US3733994A - Apparatus for washing of photographic material - Google Patents

Apparatus for washing of photographic material Download PDF

Info

Publication number
US3733994A
US3733994A US00072739A US3733994DA US3733994A US 3733994 A US3733994 A US 3733994A US 00072739 A US00072739 A US 00072739A US 3733994D A US3733994D A US 3733994DA US 3733994 A US3733994 A US 3733994A
Authority
US
United States
Prior art keywords
water
contamination
wash
bath
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00072739A
Inventor
C Armstrong
A Cronig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STEK CORP
Original Assignee
STEK CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STEK CORP filed Critical STEK CORP
Application granted granted Critical
Publication of US3733994A publication Critical patent/US3733994A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/26Processes using silver-salt-containing photosensitive materials or agents therefor
    • G03C5/29Development processes or agents therefor
    • G03C5/31Regeneration; Replenishers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03DAPPARATUS FOR PROCESSING EXPOSED PHOTOGRAPHIC MATERIALS; ACCESSORIES THEREFOR
    • G03D3/00Liquid processing apparatus involving immersion; Washing apparatus involving immersion
    • G03D3/02Details of liquid circulation
    • G03D3/06Liquid supply; Liquid circulation outside tanks
    • G03D3/065Liquid supply; Liquid circulation outside tanks replenishment or recovery apparatus

Definitions

  • the present invention relates to a method and an apparatus for washing of developed photographic material and more particularly to such method and apparatus wherein the contamination content of the water is maintained within predetermined levels.
  • the surface of the photographic material as it leaves the developer bath and enters the fixing bath includes metallic silver in the developed areas of the image, and silver halide in the undeveloped areas.
  • Achemical reaction takes place in-the fix bath in which the: silver halide forms complex salts such as the argento complexes.
  • free silver liberated from the emulsion of the photosensitive surface is introduced into the fixing solution.
  • the amount of free silver in the photographic fixing solution is directly related to the amount of film that is passed through the solution.
  • the amount of metallic silver in the solution increases and more silver is available to react with the emulsion on the surface of the photographic material, resulting in heavier or more complex argento compounds.
  • These compounds and the simple salts on the surface of the film must be removed to eliminate staining, spotting and fading of the finished photograph. The heavier or more complex the salt with the emulsion, the more difficult it is to remove the compound from the material surface.
  • the present invention provides a method and an apparatus for drastically reducing the amount of wash water to which it is necessary' to subject photographic material.
  • an ionic exchange occurs between complex salts and in the photographic material and simple salts in the wash water. Since it is much easier to remove the simple salts than the heavy ones, providing an environment for ionic exchange effects a substantial economy of water and drastically reduces washing time.
  • the surface of the emulsion is not subjected to the distortion mentioned hereinabove. Also drying time is greatly decreased.
  • a closed loop water reclamation system may be utilized. Since the levels of contamination of the water are controlled as described above and either only a portion of the water need be purified in the cycling operation, or only partial purification of the water takes place, an unobvious and unexpected advantage occurs by utilizing the ionic exchange concept described above in a closed loop system.
  • An advantage of ionic exchange is that the amount of water used is drastically reduced, because the water does not have to be pure. In fact, it is undesirable to completely purify the water. Thus only a partial purification of the water is necessary, or alternatively, the purification process does not have to be complete or extremely efficient.
  • the storage facilities, reservoirs and purifiers are reduced in size. The total volume of water necessary to operate such a system is greatly reduced over the closed loop reclamation systems of the prior art.
  • An object of the present invention is the provision of a method and apparatus for achieving high quality photographic images.
  • Another object of the present invention is the provision of a method and apparatus for rapid photographic processing.
  • Yet another object of the invention is the provision of apparatus and a system for photographic processing wherein the quantities of water utilized are significantly reduced.
  • Still another object if the provision of a closed cycle photographic washing system enabling disposal of wash water in an uncontaminated state.
  • FIG- URE of drawing illustrates in schematic form, a closed loop photographic water reclamation system.
  • sodium potassium and ammonium salts In the processing of silver halide photographic film, it is very common to use sodium potassium and ammonium salts throughout the various baths of the developing process. Sodium sulfite (Na,SO or potassium metabisulfite (K 8 are commonly used as a preservative to prevent aerial oxidation. In the fixing bath sodium or ammonium thiosulfate, Na S O or (NI-l S 0 is used to dissolve the silver halides in the unexposed portion of the image on the film. The reaction between the silver halides and the simple thiosulfate salts yields argento thiosulfate complexes which remain entrapped in the emulsion.
  • thiosulfate complexes examples include Na Ag S 0 and (NH Ag S 0 As the amount of film processed through the fixer bath is increased, the amount of silver carried on the film from the developer bath to the fixing bath is increased, thus more free silver is available to form these argento complexes. As the fixing solution becomes older, heavier or more complex, argento salts are formed on the emulsion. Various polythionates such as sodium tetrathionate Na (Ag)S O may be formed. As mentioned herein before, the more complex or the heavier the salt carried by the emulsion into the washing bath, the more difficult it is to remove these salts.
  • the contamination levels mentioned throughout the specification and recited in the claims refer to the total level of contaminants dissolved or soluble in the wash water and not to simple thiosulfates alone. It has been found by empirical methods that the total concentration of soluble contaminants disclosed contain simple thiosulfates in proportions which create a favorable atmosphere for ionic substitution. The ability to measure the total soluble contamination levels, rather than measuring the level of simple thiosulfate salt greatly simplifies the sensing equipment.
  • the thiosulfate ions will exchange with the argento polythiosulfate radicals present in the argento polythiosulfate complexes on the film, leaving thiosulfate salts which are readily removed from the surface of the film.
  • the contamination level of the water is above a particular limit which depends upon the efficiency of the washer, the ionic exchange reaction ceases and the argento thiosulfates will remain in the emulsion.
  • the prior art references wash conditioning or hypo eliminating baths using thiosulfites, such as ammonium and sodium thiosulfite.
  • This invention eliminates the need for any prewash conditioning.
  • this invention particularly adapts itself to utilization in a closed loop system of water reclamation. In one apparatus used we have found that only one part of clean water is necessary in the recycling operation for every seven parts of contaminated water.
  • a photo processor washing apparatus 31 is connected in closed loop to a water decontaminating or purification apparatus 21 through a wash water support unit 11.
  • Water from an indiginous source passes through the support unit 11 via input line 12 and line 22 to a water processor or purifier such as heat pump evaporator 21 where the water is purified.
  • the purified water exists from the processor 21 via output line 23 and solenoid mixing valve 13 to line 14.
  • Input line 12 also supplies indiginous water to line 14 via solenoid operated mixing valve 15.
  • Line 14 is connected to the washing unit 31 of a photo processor (not shown) having a contamination sensor 32 mounted therein.
  • the sensor 32 is connected to a contamination control instrument 16 in support unit 11 which controls the mixing valves 13 and 15.
  • Processor wash tank 31 has an output or overflow pipe 33 which is connected to a storage tank 17 in the support unit 11.
  • Line 18, leads from the storage tank 17 to the mixing valve via a pump 37.
  • Water from wash tank 31 is fed into storage tank 17, a portion of the water from tank 17 is passed to purifier 21 via line 22 and a portion to line 14 via mixing valve 15.
  • Mixing valves 13 and 15 control the ratio of pure to contaminated water.
  • valve 19 is closed and the system operates in closed loop.
  • the ratio of pure to contaminated water is sensed by sensor 32, which transmits a signal to control 16 which in turn operates the valves 13 and 15 to control the level of contamination of the water.
  • the control 16 is shown as a variable control and may be set to any desired contamination level.
  • valves 34 and 15 are closed, and valves 35 and 13 are opened.
  • the system may be drained with all of the water passing through purifier 21.
  • a flash evaporator or heat pump as the purification unit 21.
  • the major advantage of such a system are that the unit is relatively small and compact.
  • a flash evaporator lowers the pressure inside the unit below the ambient level of pressure and thus the temperature of the solution to be purified does not have to attain atmospheric boiling temperature. Thus associated refrigeration apparatus necessary is extremely small.
  • the use of a flash evaporator facilitates complete purification of the water upon disposal. Further, the flash evaporator is extremely stable and requires no regeneration as in ion exchange resin systems.
  • This developer is commercially available from Eastman Kodak Company and generally known as Kodak Developer D-19.
  • the fixer or hypo used consists essentially of sodium thiosulphate hydrated sodium sulphite glacial acetic acid 1.35 specific gravity Contamination in PPM Soluble Contaminents Dist. Resid.
  • the preferred oxidizing agents comprise the inorganic and organic metal salts having reducible metal ions having at least Rosid. hypo, mgn/in.
  • Time output input Dist. output input Dist 11 B C hour 2, 500 2, 750 200 6. 2 5. 7 8. 8 0. 020 O. 020 O. 030
  • Sea water was obtained from Myrtle Beach, South Carolina with contamination level of 7,500 parts per million and a pH of 5.4. One hour 25 minutes was required to convert 36 gallons of sea water to 20 gallons distilled water. However, 5 gallons of distilled water, enough to start to utilize the water reclamation system, was obtained in 11 minutes.
  • EXAMPLE IV Twenty gallons of swamp water was obtained from an indiginous slough located between Sumter, South Carolina and Columbia, South Carolina. One hour 5 minutes was required to distill this water. Five gallons of liquid were available after 12 minutes. Again, sufficient water to start operation of a single processor. A single processor as shown in the sole FIGURE of drawing was connected in parallel utilizing the distilled swamp water. The following table illustrates the operation of the system utilizing the distilled swamp water as shown in the table.
  • the photographic system for which this invention is adapted comprises an oxidizing
  • Apparatus for washing photographic material comprising:
  • An apparatus of claim 1 further including meansfor shunting a quantity of the contaminated water around the contamination lowering means; and,
  • said mixing means includes a contamination sensor and a contamination control operatively connected to said sensor whereby the level of contamination of the wash water in the bath is kept at a constant level.
  • An apparatus of claim 3 wherein the means for lowering the contamination level comprises a flash evaporator.

Abstract

An apparatus for controlling the contamination level of photo wash water supporting an environment for ionic substitution of simple thiosulfate salts in the water with complex argento thiosulfates on the photographic emulsion surface. A water purifier is placed in closed loop with the wash tank to control the level of contamination.

Description

United States Patent [19] Armstrong et al.
[111 3,733,994 1 May 22, 1973 [54] APPARATUS FOR WASHING OF PHOTOGRAPHIC MATERIAL [75] Inventors: Clarence J. Armstrong, Lowell; Alvin Cronig, Lexington, both of Mass.
[73] Assignee: Stek Corporation, Lexington, Mass. [22] Filed: Sept. 16, 1970 [21] Appl. No.: 72,739
Primary Examiner-Samuel S. Matthews Assistant Examiner-Fred L. Braun AttorneyDavid E. Brook Related U.S. Application Data [57]- ABSTRACT DiviSiO" 610J27' 1967, An apparatus for controlling the contamination level of photo wash water supporting an environment for ionic substitution of simple thiosulfate salts in the ..95/9Z;,0935l/g;0l; water with complex arggmo thiosulfates on the photo graphic emulsion surface A water purifier is placed in [58] Field of Search ..95/89 R, 96, 97 closed p with the wash tank to control the level of contamination.
5 Claims, 1 Drawing Figure WASHWATER T our 32 PROCESSOR ovsRFLowi ="i :=:-:t l
a I: I
"E ll l if 13m :2 WATER m i 7 STORAGE JJ 1 GALLON i 37 max I I L I I4 I8 I9 I O I i i E -/6 s. g 5 51 L. a i am i H "72 f more mom ANY souncr 1 APPARATUS FOR WASHING OF PHOTOGRAPHIC MATERIAL CROSS REFERENCE TO RELATED APPLICATIONS This adivision of U.S. application Ser. No. 610,127, filed Jan; 18, 1967, now U.S. Pat. No. 3,531,284.
BACKGROUND 1. Field of the Invention The present invention relates to a method and an apparatus for washing of developed photographic material and more particularly to such method and apparatus wherein the contamination content of the water is maintained within predetermined levels.
2. Description of the Prior Art In silver halide photographic processing systems, the surface of the photographic material as it leaves the developer bath and enters the fixing bath, includes metallic silver in the developed areas of the image, and silver halide in the undeveloped areas. Achemical reaction takes place in-the fix bath in which the: silver halide forms complex salts such as the argento complexes.
. Also, free silver liberated from the emulsion of the photosensitive surface is introduced into the fixing solution. The amount of free silver in the photographic fixing solution is directly related to the amount of film that is passed through the solution. Hence, as the film footage increases, the amount of metallic silver in the solution increases and more silver is available to react with the emulsion on the surface of the photographic material, resulting in heavier or more complex argento compounds. These compounds and the simple salts on the surface of the film must be removed to eliminate staining, spotting and fading of the finished photograph. The heavier or more complex the salt with the emulsion, the more difficult it is to remove the compound from the material surface.
In the prior art, it has been common practice to wash the film with large quantities of water for extended periods of time to remove these salts. The obvious disadvantages of protracted washing is that the emulsion tends to swell and distort as it is subjected to more and more water, thus distorting the photographic image. In many uses of the image for precise measurement and maximum information retrieval, such as photogrammetry and reconnaisance, the distortion due to prolonged or uncontrolled washing reduces or eliminates the precision and retrieval capability. Further as the emulsion becomes softer, it absorbs a good deal of water, increasing drying time of the material. Prolonged drying or drying at elevated temperatures necessitated by over-washing further compounds the image distortion problems.
Most commercial photographic processing plants are located in areas of high population concentration. For example, the motion picture and television industries in the United States are located in Los Angeles, Chicago, and New York City. As years goon, more concern is shown-for water conservation and purification. Indicative of the purification problem is concern over the disposal of contaminated solutions into sewerage systems. Also, in many tactical military situations film processors are placed in locations where water supplies are rather limited. Often the water is unfit for any use, particularly photographic washing. Therefore, much effort has been directed toward photographic processing systems incorporating closed loop water reclamation systems in attempts to minimize clean water requirements. In such systems water from the wash bath is cycled through water.purification apparatus and returned to the wash bath in a purified state. As has been disclosed above, prior art systems have used considerable quantities of water. Therefore, such reclamation systems necessitate large storage tanks and reclamation or purification systems, capable of processing great quantities of water. Such purification systems are characteristically cumbersome and overly expensive, generally unfit for tactical and commercial applications.
SUMMARY OF THE INVENTION The present invention provides a method and an apparatus for drastically reducing the amount of wash water to which it is necessary' to subject photographic material. By carefully controlling the contamination level of the wash water, it is found that an ionic exchange occurs between complex salts and in the photographic material and simple salts in the wash water. Since it is much easier to remove the simple salts than the heavy ones, providing an environment for ionic exchange effects a substantial economy of water and drastically reduces washing time. The surface of the emulsion is not subjected to the distortion mentioned hereinabove. Also drying time is greatly decreased. This is due not only to the fact that the amount of water to which the material is subjected to decreases, but is also due to the fact that the hardness of the emulsion can be kept in its natural hard gel state. This is effected because of the ease with which the simple salts are removed from the emulsion and because the pH of the water is kept within closely controlled limits at the isoelectric point of the gelatin. The simple salt in the water counteracts the acetic acid carried into the wash tank from the fixing bath.
To further reduce the quantities of water used, a closed loop water reclamation system may be utilized. Since the levels of contamination of the water are controlled as described above and either only a portion of the water need be purified in the cycling operation, or only partial purification of the water takes place, an unobvious and unexpected advantage occurs by utilizing the ionic exchange concept described above in a closed loop system. An advantage of ionic exchange is that the amount of water used is drastically reduced, because the water does not have to be pure. In fact, it is undesirable to completely purify the water. Thus only a partial purification of the water is necessary, or alternatively, the purification process does not have to be complete or extremely efficient. The storage facilities, reservoirs and purifiers are reduced in size. The total volume of water necessary to operate such a system is greatly reduced over the closed loop reclamation systems of the prior art.
An object of the present invention is the provision of a method and apparatus for achieving high quality photographic images.
Another object of the present invention is the provision of a method and apparatus for rapid photographic processing.
Yet another object of the invention is the provision of apparatus and a system for photographic processing wherein the quantities of water utilized are significantly reduced.
Still another object if the provision of a closed cycle photographic washing system enabling disposal of wash water in an uncontaminated state.
Other objects and provisions of the invention will become more fully understood in light of the following specification taken in conjunction with the sole FIG- URE of drawing which illustrates in schematic form, a closed loop photographic water reclamation system.
DESCRIPTION OF THE EMBODIMENTS Throughout the following specification, we will allude to the processing of photographic film. It should be carefully understood that this is merely illustrative and any photographic materials may be processed by the practice of the method and use of the apparatus of this invention. It is intended that this invention be limited only by the scope of the appended claims.
In the processing of silver halide photographic film, it is very common to use sodium potassium and ammonium salts throughout the various baths of the developing process. Sodium sulfite (Na,SO or potassium metabisulfite (K 8 are commonly used as a preservative to prevent aerial oxidation. In the fixing bath sodium or ammonium thiosulfate, Na S O or (NI-l S 0 is used to dissolve the silver halides in the unexposed portion of the image on the film. The reaction between the silver halides and the simple thiosulfate salts yields argento thiosulfate complexes which remain entrapped in the emulsion. Examples of such thiosulfate complexes are Na Ag S 0 and (NH Ag S 0 As the amount of film processed through the fixer bath is increased, the amount of silver carried on the film from the developer bath to the fixing bath is increased, thus more free silver is available to form these argento complexes. As the fixing solution becomes older, heavier or more complex, argento salts are formed on the emulsion. Various polythionates such as sodium tetrathionate Na (Ag)S O may be formed. As mentioned herein before, the more complex or the heavier the salt carried by the emulsion into the washing bath, the more difficult it is to remove these salts. We have found that by carefully controlling the contamination, that is, the percentage of soluble contaminants including the simple thiosulfate salt in the wash water, we may create a favorable atmosphere for ionic exchange. Water containing very low concentrations of dissolved salts does not wash as effectively as those containing moderate to high concentrations of dissolved salts in the water. Also, above a certain level of contamination, the wash water will not remove thiosulfates from the emulsion in any measurable degree.
Although the ionic exchange is dependent upon the percentage of simple thiosulfate salt in the wash water, the contamination levels mentioned throughout the specification and recited in the claims refer to the total level of contaminants dissolved or soluble in the wash water and not to simple thiosulfates alone. It has been found by empirical methods that the total concentration of soluble contaminants disclosed contain simple thiosulfates in proportions which create a favorable atmosphere for ionic substitution. The ability to measure the total soluble contamination levels, rather than measuring the level of simple thiosulfate salt greatly simplifies the sensing equipment.
It is quite obvious that the ratio of simple thiosulfate salt to the total soluble contaminant will not remain constant over a protracted period of use of any photoprocessing equipment. However, we have noted in various test runs and throughout long periods of actual practice of the invention, examples of which are presented below, that this factor is of no concern and may be neglected for all practical applications within our experience. Nevertheless, if the complex salts become a problem, a very simple expedient for the removal of gross thiosulfate complexes from the water is available. The chemical addition of suitable reagents to precipitate the sulphur from the thiosulfate complex and filtration of the sulphur from the water will remove the contaminating substances.
To explain the ion exchange theory advanced herein, it is found that if an emulsion containing the thiosulfate ion is considered to be an anion exchange resin, and is made basic by the addition of suitable chemicals, an ideal solution for anion exchange exists where R S O 20H ZROH S 0 However, when relatively pure water is presented to the thiosulfate bearing emulsion, no ion exchange can be expected because only a few sulfate ions are present in the wash water. Thus by leaving a predetermined quantity of contamination in the wash water, the thiosulfate ions will exchange with the argento polythiosulfate radicals present in the argento polythiosulfate complexes on the film, leaving thiosulfate salts which are readily removed from the surface of the film. Obviously, if the contamination level of the water is above a particular limit which depends upon the efficiency of the washer, the ionic exchange reaction ceases and the argento thiosulfates will remain in the emulsion.
The prior art references wash conditioning or hypo eliminating baths using thiosulfites, such as ammonium and sodium thiosulfite. This invention eliminates the need for any prewash conditioning. There are two obvious advantages to the elimination of a wash conditioner or hypo eliminator bath. Firstly, the film processing time is decreased by the elimination of one step in the wash cycle and the size, weight and efficiency of the equipment is also decreased. Additionally, since the sulfite salts are neutralized, acetic acid in the hypo will increase the pH of the wash bath. In the present system, the acidity of the fixer is counterbalanced by the basic pH of the thiosulfates; thus we are able to keep the pH of the film emulsion at a level between 4.7 and 4.9. This has been found to be the natural gel point or isoelectric point of the film. Less water, therefore, is absorbed by the gel. Hence the quality of the photograph is enhanced by decreasing the amount of water to which the film is subjected, by decreasing the wash time, by decreasing the drying time and by lowering the pH of the wash bath. The combination of these factors enables us to achieve archival quality of films; that is, the films processed utilizing the method and apparatus of the invention, are of as high quality as the photographic properties of the film allow. No distortion occurs due to gelatin swelling, displacement or scratching of the surface of the emulsion.
Since the water is never completely purified, the lower limit of contaminant being approximately parts per million and the upper limit being of the order of 10,000 parts per million, this invention particularly adapts itself to utilization in a closed loop system of water reclamation. In one apparatus used we have found that only one part of clean water is necessary in the recycling operation for every seven parts of contaminated water.
Turning now to the sole FIGURE of drawing, a photo processor washing apparatus 31 is connected in closed loop to a water decontaminating or purification apparatus 21 through a wash water support unit 11.
Water from an indiginous source (not shown) passes through the support unit 11 via input line 12 and line 22 to a water processor or purifier such as heat pump evaporator 21 where the water is purified. The purified water exists from the processor 21 via output line 23 and solenoid mixing valve 13 to line 14. Input line 12 also supplies indiginous water to line 14 via solenoid operated mixing valve 15.
Line 14 is connected to the washing unit 31 of a photo processor (not shown) having a contamination sensor 32 mounted therein. The sensor 32 is connected to a contamination control instrument 16 in support unit 11 which controls the mixing valves 13 and 15.
Processor wash tank 31 has an output or overflow pipe 33 which is connected to a storage tank 17 in the support unit 11. Line 18, leads from the storage tank 17 to the mixing valve via a pump 37. Water from wash tank 31 is fed into storage tank 17, a portion of the water from tank 17 is passed to purifier 21 via line 22 and a portion to line 14 via mixing valve 15. Mixing valves 13 and 15 control the ratio of pure to contaminated water.
Once the system is filled, a valve 19 is closed and the system operates in closed loop. The ratio of pure to contaminated water is sensed by sensor 32, which transmits a signal to control 16 which in turn operates the valves 13 and 15 to control the level of contamination of the water. The control 16 is shown as a variable control and may be set to any desired contamination level.
If it is desirable to flush or drain the system, valves 34 and 15 are closed, and valves 35 and 13 are opened. Thus, the system may be drained with all of the water passing through purifier 21. With this arrangement, all of the water flushed from the system will be pure and the possibility of contaminating an indiginous supply is eliminated.
In a particular embodiment it was found desirable to use a flash evaporator or heat pump as the purification unit 21. The major advantage of such a system are that the unit is relatively small and compact. As is well known, a flash evaporator lowers the pressure inside the unit below the ambient level of pressure and thus the temperature of the solution to be purified does not have to attain atmospheric boiling temperature. Thus associated refrigeration apparatus necessary is extremely small. Additionally, the use of a flash evaporator facilitates complete purification of the water upon disposal. Further, the flash evaporator is extremely stable and requires no regeneration as in ion exchange resin systems.
It should be obvious, however, because of the quantity of water utilized in this system due to the level of contamination of water which is found to be desirable, that any purification apparatus will work and the system as a whole will operate in a manner far superior to that of prior art systems. For example, if a reverse osmosis technique is used, wherein water enters a chamber under high pressure and is then forced through a semipermeable membrane effecting cleanup of the water, no holding reservoirs would be necessary. The effectiveness of the membrane could be designed such that a desired level of contamination would be maintained. The advantage of such a unit is balanced by the disadvantage of disposal of the water upon completion. It is further noticed that with a flash evaporator utilized as the water processor, maintenance is slight. It was found that the water could be used for an indefinite period of time. Additionally, maintenance or cleaning of the scaling on the evaporator may occur only once every 6 months. i
The following examples are indicative of results obtainable by utilizing the method and apparatus of the instant invention.
EXAMPLE I A heat pump AMF RP-720 manufactured by American Machine and Foundry Corporation of Waterford, Conn. was placed in closed loop as shown in the sole FIGURE of drawing with a Versamat II CM photographic processor manufactured by Eastman Kodak Company of Rochester NY. The developing solution used consisted of:
water monomethyl pararnido phenol sulphate sodium sulfite hydroquinone sodium carbonate monohydrated potassium bromide and add water to make 1 liter 500 ml 2.2g 96 g 8.8g
This developer is commercially available from Eastman Kodak Company and generally known as Kodak Developer D-19.
The fixer or hypo used consists essentially of sodium thiosulphate hydrated sodium sulphite glacial acetic acid 1.35 specific gravity Contamination in PPM Soluble Contaminents Dist. Resid.
Hypo
mg/in.
Proc. Input ProcDist. Input Proc. Output Time Start 60 330 50 3650 3900 270 3250 210 2350 330 4500 550 24500 4400 720 25000 3400 760 Total footage 31,370 feet Total water recirculated 9,290 gallons Total water to start-25 gallons Total water to end-25 gallons EXAMPLE I] In thisexample three Versamat processes of the type used in example 1 were connected in parallel with the 1/2 hr 4 hrs 6 hrs 10 hrs 15 hrs. 21 hrs 30 hrs 44 hrs heat pump and support system shown in the cycle. All other systems parameters were the same as they were used in Example I.
agent which is usually the image former. The preferred oxidizing agents comprise the inorganic and organic metal salts having reducible metal ions having at least Rosid. hypo, mgn/in.
Time output input Dist. output input Dist 11 B C hour 2, 500 2, 750 200 6. 2 5. 7 8. 8 0. 020 O. 020 O. 030
2 hOlIXS.. 10, 000 8, 500 210 5. 12 5. 8. l O. 030 O. 040 O. 040
5 hours 8, 000 4, 900 320 5. 0 4. 8 3. 7 0. 030 O. 045 O. 050
7 hour 6, 000 3, 200 420 4. 8 4. 8 3. 8 (l. 020 0 020 i) 030 l) 1101118.. 8, 200 4, 5UU 40(1 4. 8 4. ii i. 7 0. U50 0. 050 0. U4!) gg'fi ggggf gif 89725 the oxidizing power of the cuperic ion (Cu Examr'ecirculated 5446 gallons ples of such salts are the salts of the reducible metal Make up water required 0 gallons ions, Ag Hg Pb Au Pt Ni Sn Pb EXAMPLE 111 and A single Versamat processor was utilized. Sea water was obtained from Myrtle Beach, South Carolina with contamination level of 7,500 parts per million and a pH of 5.4. One hour 25 minutes was required to convert 36 gallons of sea water to 20 gallons distilled water. However, 5 gallons of distilled water, enough to start to utilize the water reclamation system, was obtained in 11 minutes.
EXAMPLE IV Twenty gallons of swamp water was obtained from an indiginous slough located between Sumter, South Carolina and Columbia, South Carolina. One hour 5 minutes was required to distill this water. Five gallons of liquid were available after 12 minutes. Again, sufficient water to start operation of a single processor. A single processor as shown in the sole FIGURE of drawing was connected in parallel utilizing the distilled swamp water. The following table illustrates the operation of the system utilizing the distilled swamp water as shown in the table.
Contamination, p.p.1n. pII
Rosid.
Proc. Proc. Proc Proc. lliio,
Time output Dist. input output Dist. input mgnlin.
Start"... 12, 000 450 050 4. 0 5.7 4. 3
0 hours-.. 10,000 000 800 4.7 4.4 4.3
hours. 9, 500 150 320 5. X 5. .1 6. 2 0. 025
15 hours 0. 000 330 000 5.1 4. 3 4.4 0. 015
17 hours 13. 000 350 500 5.2 4. 5 4.3 0.025
24 hours.. 10,000 450 000 5.0 4. 3 4. 5 0. 030
Total footage 8510 feet While this invention is especially adapted for use with silver halide photographic processing systems, it will be understood that'this invention is equally as useful in any of those photographic systems for which fixing and washing can be applied to chemical development or physical development of latent images where the developed portions of the print comprise metal images and the non-exposed portions comprise metal salts. Examples of photographic systems other than metal halides to which this image can be adapted are those disclosed in U. S. Pat. No. 3,152,903 and co-pending application Ser. Nos. 199,211 filed May 14, 1962 now abandoned, 514,200 filed Dec. 16, 1965, now US. Pat. No. 3,512,974, and 514,176 filed Dec. 16, 1965, now US. Pat. No. 3,512,973. Thus the photographic system for which this invention is adapted comprises an oxidizing Thus we find that by practicing the method and using the apparatus of the present invention, the quality of the photographic film or other photographic materials washed is limited only by the characteristics of the photographic material or processes other than washing. Severe constraints which might be placed on the use and disposal of water in the future are virtually eliminated by practice of this invention and additionally, the maintenance problems of the apparatus are significantly reduced over prior art systems.
Various modifications are contemplated and may obviously be resorted to by those skilled in the art without departing from the spirit and scope of the inventor as hereinafter defined by the appended claims.
What is claimed and desired to be secured by Letters Patent of the United States is:
1. Apparatus for washing photographic material comprising:
a bath for containing wash water through which the material passes;
means for removing the wash water which is contaminated by the material from the bath;
means for lowering the contamination level of the removed water;
means for introducing partially decontaminated water into the wash bath; and,
means for maintaining the level of contamination in the wash water within a range of .from about to about 10,000 parts per million.
2. An apparatus of claim 1 further including meansfor shunting a quantity of the contaminated water around the contamination lowering means; and,
means for mixing quantities of the decontaminated water with the shunted water prior to introduction into the bath.
3. An apparatus of claim 2 wherein said mixing means includes a contamination sensor and a contamination control operatively connected to said sensor whereby the level of contamination of the wash water in the bath is kept at a constant level.
4. An apparatus of claim 3 wherein the means for lowering the contamination level comprises a flash evaporator.
5. An apparatus of claim 1 wherein the pH of the wash water is within the range from about 4.7 to about 4.9.

Claims (5)

1. Apparatus for washing photographic material comprising: a bath for containing wash water through which the material passes; means for removing the wash water which is contaminated by the material from the bath; means for lowering the contamination level of the removed water; means for introducing partially decontaminated water into the wash bath; and, means for maintaining the level of contamination in the wash water within a range of from about 80 to about 10,000 parts per million.
2. An apparatus of claim 1 further including means for shunting a quantity of the contaminated water around the contamination lowering means; and, means for mixing quantities of the decontaminated water with the shunted water prior to introduction into the bath.
3. An apparatus of claim 2 wherein said mixing means includes a contamination sensor and a contamination control operatively connected to said sensor whereby the level of contamination of the wash water in the bath is kept at a constant level.
4. An apparatus of claim 3 wherein the means for lowering the contamination level comprises a flash evaporator.
5. An apparatus of claim 1 wherein the pH of the wash water is within the range from about 4.7 to about 4.9.
US00072739A 1967-01-18 1970-09-16 Apparatus for washing of photographic material Expired - Lifetime US3733994A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61012767A 1967-01-18 1967-01-18
US7273970A 1970-09-16 1970-09-16

Publications (1)

Publication Number Publication Date
US3733994A true US3733994A (en) 1973-05-22

Family

ID=26753687

Family Applications (1)

Application Number Title Priority Date Filing Date
US00072739A Expired - Lifetime US3733994A (en) 1967-01-18 1970-09-16 Apparatus for washing of photographic material

Country Status (1)

Country Link
US (1) US3733994A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978506A (en) * 1973-12-07 1976-08-31 Agfa-Gevaert, A.G. Apparatus and method for neutralizing waste photographic fluids
US3995298A (en) * 1973-11-07 1976-11-30 Agfa-Gevaert N.V. Apparatus for processing photographic film and recovering solid substances from the processing solutions used
US4081816A (en) * 1973-12-07 1978-03-28 Agfa-Gevaert, A.G. Apparatus for processing photographic film and treating contaminated processing liquids
US4128424A (en) * 1973-12-07 1978-12-05 Agfa-Gevaert Ag Method for treating photographic processing fluids prior to sewering thereof
US4190346A (en) * 1978-12-04 1980-02-26 Hutson John W Automated clean-out system for film processors
US4349267A (en) * 1980-03-26 1982-09-14 Dainippon Screen Mfg. Co., Ltd. Processing solution circulating device for film processor
FR2505520A1 (en) * 1981-05-06 1982-11-12 Pictorial Service Automatic replacement system for photographic fluid - uses resistivity of fluid to determine quality and control fresh fluid supply valve
US4724044A (en) * 1986-10-15 1988-02-09 Sprint Recovery Systems Inc. Apparatus for pollution control of industrial waste systems
US4796042A (en) * 1987-07-31 1989-01-03 Hoechst Celanese Corp. Printing plate processor having recirculating water wash reclamation
US4801961A (en) * 1986-06-27 1989-01-31 Fuji Photo Film Co., Ltd. Image forming apparatus
EP0315374A1 (en) * 1987-11-01 1989-05-10 Konica Corporation Disposal device for photographic processing waste liquor and processing method of photograhic processing waste liquor
US4857950A (en) * 1987-02-13 1989-08-15 Fuji Photo Film Co., Ltd. Wash water reservoiring method and apparatus therefore
US4901099A (en) * 1986-04-11 1990-02-13 Fuji Photo Film Co., Ltd. Water supply system for developing apparatus
US5004522A (en) * 1986-12-03 1991-04-02 Konica Corporation Method of treating photographic process waste liquor through concentration by evaporation
US5011571A (en) * 1986-12-17 1991-04-30 Konica Corporation Method for treating photographic process waste liquor through concentration by evaporation and apparatus therefor
US5089840A (en) * 1986-04-11 1992-02-18 Fuji Photo Film Co., Inc. Water supply system for developing apparatus
US5439560A (en) * 1990-02-22 1995-08-08 Konica Corporation Low pressure evaporation concentrating apparatus for a photographic process waste disposl
US5770019A (en) * 1991-01-31 1998-06-23 Konica Corporation Apparatus for concentrating waste liquid
US20090107156A1 (en) * 2007-10-26 2009-04-30 Tadaharu Kishibe Heat pump system, operation procedure therefor and evaporator system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995298A (en) * 1973-11-07 1976-11-30 Agfa-Gevaert N.V. Apparatus for processing photographic film and recovering solid substances from the processing solutions used
US3978506A (en) * 1973-12-07 1976-08-31 Agfa-Gevaert, A.G. Apparatus and method for neutralizing waste photographic fluids
US4081816A (en) * 1973-12-07 1978-03-28 Agfa-Gevaert, A.G. Apparatus for processing photographic film and treating contaminated processing liquids
US4128424A (en) * 1973-12-07 1978-12-05 Agfa-Gevaert Ag Method for treating photographic processing fluids prior to sewering thereof
US4160594A (en) * 1973-12-07 1979-07-10 Agfa-Gevaert, A.G. Method and arrangement for the development of latent images particularly latent photographic images
US4190346A (en) * 1978-12-04 1980-02-26 Hutson John W Automated clean-out system for film processors
US4349267A (en) * 1980-03-26 1982-09-14 Dainippon Screen Mfg. Co., Ltd. Processing solution circulating device for film processor
FR2505520A1 (en) * 1981-05-06 1982-11-12 Pictorial Service Automatic replacement system for photographic fluid - uses resistivity of fluid to determine quality and control fresh fluid supply valve
US5089840A (en) * 1986-04-11 1992-02-18 Fuji Photo Film Co., Inc. Water supply system for developing apparatus
US4901099A (en) * 1986-04-11 1990-02-13 Fuji Photo Film Co., Ltd. Water supply system for developing apparatus
US4801961A (en) * 1986-06-27 1989-01-31 Fuji Photo Film Co., Ltd. Image forming apparatus
US4724044A (en) * 1986-10-15 1988-02-09 Sprint Recovery Systems Inc. Apparatus for pollution control of industrial waste systems
US5004522A (en) * 1986-12-03 1991-04-02 Konica Corporation Method of treating photographic process waste liquor through concentration by evaporation
US5011571A (en) * 1986-12-17 1991-04-30 Konica Corporation Method for treating photographic process waste liquor through concentration by evaporation and apparatus therefor
US4857950A (en) * 1987-02-13 1989-08-15 Fuji Photo Film Co., Ltd. Wash water reservoiring method and apparatus therefore
US4796042A (en) * 1987-07-31 1989-01-03 Hoechst Celanese Corp. Printing plate processor having recirculating water wash reclamation
EP0315374A1 (en) * 1987-11-01 1989-05-10 Konica Corporation Disposal device for photographic processing waste liquor and processing method of photograhic processing waste liquor
US5057191A (en) * 1987-11-01 1991-10-15 Konica Corporation Processing method or photographic processing waste liquor
US5439560A (en) * 1990-02-22 1995-08-08 Konica Corporation Low pressure evaporation concentrating apparatus for a photographic process waste disposl
US5770019A (en) * 1991-01-31 1998-06-23 Konica Corporation Apparatus for concentrating waste liquid
US20090107156A1 (en) * 2007-10-26 2009-04-30 Tadaharu Kishibe Heat pump system, operation procedure therefor and evaporator system
US7981254B2 (en) * 2007-10-26 2011-07-19 Hitachi, Ltd. Heat pump system, operation procedure therefor and evaporator system

Similar Documents

Publication Publication Date Title
US3733994A (en) Apparatus for washing of photographic material
US5565308A (en) Method of processing black and white photographic elements using processors having low volume thin tank designs
JPS63151944A (en) Developing method
US6010833A (en) Process and device for recycling washing water in photographic processing
US3531284A (en) Method and apparatus for washing of photographic material
EP0530889B1 (en) Method for replenishing photographic developer solutions
JP2756855B2 (en) Automatic processor with excellent water saving efficiency
JPH11194458A (en) Method for processing black-and-white silver halide photographic sensitive material
JP2719825B2 (en) Automatic developing apparatus with excellent water saving efficiency, processing method of silver halide black-and-white photosensitive material using the apparatus, and wastewater processing method
JP2709846B2 (en) Automatic developing apparatus with excellent water saving efficiency, processing method of silver halide black-and-white photosensitive material using the apparatus, and wastewater processing method
JPH0440291A (en) Treatment of photograph processing waste liquid
JP3650864B2 (en) Processing method of silver halide photographic light-sensitive material
Stein et al. Removal of sodium thiosulfate from wash water by the use of ion exchange resins for application in a closed photographic system
JP2709845B2 (en) Automatic developing apparatus excellent in water saving efficiency and wastewater treatment method using the same
JP2782222B2 (en) Automatic developing apparatus having built-in water saving mechanism, processing method of silver halide black-and-white photosensitive material using the apparatus, and wastewater processing method
US1954512A (en) Method of treating of photographic emulsions
JP2775166B2 (en) Automatic developing device with excellent water saving efficiency and method for processing silver halide black-and-white photosensitive material using the same
JPS6278551A (en) Treatment of black and white silver halide photosensitive material
JP2799598B2 (en) Processing of silver halide black-and-white photographic materials
Priesthoff et al. Ion-exchange recovery of Eastman color developers
JP2709857B2 (en) Automatic developing apparatus with excellent water saving efficiency and method for processing silver halide black-and-white photosensitive material using the apparatus
EP0598145A1 (en) A method for processing an imagewise exposed silver halide photographic material
Ives et al. Fundamental factors in rapid processing
JP2922345B2 (en) Processing method of photosensitive material
JPH04100594A (en) Wastewater treatment method