m (after standin serum). It1uln)gstate acid 1 3.05 0.75 ml.). 15 minutes). g fi l'n rlf %8gllgl 2 l 2l 3 Protein (0.070 ml. of 3.0% aqueous NaOH Bluret reagent (0.7 545 m afte blood serum). solution (3.5 ml.). m1.) (see reference). 15 marines) standing 8 3,, gi fg gibg 4 Urea (0.5 ml. of blood 10% aqueous tnchloro- Modified Ehrlich reagent 1 425 my, im standing 4 Levine J M et l Cli serum). acetic acid (3.0 ml.). (1.0 ml.). i t Chm;1 6i Glucose (0.050 ml. of 3% aqueous triehloro- 6% o-toluidme in glacial 625m (after boiling for Hultman 15 Nature 183' blood serum). acetic acid (1.0 ml.).
l Prepared by combining 0.75 ml. of an equal volume mixture 01067 N, H2804 and 10% aqueous sodium tn 1* I l R 1., Clinical Chemistry: Principles and Techniques, Harper and Row New Y k 1965 2 Prepared by combining 5.0 g. p-dimethylaminobenzaldehyde, 20 m1. concentration H01 and 80 ml. distilled water. p
stic acid reagent reported in Henry,
What is claimed is:
1. A method for the quantitative determination of a blood chemical comprising the sequential steps of (1) providing a first container of solution capable of extracting a blood chemical from a blood derivative to form a component capable of reacting with a test material to form a colored fluid having an optical density dependent upon the concentration of said blood chemical in said blood derivative;
(2) adding to said first container a sample of a blood derivative containing said blood chemical to form said component;
(3) providing a second container containing said test material;
(4) joining said containers with air-permeable filter means which is chemically resistant to and which normally separates the solution of said first container and the material of said second container, said filter means being capable of preventing the passage therethrough of one of said component and said material under normal gravitational force and being capable of permitting passage therethrough of said one of said component and said material under a force substantially greater than the normal force of gravity;
(5) centrifuging said joined containers to combine the contents thereof and to form, with agitation, a colored fluid; and
(6) measuring the optical density of said colored fluid.
2. The method of claim 1, wherein said other container is substantially transparent to light and wherein said optical density of said colored fluid is measured within said transparent other container.
3. The method of claim 2, wherein said blood chemical is cholesterol, wherein said solution consists of acetic acid and ferric chloride, and wherein said test material is concentrated sulfuric acid.
4. A method for measuring the concentration of cholesterol in a blood derivative comprising (a) providing a first container of premeasured solution of ferric chloride and acetic acid;
(b) providing a transparent second container of a premeasured amount of concentrated sulfuric acid;
acetic acid (3.0 ml.).
10 minutes in 2d vial and cooling). 108 (1959).
ml. of the phosphotung- (0) adding to said first container a sample of a blood derivative containing cholesterol to form a component reactive with concentrated sulfuric acid to form a colored fluid;
(d) joining said containers with air-permeable filter rneans chemically resistant to and normally separatrng said solution and said sulfuric acid, said filter means being capable of preventing the passage of said component therethrough under normal gravitational force and being further capable of permitting passage therethrough of said component under a force substantially greater than the normal force of gravity;
(e) centrifuging said joined containers in a centrifuge with said first container being nearer the axis of rotation of said centrifuge than said second container to cause filtration of said component through said filter to form separate layers in said second container;
(f) rnxing said layers to provide a colored solution;
(g) measuring within said second container the optical density of said colored solution.
References Cited UNITED STATES PATENTS 93 8,279 10/ 1909 Schultze 23292 X 2,110,237 3/1938 Parsons 23292 X 3,215,500 11/1965 Bittner 23259 3,449,081 6/1969 Hughes 23253 2,129,516 9/1938 Wood 23231 OTHER REFERENCES Welcher, F. 1.: Standard Methods of Chemical Analys1s,, vol. II, Part A, pp. 1088-9 (1963).
JOSEPH SCOVRONEK, Primary Examiner R. M. REESE, Assistant Examiner US. Cl. X.R.
US00756098A 1968-08-29 1968-08-29 Method and apparatus for the quantitative determination of blood chemicals in blood derivatives Expired - Lifetime US3733179A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75609868A 1968-08-29 1968-08-29

Publications (1)

Publication Number Publication Date
US3733179A true US3733179A (en) 1973-05-15

Family

ID=25042036

Family Applications (1)

Application Number Title Priority Date Filing Date
US00756098A Expired - Lifetime US3733179A (en) 1968-08-29 1968-08-29 Method and apparatus for the quantitative determination of blood chemicals in blood derivatives

Country Status (5)

Country Link
US (1) US3733179A (en)
BR (1) BR6911945D0 (en)
DE (1) DE1944246A1 (en)
FR (1) FR2016590A1 (en)
NL (1) NL6912626A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884638A (en) * 1973-08-01 1975-05-20 Damon Corp Method of determining cholesterol
US4065358A (en) * 1975-05-17 1977-12-27 Kabushiki Kaisha Kyoto Daiichi Kagaku Apparatus for producing reactions in colorimetric cells
US4196085A (en) * 1976-06-09 1980-04-01 The United States Of America As Represented By The Department Of Health, Education And Welfare Dialysis solution handling device
US4230664A (en) * 1979-01-23 1980-10-28 Technion Research & Development Foundation Ltd. Test pack kit for immunoassay
US4234083A (en) * 1979-11-13 1980-11-18 Cohen Milton J Mixing and filtering vial
US4244916A (en) * 1977-08-18 1981-01-13 Jean Guigan Device for conditioning a sample of liquid for analyzing with internal filter
US4308347A (en) * 1977-02-18 1981-12-29 Hoffmann-La Roche Inc. Device for detecting microorganisms
US4369117A (en) * 1980-05-12 1983-01-18 American Hospital Supply Corporation Serum separating method and apparatus
US4534863A (en) * 1984-05-22 1985-08-13 Schleicher & Schuell, Inc. Centrifugal filtering device and filter unit therefor
US4735782A (en) * 1986-10-22 1988-04-05 Eli Lilly And Company Extraction apparatus
US4968432A (en) * 1988-05-18 1990-11-06 Cobe Laboratories, Inc. Treatment of liquid including blood components
US5057226A (en) * 1988-05-18 1991-10-15 Cobe Laboratories, Inc. Treatment of liquid including blood components
US5208142A (en) * 1991-11-19 1993-05-04 Miles Inc. Method for separating erythrocytes from whole blood
US5234840A (en) * 1988-03-31 1993-08-10 Porton Cambridge Limited Assay with backwash
WO1997001492A1 (en) * 1995-06-28 1997-01-16 Guild William C Storing, mixing, and dispensing container
US20020085270A1 (en) * 2000-11-27 2002-07-04 Bendett Mark P. Apparatus and method for integrated photonic devices having add/drop ports and gain
US20030185514A1 (en) * 2002-03-29 2003-10-02 Bendett Mark P. Method and apparatus for tapping a waveguide on a substrate
US6636678B1 (en) 1999-01-27 2003-10-21 Teem Photonics, Inc. Method and apparatus for waveguide optics and devices
US20030196455A1 (en) * 2002-04-17 2003-10-23 Mccov Michael A. Apparatus and method for photonic waveguide fabrication
US20040208579A1 (en) * 2002-03-29 2004-10-21 Bendett Mark P. Compact apparatus and method for integrated photonic devices having folded directional couplers
US20040234321A1 (en) * 2001-04-25 2004-11-25 Breidenbach Diane C. Dual cosmetic container
US7354768B1 (en) * 2004-04-28 2008-04-08 Phase Dynamics, Inc. Volume-differential assay using hydrophilic gel
US7407625B1 (en) * 2004-04-28 2008-08-05 Phase Dynamics, Inc. Volume-differential water assay system using hydrophilic gel
US20110117673A1 (en) * 2008-07-16 2011-05-19 Johnson Brandon T Methods and systems to collect and prepare samples, to implement, initiate and perform assays, and to control and manage fluid flow
US8021873B2 (en) 2008-07-16 2011-09-20 Boston Microfluidics Portable, point-of-care, user-initiated fluidic assay methods and systems
US20180353952A1 (en) * 2015-12-11 2018-12-13 Siemens Healthcare Diagnostics Inc. Specimen container and method for separating serum or plasma from whole blood
US11090647B2 (en) * 2017-04-28 2021-08-17 U.S. Environmental Protection Agency Double bottom test tube kit and method therefore

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3134611A1 (en) * 1981-09-01 1983-03-10 Boehringer Mannheim Gmbh, 6800 Mannheim METHOD FOR CARRYING OUT ANALYTICAL PROVISIONS AND MEANS SUITABLE FOR THIS

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884638A (en) * 1973-08-01 1975-05-20 Damon Corp Method of determining cholesterol
US4065358A (en) * 1975-05-17 1977-12-27 Kabushiki Kaisha Kyoto Daiichi Kagaku Apparatus for producing reactions in colorimetric cells
US4196085A (en) * 1976-06-09 1980-04-01 The United States Of America As Represented By The Department Of Health, Education And Welfare Dialysis solution handling device
US4308347A (en) * 1977-02-18 1981-12-29 Hoffmann-La Roche Inc. Device for detecting microorganisms
US4244916A (en) * 1977-08-18 1981-01-13 Jean Guigan Device for conditioning a sample of liquid for analyzing with internal filter
US4230664A (en) * 1979-01-23 1980-10-28 Technion Research & Development Foundation Ltd. Test pack kit for immunoassay
US4234083A (en) * 1979-11-13 1980-11-18 Cohen Milton J Mixing and filtering vial
US4369117A (en) * 1980-05-12 1983-01-18 American Hospital Supply Corporation Serum separating method and apparatus
US4534863A (en) * 1984-05-22 1985-08-13 Schleicher & Schuell, Inc. Centrifugal filtering device and filter unit therefor
US4735782A (en) * 1986-10-22 1988-04-05 Eli Lilly And Company Extraction apparatus
US5234840A (en) * 1988-03-31 1993-08-10 Porton Cambridge Limited Assay with backwash
US4968432A (en) * 1988-05-18 1990-11-06 Cobe Laboratories, Inc. Treatment of liquid including blood components
US5057226A (en) * 1988-05-18 1991-10-15 Cobe Laboratories, Inc. Treatment of liquid including blood components
US5208142A (en) * 1991-11-19 1993-05-04 Miles Inc. Method for separating erythrocytes from whole blood
WO1997001492A1 (en) * 1995-06-28 1997-01-16 Guild William C Storing, mixing, and dispensing container
US5634714A (en) * 1995-06-28 1997-06-03 Guild; William Fluid mixing and dispensing system for the rapid mixing of a prestored substance with a fluid and the dispensing thereof
US5863126A (en) * 1995-06-28 1999-01-26 Guild; William Fluid mixing and dispensing system for the rapid mixing of a prestored substance with a fluid and the dispensing thereof
US6970494B1 (en) 1999-01-27 2005-11-29 Teem Photonics, S.A. Rare-earth doped phosphate-glass lasers and associated methods
US6636678B1 (en) 1999-01-27 2003-10-21 Teem Photonics, Inc. Method and apparatus for waveguide optics and devices
US6690873B2 (en) 1999-01-27 2004-02-10 Teem Photonics Method and apparatus for waveguide optics and devices
US8545120B2 (en) 2000-02-29 2013-10-01 Diane C. Breidenbach Dual cosmetic container
US6954564B2 (en) 2000-11-27 2005-10-11 Teem Photonics Apparatus and method for integrated photonic devices having high-performance waveguides and multicompositional substrates
US20020085270A1 (en) * 2000-11-27 2002-07-04 Bendett Mark P. Apparatus and method for integrated photonic devices having add/drop ports and gain
US6493476B2 (en) 2000-11-27 2002-12-10 Teem Photonics Apparatus and method for integrated photonic devices having gain and wavelength-selectivity
US20040234321A1 (en) * 2001-04-25 2004-11-25 Breidenbach Diane C. Dual cosmetic container
US20030185514A1 (en) * 2002-03-29 2003-10-02 Bendett Mark P. Method and apparatus for tapping a waveguide on a substrate
US20040208579A1 (en) * 2002-03-29 2004-10-21 Bendett Mark P. Compact apparatus and method for integrated photonic devices having folded directional couplers
US6813405B1 (en) 2002-03-29 2004-11-02 Teem Photonics Compact apparatus and method for integrated photonic devices having folded directional couplers
US20030196455A1 (en) * 2002-04-17 2003-10-23 Mccov Michael A. Apparatus and method for photonic waveguide fabrication
US7354768B1 (en) * 2004-04-28 2008-04-08 Phase Dynamics, Inc. Volume-differential assay using hydrophilic gel
US7407625B1 (en) * 2004-04-28 2008-08-05 Phase Dynamics, Inc. Volume-differential water assay system using hydrophilic gel
US20110117673A1 (en) * 2008-07-16 2011-05-19 Johnson Brandon T Methods and systems to collect and prepare samples, to implement, initiate and perform assays, and to control and manage fluid flow
US8021873B2 (en) 2008-07-16 2011-09-20 Boston Microfluidics Portable, point-of-care, user-initiated fluidic assay methods and systems
US8846310B2 (en) 2008-07-16 2014-09-30 Boston Microfluidics Methods of preparing and operating portable, point-of-care, user-initiated fluidic assay systems
US20180353952A1 (en) * 2015-12-11 2018-12-13 Siemens Healthcare Diagnostics Inc. Specimen container and method for separating serum or plasma from whole blood
US10870110B2 (en) * 2015-12-11 2020-12-22 Babson Diagnostics, Inc. Specimen container and centrifugation method for separating serum or plasma from whole blood therewith
US11697114B2 (en) * 2015-12-11 2023-07-11 Babson Diagnostics, Inc. Centrifugation method separating serum or plasma from whole blood using a specimen container having a cap to retain blood cells
US11090647B2 (en) * 2017-04-28 2021-08-17 U.S. Environmental Protection Agency Double bottom test tube kit and method therefore

Also Published As

Publication number Publication date
DE1944246A1 (en) 1970-03-05
FR2016590A1 (en) 1970-05-08
BR6911945D0 (en) 1973-03-13
NL6912626A (en) 1970-03-03

Similar Documents

Publication Publication Date Title
US3733179A (en) Method and apparatus for the quantitative determination of blood chemicals in blood derivatives
Furman Continuous flow analysis: theory and practice
KR100247327B1 (en) Method and apparatus for detecting hemolysis in a fluid sample
US7323315B2 (en) Method for reducing effect of hematocrit on measurement of an analyte in whole blood
US3552925A (en) Whole blood separation method and test using same
US5460974A (en) Method of assaying whole blood for HDL cholesterol
US3799742A (en) Miniaturized integrated analytical test container
US4234317A (en) Apparatus and method for fractionation of lipoproteins
Heller et al. A simplified assay for porphyrins in whole blood
JPH01302161A (en) Particle separation method and apparatus
Laessig et al. The effects of 0.1 and 1.0 percent erythrocytes and hemolysis on serum chemistry values
AU606290B2 (en) Process and reagent for the determination of the ionic strength or of the specific weight of aqueous liquids
JPH04212060A (en) Apparatus and method for separating and assaying whole blood
JP2611890B2 (en) Measurement method using dry analytical element and dry analytical element
US3894844A (en) Simultaneous determination of triglycerides, cholesterol and phospholipids
JPS61228351A (en) Method for detecting hemoglobin in excretion
US4105499A (en) Heart attack screening method, apparatus and kit for same
US3399971A (en) Medical diagnostic method
US4211531A (en) Colorimetric cholesterol assay
JPH05203655A (en) Device and method for biological analysis containing particle separation system
Liu et al. Prediction of fetal lung maturity from near‐infrared spectra of amniotic fluid
Bandi et al. Extended clinical trial and evaluation of glucose determination with the Eastman Kodak Ektachem GLU/BUN Analyzer.
US3923459A (en) Process for the determination of bilirubin in fluids
Judd et al. Serological studies on an α-D-galactosyl-binding lectin isolated from Bandeiraea simplicifolia seeds
Rodriguez-Castellon et al. Evaluation of an automated glucose-oxidase procedure