US3743783A - Apparatus for simultaneously recording speech spectra and physiological data - Google Patents

Apparatus for simultaneously recording speech spectra and physiological data Download PDF

Info

Publication number
US3743783A
US3743783A US00117331A US3743783DA US3743783A US 3743783 A US3743783 A US 3743783A US 00117331 A US00117331 A US 00117331A US 3743783D A US3743783D A US 3743783DA US 3743783 A US3743783 A US 3743783A
Authority
US
United States
Prior art keywords
speech
signal
input
frequency
responsive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00117331A
Inventor
J Agnello
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3743783A publication Critical patent/US3743783A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Human Computer Interaction (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A spectrum analyzer having an input, a mixer for feeding the input with a filtered speech signal and a frequency converted signal which is a function of physiological activity associated with the speech.

Description

[451 July 3,1973
[ APPARATUS FOR SIMULTANEOUSLY RECORDING SPEECH SPECTRA AND PHYSIOLOGICAL DATA [76] Inventor: Joseph G. Agnello, 12122 Audie Court, Cincinnati. Ohio 45246 [22] Filed: Feb. 22, 1971 [2]] Appl. No.: 117,331
3,383,466 5/1968 Hillix l79/l SA OTHER PUBLICATIONS Dolansky, On Certain irregularities of Voiced Speech Waveforms, lEEE Vol. AU-l6 March 1968, p. 5 l-56. Farr, Phonovid, A System for Recording Television Pictures on Phonograph Records, JAES, April 1968. Kersta, Amplitude Cross-Section Representation with the Sound Spectrograph, JASA Nov. 1948.
[52] US. Cl 179/1 VS Primary Examiner-Kathleen H. Clafi'y [51] Int. Cl. G] l/l2 Assistant Examiner-Jon Bradford Leaheey [58] Field of Search 179/1 VS, 1 SB, 1 SA; Attorney--Allen J. Jafie 324/77 B; 128/206 R, 9 E; 346/34,
[57] ABSTRACT [56] References Cited A spectrum analyzer havingan input a mixer for feed UNITED STATES PATENTS ing the input with a filtered speech signal and a fre- 2,378,383 6/1945 Arndt l28/2.06 R quency converted ignal is a function of physig- 2J8165 11/1939 79/1 vs logical activity associated with the speech; 2,492,062 12/1949 Potter 346/35 3,048,166 8/1962 Rodbard l28/2.06 R 4 Claims, 3 Drawing Figures MICROPHONE Fl LTER 12 I0 166 POWER X SPECTRUM SUPPLY /16 ER ANALYZER 162 22 r f f f a FREQUENCY AN 1R SDUCER AMPLlFlER CONVERTER ANALYZER SPECTRUM MIXER FREQUENCY CONVERTER FIG. 1
F! LTER AMPLIFIER Patented July 3, 1973 POWER /166 SUPPLY MICROPHONE TRANSDUCER o z EU 2 2 mmawmmmu BzmzowE TIME (MsEc) /pa/ FIG. 2
APPARATUS FOR SIMULTANEOUSLY RECORDING SPEECH SPECTRA AND PHYSIOLOGICAL DATA BACKGROUND OF THE DISCLOSURE The present invention relates to spectrum analyzers and, more particularly, to audio frequency spectrum analyzers which produce permanent graphic recordings of complex waves.
Various types of spectrum analyzers are known and widely used in the analysis and description of voices and other complex acoustic signals.
While the recorded outputs of these spectrum analyzers, in the form of spectrograms, have been a substantial aid to those engaged in phonetic research, heretofore, these analyzers have been limited to the reproduction of information derived only from voice or other sound inputs. Such information is usually in the form of an energy distribution in frequency and time. From this information researchers can make inferences about the physiological formation of the sounds that are produced. It is, however, desirable that apparatus be available that can not only record the complex voice signals but also the physiological event that may have occurred prior to, at the time of, or subsequent to the formation of the actual sound output.
SUMMARY OF THE INVENTION The present invention relates to an improvement to existing audio frequency spectrum analyzers which permits the simultaneous recording of physiological events as well as the complex acoustic signal onto the conventional spectrogram recording medium.
Basically, the present invention provides, in combination with conventional spectrum analyzers, input structure which combines the acoustic or speech signal with the physiological activity signal in such a manner that switching the spectrum analyzer from wide-band analysis to narrow-band analysis at a predetermined frequency will yield the physiological information alongside the speech analysis information, whereby the.
two can be readily compared in substantially real time.
This is accomplished by the provision of,- in combination with a spectrum analyzer of conventional construction having an input, means for developing a signal in response to sounds, means for filtering said signal and feeding the same to mixing means, transducer means for converting a physiological activity, such as intraoral pressure, to an electrical signal and means for converting said signal to a varying frequency signal and feeding the same to a second input of said mixing means, the output of which is connected to the input of said spectrum analyzer.
BRIEF DESCRIPTION OF THE DRAWING For a fuller understanding of the present invention reference should now be had to the following detailed description of the same taken in conjunction with the accompanying drawings wherein;
FIG. 1 is a schematic representation of the apparatus of the present invention with conventional components illustrated in block form;
FIG. 2 is a first spectrogram illustrating a typical result utilizing the apparatus of the present invention; and
FIG. 3 is a second spectrogram.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings and, more particularly, to FIG. 1, the improved spectrum analyzer of the present invention is illustrated in schematic block form and comprises, a spectrum analyzer 10, mixing means 12 and two input circuits connected to the mixing means; a speech input circuit depicted generally by the numeral 14 and a physiological activity input circuit depicted generally by the numeral 16.
For the spectrum analyzer 10 any suitable conventional analyzer may be utilized of the type wherein a selective receiver is cyclically tuned through the desired frequency band, and functions to resolve a complex audio signal into its frequency and amplitude components as a function of time. A typical spectrum analyzer for this purpose is the Sona-Graph Model 606l-A manufactured by the Kay Elemetrics Corp.
The mixing means 12 has an output line 18 which is fed to the input, such as the microphone input, of the spectrum analyzer 10. Any conventional signal mixing structure may be utilized, such as a Claricon Transistorized Microphone mixer. v
The speech input circuit 14 may comprise a microphone 140, the output from which is fed to filter means 142 which feeds the filtered signal from the microphone to one input of the mixing means 12 via line 20. Any conventional microphone or sound responsive device may be utilized such as, for example, an Electro- Voice Dynamic Microphone Model No. 631. The filter may comprise any suitable low-pass filter for passing frequencies below a predetermined value, such as 4,500 Hertz, which allows frequencies above this value to be employed for the response of physiological signals. A typical filter is the Krohn Hite Model 3 l0-C.
The physiological activity input circuit 16 comprises transducer means 160 for converting a physiological activity, such as intraoral pressure, into an electrical signal, means 162 for amplifying the output of the transducer means and frequency conversion means 164 for developing a varying frequency signal which is a function of the amplified transducer means output signal. The output from the frequency conversion means is fed via line 22 to the second input of the mixing means 12. A suitable power supply 166, such'as an Offner Type 392 power supply, is provided for circuit 16.
Transducer means 160 may comprise a Statham PMGOTC Differential pressure transducer; means 162 may comprise an Offner Type 492 data amplifier and the frequency conversion means 164 may comprise an Anadex Model DF DC to Frequency converter. In addition to utilizing the sine wave normally delivered by the frequency converter, the output thereof may be modified to deliver a saw-tooth wave.
In operation, assuming it is desired to correlate the intraoral pressure variations in the formation of certain spoken words with the acoustic sounds themselves, a suitable pressure sensor such as a polyethelene tube may be placed the speakers mouth to transmit the pressure variations to transducer 160, whereas the spoken sounds may be transmitted through microphone to filter 142.
The varying intraoral pressure signal is converted by transducer into a varying d.c. signal which is amplified by 162 and converted into a frequency varying signal by converter 164, the baseline frequency of which signal may be typically set at 4,700 Hertz.
The speech signal is filtered by low-pass filter 142 to frequencies below a predetermined value, such as 4,500 Hertz, and is mixed with the physiological activ ity signal from converter 164 in mixer 12 and then fed to the input of the spectrum analyzer 10.
With the spectrum analyzer set for wide-band analysis, the lower trace pattern of the speech signal is generated as a spectrogram on conventional spectrograph paper and is depicted in FIGS. 2 and 3 at S, which is expressed as the frequency distribution of the speech pattern as a function of time. Since conventional spectrum analyzers of the type mentioned herein typically utilize a wideband analysis of 300 Hz. for speech analysis, it is advisable to manually switch to a narrow band analysis to obtain a fine line trace of the physiological activity. Such switching can obviously be achieved by the built-inconventional band width control of typical spectrum analyzers. The expansion was set at 80 to 6,000 hertz. When the stylus of the spectrum analyzer reached the 4,500 hertz vertical position on the spectrographic paper, the expansion scale was turned off and switched from wide-band to narrow-band analysis, resulting in the upper trace shown in FIGS. 2 and 3 and depicted at P. This trace records the physiological activity expressed as intraoral pressure as a function of time. Alternatively, no switching is essential in the spectrum analyzer if the analysis begins at the narrow band width setting. The two signals will still be depicted as shown in FIGS. 2 and 3 with the exception that the harmonics of the lower trace will be resolved.
The FIG. 2 display is for the formation of the sound syllable /pa/ whereas the FIG. 3 display is for the formation of the sound syllable /ap/.
With the apparatus of the present invention many different kinds of displays of the speech spectrum and physiological activities can be obtained, depending upon the versatility of the user of the spectrum analyzer. The baseline for the pressure, or other physiological activity, recordings can be adjusted within the total range of the spectrum analyzer. The sensitivity of frequency change as a function ofintraoral pressure variations is adjustable.
The present invention enables the graphic displays of sound spectrum to be obtained with those of any physiological activity in real time in a simple and inexpensive manner.
Although a preferred embodiment has been disclosed, many changes will occur to those skilled in this field. For example, additional outputs from the frequency converter 164 will permit multi-channel operation for a comparison of a variety of physiological events together with sound spectra. Such events, in addition to the intraoral pressure can comprise an electrocardiographic pattern, which can be recorded simultaneously with the acoustic pattern of the heartbeat. Depending upon the type of sensor or transducer most any response can be recorded on to the spectrogram.
It is therefore intended that the scope of the present invention is to be limited only by the scope of the appended claims.
What is claimed is:
I. In apparatus for simultaneously recording sound spectra and physiological data, the combination comprising;
a. spectrum analyzer means for resolving a complex audio signal into its frequency and amplitude components as a function of time, said means having an input,
b. first means for developing a first signal in response to sounds,
c. second means for developing a second direct current signal in response to a physiological activity, and
d. mixing means for combining said first and second signals and feeding the same to said input of said spectrum analyzer means.
2. The apparatus according to claim 1 wherein;
(e) said first means comprises a microphone in series with a low-pass filter, and
(f) said second means comprises a transducer in series with an amplifier and a frequency converter.
3. The apparatus according to claim 2, wherein;
(g) said first means is responsive to human speech,
and
(h) said second means is responsive to the intraoral pressure associated with said speech.
4. The apparatus according to claim 1, wherein;
(c) said first means is responsive to human speech,
and (f) said second means is responsive to the intraoral pressure associated with said speech.

Claims (4)

1. In apparatus for simultaneously recording sound spectra and physiological data, the combination comprising; a. spectrum analyzer means for resolving a complex audio signal into its frequency and amplitude components as a function of time, said means having an input, b. first means for developing a first signal in response to sounds, c. second means for developing a second direct current signal in response to a physiological activity, and d. mixing means for combining said first and second signals and feeding the same to said input of said spectrum analyzer means.
2. The apparatus according to claim 1, wherein; e. said first means comprises a microphone in series with a low-pass filter, and f. said second means comprises a transducer in series with an amplifier and a frequency converter.
3. The apparatus according to claim 2, wherein; g. said first means is responsive to human speech, and h. said second means is responsive to the intraoral pressure associated with said speech.
4. The apparatus according to claim 1, wherein; e. said first means is responsive to human speech, and f. said second means is responsive to the intraoral pressure associated with said speech.
US00117331A 1971-02-22 1971-02-22 Apparatus for simultaneously recording speech spectra and physiological data Expired - Lifetime US3743783A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11733171A 1971-02-22 1971-02-22

Publications (1)

Publication Number Publication Date
US3743783A true US3743783A (en) 1973-07-03

Family

ID=22372303

Family Applications (1)

Application Number Title Priority Date Filing Date
US00117331A Expired - Lifetime US3743783A (en) 1971-02-22 1971-02-22 Apparatus for simultaneously recording speech spectra and physiological data

Country Status (1)

Country Link
US (1) US3743783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356067B1 (en) * 1998-08-10 2002-03-12 Sony/Tektronix Corporation Wide band signal analyzer with wide band and narrow band signal processors
US20090163779A1 (en) * 2007-12-20 2009-06-25 Dean Enterprises, Llc Detection of conditions from sound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2181265A (en) * 1937-08-25 1939-11-28 Bell Telephone Labor Inc Signaling system
US2378383A (en) * 1942-10-17 1945-06-19 Brush Dev Co Transient signal recordingreproducing device
US2492062A (en) * 1946-11-05 1949-12-20 Bell Telephone Labor Inc Device for portrayal of complex waves
US3048166A (en) * 1962-08-07 Filter
US3383466A (en) * 1964-05-28 1968-05-14 Navy Usa Nonacoustic measures in automatic speech recognition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048166A (en) * 1962-08-07 Filter
US2181265A (en) * 1937-08-25 1939-11-28 Bell Telephone Labor Inc Signaling system
US2378383A (en) * 1942-10-17 1945-06-19 Brush Dev Co Transient signal recordingreproducing device
US2492062A (en) * 1946-11-05 1949-12-20 Bell Telephone Labor Inc Device for portrayal of complex waves
US3383466A (en) * 1964-05-28 1968-05-14 Navy Usa Nonacoustic measures in automatic speech recognition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Dolansky, On Certain Irregularities of Voiced Speech Waveforms, IEEE Vol. AU 16 March 1968, p. 51 56. *
Farr, Phonovid, A System for Recording Television Pictures on Phonograph Records, JAES, April 1968. *
Kersta, Amplitude Cross Section Representation with the Sound Spectrograph, JASA Nov. 1948. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356067B1 (en) * 1998-08-10 2002-03-12 Sony/Tektronix Corporation Wide band signal analyzer with wide band and narrow band signal processors
US20090163779A1 (en) * 2007-12-20 2009-06-25 Dean Enterprises, Llc Detection of conditions from sound
US8346559B2 (en) 2007-12-20 2013-01-01 Dean Enterprises, Llc Detection of conditions from sound
US9223863B2 (en) 2007-12-20 2015-12-29 Dean Enterprises, Llc Detection of conditions from sound

Similar Documents

Publication Publication Date Title
US4802228A (en) Amplifier filter system for speech therapy
GB1384761A (en) Audio frequency apparatus
CN1266725A (en) Antenatal education device for pregnant woman
US3743783A (en) Apparatus for simultaneously recording speech spectra and physiological data
JPH077897B2 (en) Electronic device for processing sound signals
US4186280A (en) Method and apparatus for restoring aged sound recordings
JPH02214065A (en) Recording and reproducing method
GB1410103A (en) Modulation responsive antievasion system for breath testers
Clark et al. The" Stereosonic" recording and reproducing system
US4232190A (en) Apparatus for combining phonograph signal with auxiliary audio signal
US3562428A (en) Arrangements for use in the examination of sound wave patterns
JPH0494204A (en) Gain control circuit and environment noise collection device
JPH02279163A (en) Acoustic device
JPS586423A (en) Audible method for super-low frequency sound
JPS5919934Y2 (en) volume expansion device
FR2387562A1 (en) Stereophonic sound replay system - has single bass loudspeaker driven via low-pass filter by mixing two medium-tone signals
JPH05192406A (en) Stereo sound apparatus
Luisada et al. Design and first results of a new phonocardiograph
GB762928A (en) Magnetic sound transduction
JP2583910Y2 (en) Sound sensing device
Peterson et al. Intelligibility of diphasic speech
Grishman et al. Rectified phonocardiography
US1939992A (en) Method and apparatus for recording and reproducing sound
JPS6180997A (en) Loudspeaker with sound volume adjuster
SU132947A1 (en) Unified Sound Device