US3736598A - Prosthetic cardiac valve - Google Patents

Prosthetic cardiac valve Download PDF

Info

Publication number
US3736598A
US3736598A US3736598DA US3736598A US 3736598 A US3736598 A US 3736598A US 3736598D A US3736598D A US 3736598DA US 3736598 A US3736598 A US 3736598A
Authority
US
United States
Prior art keywords
legs
ring
valve
framework
flanges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
B Bellhouse
F Bellhouse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3736598A publication Critical patent/US3736598A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7879Resilient material valve
    • Y10T137/788Having expansible port
    • Y10T137/7882Having exit lip
    • Y10T137/7885Multiple slit

Definitions

  • ABSTRACT A prosthetic aortic or pulmonary valve for permanent cardiac implantation into the natural valve root having a framework which is made from sheet woven of knitted textile fabric material and which consists of an annular ring with three equiangularly spaced projecting legs which extend substantially parallel to one another in the axial direction from the ring.
  • Each leg is folded about its longitudinal center line so that the side edges of the legs form radially outwardly projecting flanges, the adjacent flanges of adjacent legs merging through curves into the portion of the ring lying between those two legs whereby a substantially U- shaped continuous outwardly projecting flange is formed between each pair of the three pairs of ad jacent legs.
  • the framework supports three separate cusps made of thin flexible impermeable sheet material, each cusp having a substantially U-shaped edge which overlies one of the substantially U-shaped flanges and is bonded to it, and a free edge which extends between the free ends of the corresponding pair of legs and has a length substantially equivalent to one .third of the internal diameter of the framework ring.
  • Our present consideration is the provision of a prosthetic aortic or pulmonary valve for permanent implantation in the aortic or pulmonary root where new cusps have to be provided for co-operation with the natural sinus bulges in the root wall.
  • a prosthetic valve in which the cusps were provided by arcuate portions of a unitary cylinder or suitable flexible material, the cylinder being supported by a rigid metallic or plastic skeleton including a ring to which one end of the cylinder is attached and defines the upstream diameter of the valve and three prongs extending axially downstream from the ring at 120 intervals, the wall of the cylinder being secured to the prongs to define the axial edges of the cusps.
  • the downstream end of the cylinder then provides the free edges of the cusps extending between the tips of the three prongs and these edges open into a circular configuration when the valve is open and meet one another along three equiangularly spaced radii when the valve is closed.
  • a prosthetic aortic or pulmonary valve for permanent cardiac implantation into the natural valve root has a framework which is made from sheet woven or knitted textile fabric material and which consists of an annular ring with three equiangularly spaced projecting legs which extend substantially parallel to one another in the axial direction from the ring, each leg being folded about its longitudinally center line so that the side edges of the legs form radially outwardly projecting flanges, the adjacent flanges of adjacent legs merging through curves into the portion of the ring lying between those two legs whereby a substantially U-shaped continuous outwardly projecting flange is formed between each pair of the three pairs of adjacent legs; the framework supporting three separate cusps made of thin flexible impermeable sheet material, each cusp having a substantially U-shaped edge which overlies one of the substantially U-shaped flanges and is bonded to it, and a free edge which extends between the free ends of the corresponding pair of legs and has a length slightly greater than one
  • This new arrangement has the advantage that it may be stitched in position in the natural valve root wall by stitches passing through each of the U-shaped flanges and the overlying edges of the cusps.
  • the cusps as well as the framework are then'positively stitched in position.
  • the framework being made of a fabric, provides adequate support for the cusps and is able to conform to the particular shape of a particular natural valve wall, and also to follow the natural dilation and contraction of the valve wall during the blood pumping cycle, both without appreciable irritation.
  • the fabric from which the framework is formed is a fine uncut terylene which may be coated with silicone rubber.
  • Velour has the advantage of pro viding a rough surface into which the natural tissue will grow and knit.
  • the legs and ring of the framework may be cut as an integral piece from the fabric, the legs then being bent out of the plane of the ring before having the cusps attached to them.
  • each of the cusps from a fine woven or. knitted terylene fabric coated with silicone rubber.
  • the U-shaped edge of each cusp may be bonded to the complementary flange of the framework by means of a suitable medical quality thermoplastic bonding agent such as silicone rubber.
  • FIG. 1 is a downstream end elevation of the valve shown in the closed position
  • FIG. 2 is a side elevation of the valve in the closed position
  • FIG. 3 is a view corresponding to FIG. 1 but showing the valve open;
  • FIG. 4 is a view corresponding to FIG. 2 but showing the valve open
  • FIG. 5 is a partially broken away perspective view of the valve in position in a natural aortic root.
  • FIG. 6 is a section taken on the line VI-VI in FIG. 5.
  • the valve has a framework 7 consisting of a ring with three equiangularly spaced axially extending legs 8, made from terylene velour coated with silicone rubber.
  • the ring and legs are folded to provide outwardly projecting flanges 9 each of which is of U-shaped configuration and is continuous between a corresponding pair of adjacent legs 8.
  • the length of the free straight edge 12 of each cusp 10 is slightly greater than one third of the circumference of the ring 7 so that when the valve is open, as shown in FIG. 3, the cusps define a substantially cylindrical passage 13 for laminar flow through the valve, but when in the closed position shown in FIG. 1, they meet one another along equiangularly spaced radial planes 14of abutment to close the flow passage
  • the ring 7 Prior to implantation the ring 7 is manufactured with an extension 15. However immediately before sliding the valve into the position in the aortic root the extension 15 is trimmed back, for example to the chain dotted line shown in FIGS. 2 and 4, substantially level with the bases of the Us of the flanges 9.
  • FIGS. 5 and 6 illustrate the valve sutured into a natural aortic root 16 provided with three natural sinus bulges 17.
  • the prosthetic valve is secured in the aortic rent by means of stitches 18 which pass through the flanges 9'and overlapping edges of the cusps l0, and the aortic wall.
  • the U-shape of each flange 9 corresponds substantially to the U-shape of the line of contact with the natural tissue around the bottom and sides of each sinus 17.
  • the flanges 9 provide a most convenient means for suturing the valve to the natural tissue and since the legs 8 and ring 7 are made of extremely pliable fabric, the valve produces the minimum of irritation likely to lead to trauma.
  • a prosthetic pulmonary valve will be constructed and implanted in a directly analogous manner to that described.
  • a prosthetic cardiac arterial valve for permanent cardiac implantation into the natural valve root, said of adjacent legs merging through curves into the portion of said ring lying therebetween whereby a substantially U-shaped continuous outwardly projecting flange is formed between each pair of the three pairs of said adjacent legs; said framework supporting three separate cusps made of thin flexible impermeable sheet material, each cusp having a substantially U-shaped edge which overlies one of said substantially Ushaped flanges and is bonded thereto, and a free edge which extends between the free ends of the corresponding pair of said legs and has a length substantially equivalent to one third of the internal circumference of said framework ring.
  • each cusp is made from a fine terylene fabric coated with silicone rubber.

Abstract

A prosthetic aortic or pulmonary valve for permanent cardiac implantation into the natural valve root having a framework which is made from sheet woven of knitted textile fabric material and which consists of an annular ring with three equiangularly spaced projecting legs which extend substantially parallel to one another in the axial direction from the ring. Each leg is folded about its longitudinal center line so that the side edges of the legs form radially outwardly projecting flanges, the adjacent flanges of adjacent legs merging through curves into the portion of the ring lying between those two legs whereby a substantially U-shaped continuous outwardly projecting flange is formed between each pair of the three pairs of adjacent legs. The framework supports three separate cusps made of thin flexible impermeable sheet material, each cusp having a substantially U-shaped edge which overlies one of the substantially U-shaped flanges and is bonded to it, and a free edge which extends between the free ends of the corresponding pair of legs and has a length substantially equivalent to one third of the internal diameter of the framework ring.

Description

United States Patent 1191 Bellhouse et al.
[54] PROSTHETIC CARDIAC VALVE [76] Inventors: Brian John Bellhouse, The Ridings, lslip near Oxford; Francis Hewitt Bellhouse, 34 Hill Rise, Old Woodstock, both of England 22 Filed: June 10,1971
[21] Appl. No.: 151,740
[52] US. Cl ..3/l, 3/DIG. 3, 137/525.1 [51] Int.Cl ..A61f1/22,F16k 15/14 [58] Field of Search ..3/l DIG. 3;
[ 56] References Cited UNITED STATES PATENTS 3,197,788 8/1965 Segger ..3 1
OTHER PUBLICATIONS The Direct Approach for the Correction of Aortic lnsufficiency" by Charles A. Hufnagel, Journal of the American Medical Association, Vol. 178, No. 3,0ct. 21, 1961, pp. 275-279.
A Prefabricated Semirigid Tricusp Aortic Valve Prosthesis" by E. A. Hessel et a], Journal of Thoracic & Cardiovascular Surgery, Vol. 54, No. 2, August 1967, pp. 227-241 relied upon.
A Pseudoendocardium For Implantable Blood Pumps by D. Liot ta et al. Trans. Amer. Soc. Artif. lnt. Organs, Vol. XI], 1966, pp. 129--] 34.
1 51 June 5, 1973 Comparative Study of Cardiac and Vascular Implants in Relation to Thrombosis by C. A. Hufnagel et al. Surgery, Vol. 61, No. 1, January, 1967 pp. 11-16.
Primary Examiner-Richard A. Gaudet Assistant Examiner-Ronald L. Frinks Attorneyl-lolcombe, Wetherill & Brisebois [57] ABSTRACT A prosthetic aortic or pulmonary valve for permanent cardiac implantation into the natural valve root having a framework which is made from sheet woven of knitted textile fabric material and which consists of an annular ring with three equiangularly spaced projecting legs which extend substantially parallel to one another in the axial direction from the ring. Each leg is folded about its longitudinal center line so that the side edges of the legs form radially outwardly projecting flanges, the adjacent flanges of adjacent legs merging through curves into the portion of the ring lying between those two legs whereby a substantially U- shaped continuous outwardly projecting flange is formed between each pair of the three pairs of ad jacent legs. The framework supports three separate cusps made of thin flexible impermeable sheet material, each cusp having a substantially U-shaped edge which overlies one of the substantially U-shaped flanges and is bonded to it, and a free edge which extends between the free ends of the corresponding pair of legs and has a length substantially equivalent to one .third of the internal diameter of the framework ring.
6 Claims, 6 Drawing Figures 1 PROSTHETIC CARDIAC VALVE As explained in some detail in U.S. Pat. No. 3,608,097, our research haspersuad ed us that the aortic valve of the human heart is a tricuspid valve which, when the blood is pumped from the left ventricle opens fully to allow the laminar flow of the blood. The three cusps of the valve cooperate with the three sinus bulges in the aortic wall to provide chambers which are open to the flow of blood through openings where the free ends of the cusps terminate short of the distal, that is downstream, ends of the sinuses. At this point the shoulders formed by the ends of the sinuses intercept part of the flow through the valve with the result that vortices, tending to urge the cusps to the closed position, are set up in the chambers. These vortices continue when the blood flow through the valve decelerates at the end of systole with the result that the cusps are moved almost to their closed position before there is any appreciable backflow. We believe that these conditions also exist in the pulmonary valve of the right ventricle and also in the aortic and pulmonary valves of many animals other than humans.
Our present consideration is the provision of a prosthetic aortic or pulmonary valve for permanent implantation in the aortic or pulmonary root where new cusps have to be provided for co-operation with the natural sinus bulges in the root wall.
In the earlier application a prosthetic valve was disclosed in which the cusps were provided by arcuate portions of a unitary cylinder or suitable flexible material, the cylinder being supported by a rigid metallic or plastic skeleton including a ring to which one end of the cylinder is attached and defines the upstream diameter of the valve and three prongs extending axially downstream from the ring at 120 intervals, the wall of the cylinder being secured to the prongs to define the axial edges of the cusps. The downstream end of the cylinder then provides the free edges of the cusps extending between the tips of the three prongs and these edges open into a circular configuration when the valve is open and meet one another along three equiangularly spaced radii when the valve is closed. This construction, although providing the basis for a practical prosthetic valve-has two disadvantages. It is difficult to stitch .the prongs adequately to the natural valve wall between the sinus bulges and the provision of the rigid skeleton encourages movement between the skeleton and the flexible aortic root, and emphasizes the fact that the prosthetic valve is a foreign body.
In accordance with the present invention a prosthetic aortic or pulmonary valve for permanent cardiac implantation into the natural valve root has a framework which is made from sheet woven or knitted textile fabric material and which consists of an annular ring with three equiangularly spaced projecting legs which extend substantially parallel to one another in the axial direction from the ring, each leg being folded about its longitudinally center line so that the side edges of the legs form radially outwardly projecting flanges, the adjacent flanges of adjacent legs merging through curves into the portion of the ring lying between those two legs whereby a substantially U-shaped continuous outwardly projecting flange is formed between each pair of the three pairs of adjacent legs; the framework supporting three separate cusps made of thin flexible impermeable sheet material, each cusp having a substantially U-shaped edge which overlies one of the substantially U-shaped flanges and is bonded to it, and a free edge which extends between the free ends of the corresponding pair of legs and has a length slightly greater than one third of the internal circumference of the framework ring.
This new arrangement has the advantage that it may be stitched in position in the natural valve root wall by stitches passing through each of the U-shaped flanges and the overlying edges of the cusps. The cusps as well as the framework are then'positively stitched in position. The framework, being made of a fabric, provides adequate support for the cusps and is able to conform to the particular shape of a particular natural valve wall, and also to follow the natural dilation and contraction of the valve wall during the blood pumping cycle, both without appreciable irritation.
Preferably the fabric from which the framework is formed is a fine uncut terylene which may be coated with silicone rubber. Velour has the advantage of pro viding a rough surface into which the natural tissue will grow and knit. The legs and ring of the framework may be cut as an integral piece from the fabric, the legs then being bent out of the plane of the ring before having the cusps attached to them.
At present we prefer to make each of the cusps from a fine woven or. knitted terylene fabric coated with silicone rubber. The U-shaped edge of each cusp may be bonded to the complementary flange of the framework by means of a suitable medical quality thermoplastic bonding agent such as silicone rubber.
One example of a prosthetic aortic valve, constructed in accordance with the invention, and its use, are illustrated in the accompanying drawings, in which:
FIG. 1 is a downstream end elevation of the valve shown in the closed position;
FIG. 2 is a side elevation of the valve in the closed position;
FIG. 3 is a view corresponding to FIG. 1 but showing the valve open;
FIG. 4 is a view corresponding to FIG. 2 but showing the valve open;
FIG. 5 is a partially broken away perspective view of the valve in position in a natural aortic root; and,
FIG. 6 is a section taken on the line VI-VI in FIG. 5.
The valve has a framework 7 consisting of a ring with three equiangularly spaced axially extending legs 8, made from terylene velour coated with silicone rubber. The ring and legs are folded to provide outwardly projecting flanges 9 each of which is of U-shaped configuration and is continuous between a corresponding pair of adjacent legs 8. Three similar cusps 10, each of substantially D shape and made of ten denier knitted terylene coated with silicone rubber, overlap and are bonded with a silicone rubber adhesive each by an edge 11 to a corresponding one of the flanges 9. The length of the free straight edge 12 of each cusp 10 is slightly greater than one third of the circumference of the ring 7 so that when the valve is open, as shown in FIG. 3, the cusps define a substantially cylindrical passage 13 for laminar flow through the valve, but when in the closed position shown in FIG. 1, they meet one another along equiangularly spaced radial planes 14of abutment to close the flow passage.
Prior to implantation the ring 7 is manufactured with an extension 15. However immediately before sliding the valve into the position in the aortic root the extension 15 is trimmed back, for example to the chain dotted line shown in FIGS. 2 and 4, substantially level with the bases of the Us of the flanges 9.
FIGS. 5 and 6 illustrate the valve sutured into a natural aortic root 16 provided with three natural sinus bulges 17. During implantation the prosthetic valve is secured in the aortic rent by means of stitches 18 which pass through the flanges 9'and overlapping edges of the cusps l0, and the aortic wall. It will be appreciated that the U-shape of each flange 9 corresponds substantially to the U-shape of the line of contact with the natural tissue around the bottom and sides of each sinus 17. In FIG. 5 the flow from the left ventricle of the heart will be upwardly through the valve and because the free edges 12 of the cusps terminate short of the distal ends of the sinuses l7, hemispherical vortices, indicated by the curled arrow in FIG. 5, will be set up as described in our earlier U.S. patent. Consequently during systole, the valve will open and provide an uninterrupted cylindrical passageway for laminar blood flow but as soon as the flow decelerates, the vortices cause the cusps to fold inwards and close substantially immediately.
The flanges 9 provide a most convenient means for suturing the valve to the natural tissue and since the legs 8 and ring 7 are made of extremely pliable fabric, the valve produces the minimum of irritation likely to lead to trauma.
A prosthetic pulmonary valve will be constructed and implanted in a directly analogous manner to that described.
We claim:
1. A prosthetic cardiac arterial valve for permanent cardiac implantation into the natural valve root, said of adjacent legs merging through curves into the portion of said ring lying therebetween whereby a substantially U-shaped continuous outwardly projecting flange is formed between each pair of the three pairs of said adjacent legs; said framework supporting three separate cusps made of thin flexible impermeable sheet material, each cusp having a substantially U-shaped edge which overlies one of said substantially Ushaped flanges and is bonded thereto, and a free edge which extends between the free ends of the corresponding pair of said legs and has a length substantially equivalent to one third of the internal circumference of said framework ring.
2. A valve according to claim 1, wherein said fabric from which said framework is formed is a fine uncut terylene velour.
3. A valve according to claim 2, wherein said velour is coated with silicone rubber.
4. A valve according to claim '1, wherein said legs and said ring of said framework are cut as an integral piece from said fabric.
5. A valve according to claim 1, wherein each cusp is made from a fine terylene fabric coated with silicone rubber.
6. A valve according to claim 5, in which said terylene fabric is a ten denier warp knitted fabric.

Claims (6)

1. A prosthetic cardiac arterial valve for permanent cardiac implantation into the natural valve root, said valve having a framework made from sheet textile fabric material and consisting of an annular ring with three equiangularly spaced projecting legs which extend substantially parallel to one another in the axial direction from said ring, each leg being folded about a longitudinal center line so that side edges of said legs form radially outwardly projecting flanges, the adjacent flanges of adjacent legs merging through curves into the portion of said ring lying therebetween whereby a substantially U-shaped continuous outwardly projecting flange is formed between each pair of the three pairs of said adjacent legs; said framework supporting three separate cusps made of thin flexible impermeable sheet material, each cusp having a substantially U-shaped edge which overlies one of said substantially U-shaped flanges and is bonded thereto, and a free edge which extends between the free ends of the correSponding pair of said legs and has a length substantially equivalent to one third of the internal circumference of said framework ring.
2. A valve according to claim 1, wherein said fabric from which said framework is formed is a fine uncut terylene velour.
3. A valve according to claim 2, wherein said velour is coated with silicone rubber.
4. A valve according to claim 1, wherein said legs and said ring of said framework are cut as an integral piece from said fabric.
5. A valve according to claim 1, wherein each cusp is made from a fine terylene fabric coated with silicone rubber.
6. A valve according to claim 5, in which said terylene fabric is a ten denier warp knitted fabric.
US3736598D 1971-06-10 1971-06-10 Prosthetic cardiac valve Expired - Lifetime US3736598A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15174071A 1971-06-10 1971-06-10

Publications (1)

Publication Number Publication Date
US3736598A true US3736598A (en) 1973-06-05

Family

ID=22540060

Family Applications (1)

Application Number Title Priority Date Filing Date
US3736598D Expired - Lifetime US3736598A (en) 1971-06-10 1971-06-10 Prosthetic cardiac valve

Country Status (1)

Country Link
US (1) US3736598A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2807467A1 (en) * 1977-02-23 1978-08-24 Robert Bernard Davis VALVE PROSTHESIS
US4192020A (en) * 1975-05-07 1980-03-11 Washington University Heart valve prosthesis
US4245358A (en) * 1979-01-24 1981-01-20 Manoutcher Moasser Nontraumatic prosthetic valve with magnetic closure
US4275469A (en) * 1979-12-13 1981-06-30 Shelhigh Inc. Prosthetic heart valve
US4291420A (en) * 1973-11-09 1981-09-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Artificial heart valve
US4297749A (en) * 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
US4339831A (en) * 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4417360A (en) * 1981-07-31 1983-11-29 Manoutchehr Moasser Nontraumatic prosthetic valve with magnetic closure
US4473423A (en) * 1982-05-03 1984-09-25 University Of Utah Artificial heart valve made by vacuum forming technique
US4510628A (en) * 1982-05-03 1985-04-16 University Of Utah Artificial heart valve made by vacuum forming technique
US4851000A (en) * 1987-07-31 1989-07-25 Pacific Biomedical Holdings, Ltd. Bioprosthetic valve stent
EP0515324A1 (en) * 1991-05-24 1992-11-25 SORIN BIOMEDICA CARDIO S.p.A. A cardiac valve prosthesis, particularly for replacement of the aortic valve
US5500014A (en) * 1989-05-31 1996-03-19 Baxter International Inc. Biological valvular prothesis
US6126686A (en) * 1996-12-10 2000-10-03 Purdue Research Foundation Artificial vascular valves
US20070100435A1 (en) * 2003-04-24 2007-05-03 Cook Incorporated Artificial prostheses with preferred geometries
US20070260327A1 (en) * 2003-04-24 2007-11-08 Case Brian C Artificial Valve Prosthesis with Improved Flow Dynamics
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
CN101349356B (en) * 2007-07-16 2012-07-25 周俊 One-way elastic valve and fluid delivery device used thereby
US9314333B2 (en) 2011-05-26 2016-04-19 On-X Life Technologies, Inc. Heart valve sewing cuff
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197788A (en) * 1962-04-23 1965-08-03 Inst Of Medical Sciences Prosthetic valve for cardiac surgery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197788A (en) * 1962-04-23 1965-08-03 Inst Of Medical Sciences Prosthetic valve for cardiac surgery

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Prefabricated Semirigid Tricusp Aortic Valve Prosthesis by E. A. Hessel et al, Journal of Thoracic & Cardiovascular Surgery, Vol. 54, No. 2, August, 1967, pp. 227 241 relied upon. *
A Pseudoendocardium For Implantable Blood Pumps by D. Liotta et al. Trans. Amer. Soc. Artif. Int. Organs, Vol. XII, 1966, pp. 129 134. *
Comparative Study of Cardiac and Vascular Implants in Relation to Thrombosis by C. A. Hufnagel et al. Surgery, Vol. 61, No. 1, January, 1967 pp. 11 16. *
The Direct Approach for the Correction of Aortic Insufficiency by Charles A. Hufnagel, Journal of the American Medical Association, Vol. 178, No. 3, Oct. 21, 1961, pp. 275 279. *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291420A (en) * 1973-11-09 1981-09-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Artificial heart valve
US4192020A (en) * 1975-05-07 1980-03-11 Washington University Heart valve prosthesis
DE2807467A1 (en) * 1977-02-23 1978-08-24 Robert Bernard Davis VALVE PROSTHESIS
US4297749A (en) * 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
US4245358A (en) * 1979-01-24 1981-01-20 Manoutcher Moasser Nontraumatic prosthetic valve with magnetic closure
US4275469A (en) * 1979-12-13 1981-06-30 Shelhigh Inc. Prosthetic heart valve
US4339831A (en) * 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4417360A (en) * 1981-07-31 1983-11-29 Manoutchehr Moasser Nontraumatic prosthetic valve with magnetic closure
US4473423A (en) * 1982-05-03 1984-09-25 University Of Utah Artificial heart valve made by vacuum forming technique
US4510628A (en) * 1982-05-03 1985-04-16 University Of Utah Artificial heart valve made by vacuum forming technique
US4851000A (en) * 1987-07-31 1989-07-25 Pacific Biomedical Holdings, Ltd. Bioprosthetic valve stent
US5500014A (en) * 1989-05-31 1996-03-19 Baxter International Inc. Biological valvular prothesis
EP0515324A1 (en) * 1991-05-24 1992-11-25 SORIN BIOMEDICA CARDIO S.p.A. A cardiac valve prosthesis, particularly for replacement of the aortic valve
US5713953A (en) * 1991-05-24 1998-02-03 Sorin Biomedica Cardio S.P.A. Cardiac valve prosthesis particularly for replacement of the aortic valve
US6126686A (en) * 1996-12-10 2000-10-03 Purdue Research Foundation Artificial vascular valves
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US9421096B2 (en) 2003-04-24 2016-08-23 Cook Medical Technologies Llc Artificial valve prosthesis with improved flow dynamics
US7717952B2 (en) * 2003-04-24 2010-05-18 Cook Incorporated Artificial prostheses with preferred geometries
US20070260327A1 (en) * 2003-04-24 2007-11-08 Case Brian C Artificial Valve Prosthesis with Improved Flow Dynamics
US8221492B2 (en) 2003-04-24 2012-07-17 Cook Medical Technologies Artificial valve prosthesis with improved flow dynamics
US20070100435A1 (en) * 2003-04-24 2007-05-03 Cook Incorporated Artificial prostheses with preferred geometries
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US9331328B2 (en) 2006-03-28 2016-05-03 Medtronic, Inc. Prosthetic cardiac valve from pericardium material and methods of making same
CN101349356B (en) * 2007-07-16 2012-07-25 周俊 One-way elastic valve and fluid delivery device used thereby
US9314333B2 (en) 2011-05-26 2016-04-19 On-X Life Technologies, Inc. Heart valve sewing cuff
US9788947B2 (en) 2011-05-26 2017-10-17 On-X Life Technologies, Inc. Heart valve sewing cuff
US10695169B2 (en) 2011-05-26 2020-06-30 On-X Life Technologies, Inc. Heart valve sewing cuff
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device

Similar Documents

Publication Publication Date Title
US3736598A (en) Prosthetic cardiac valve
CN109561961B (en) Artificial valve and artificial valve implantation method
US6143024A (en) Annuloplasty ring having flexible anterior portion
US6716241B2 (en) Venous valve and graft combination
ES2370585T3 (en) PROSTHESIS FOR ANULOPLASTY THAT INCLUDES A PERFORATED ELEMENT.
US5139515A (en) Ascending aortic prosthesis
US6231602B1 (en) Aortic annuloplasty ring
CN103228232B (en) There is the prosthetic heart valve framework of flexible Colaesce
US6951573B1 (en) Prosthetic aortic valve
CA2391234C (en) Smooth ventricular assist device conduit
ES2202369T3 (en) APPARATUS TO REDUCE THE CIRCUMFERENCE OF VASCULAR STRUCTURE.
JP3701198B2 (en) Suture ring with improved ring fusion
US5855602A (en) Heart valve prosthesis
US5861028A (en) Natural tissue heart valve and stent prosthesis and method for making the same
US4630597A (en) Dynamic aortic patch for thoracic or abdominal implantation
US5928281A (en) Tissue heart valves
CA2991854A1 (en) A valvular sleeve for valvular prostheses and corresponding device
CN107530168A (en) There are the apparatus and method of the pacemaker ratio reduced in cardiac valves replacement
JPH0479657B2 (en)
JP2003509116A (en) Mitral annulus ring and method
WO1997024989A1 (en) Heart valve prosthesis and method for making same
WO2011134070A1 (en) Aortic conduit configured with terminal ends having neosinuses of valsalva
US3534411A (en) Cloth covered heart valve
CN102670333A (en) Aortic valve stent with coronary artery and conveyor of same
EP0071610B1 (en) Cardiac valvular bioprosthesis and the method of manufacture thereof