US3750632A - Electronic control for the air-fuel mixture and for the ignition of an internal combustion engine - Google Patents

Electronic control for the air-fuel mixture and for the ignition of an internal combustion engine Download PDF

Info

Publication number
US3750632A
US3750632A US00128617A US3750632DA US3750632A US 3750632 A US3750632 A US 3750632A US 00128617 A US00128617 A US 00128617A US 3750632D A US3750632D A US 3750632DA US 3750632 A US3750632 A US 3750632A
Authority
US
United States
Prior art keywords
input
output
function generator
engine
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00128617A
Inventor
R Zechnall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19702014633 external-priority patent/DE2014633C2/en
Priority claimed from DE19712105353 external-priority patent/DE2105353A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Application granted granted Critical
Publication of US3750632A publication Critical patent/US3750632A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/28Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by drag-force, e.g. vane type or impact flowmeter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Definitions

  • the function genera- ,UNITED STATES PATENTS tor controls the fuel and air supplied, as well as the igni- 3,4o7,793 10/1968 Lang 123/32 EA 3,483,851 12/1969 Reichardt 123/32 18 Claims, 14 Drawing Figures 3,665,900 5/1972 Schlimme... 123/32 EA 3,020,897 2/1962 Sekine 123/32 3,626,910 l2ll97l Porsche 123/32 l l l l l g,
  • the invention relates to an electronic system for controlling the air-fuel mixture for Otto engines.
  • An object of the invention is an electronic system for controlling the excess air coefficient A throughout as many operating conditions of the engine as possible so as to obtain an exhaust with a greatly reduced concentration of harmful components.
  • the excess air coefficient A expresses the ratio between air and fuel.
  • A has a value of l for a stoichiometric mixture.
  • poisonous components particularly unburned hydrocarbons, carbon monoxide, and nitrogen oxide should be removed from the exhaust.
  • the invention consists of first means for providing a respective electrical signal for each of at least two different engine operating parameters, the electrical signals corresponding to the parameters taken into account, and second means connected to receive these signals as input for controlling, in dependence on these signals, at least the amount for fuel supplied to the cylinder so as to obtain a desired excess air coefficient A for each operating condition of the engine.
  • FIG. 1 is a diagram showing the dependence of unburned hydrocarbons and nitrogen oxide concentration on A and on the ignition timing;
  • FIG. 2 is a graph showing the dependence on unburned hydrocarbons and carbon monoxide concentration on the sparking time
  • FIGS. 30, 3b, 4a, and 6 are wiring diagrams of four different embodiments of the electronic function generator of the invention.
  • FIGS. 4d, 4c, 7, 8, and 9 are graphs used in explaining the operation of the function generators shown in FIGS. 4a and 6.
  • FIG. I shows graphically the discharge of poisonous exhaust fumes in dependence on the excess air coefficient A.
  • the curves 40,41, and 42 pertain to nitgrogen oxide, with the respective ignition points of 25,35", and 50 of topdead center.
  • the curves 43,44, and 45 pertain to unburned hydrocarbon at the respective ignition points of 25,35, and 50 of top-dead center.
  • the concentration of carbon monoxide is not shown, the concentration falling with increasing A until A exceeds 1.2 whereupon the concentration does not further decline.
  • a sensible compromise between engine output and clean exhaust is obtained in the following manner.
  • a lean mixture is used during those driving conditions that prevail in the city, when maximum engine output is not required, thereby obtaining as clean an exhaust as possible; and a rich mixture is used during those driving conditions that prevail when driving across country, when a clean exhaust is not required.
  • the speed of the vehicle is used to distinguish between these two groups of driving conditions.
  • FIG. 3 shows a first embodiment for use with an internal combustion engine having fuel injection.
  • this embodiment can, with slight modifications, also be used with carburetor engines.
  • the accelerator 13 controls the position of the throttle valve in the intake manifold 11 of an internal combustion engine so as to control the amount of air flowing through the cylinders.
  • This air flow is measured either by a heated temperature sensor 15, which is cooled by the air stream, or by a static plate 15a.
  • the measured values are converted into electrical signals of suitable amplitude by a respective transducer 16 or 16a, the output of which is connected to a first input of w an electronic function generator 19.
  • a transducer 14 measures the angular position of the throttle valve 12, the output of this transducer being connected to the second input of the function generator 19.
  • Connected to the third input of the function generator is a multivibrator 18, which delivers pulses at a frequency proportional to the engine rpm.
  • the input of the multivibrator is connected to the primary winding 17 of the ignition coil, not shown.
  • the output of the function generator 19 is connected to a first input of a differential amplifier 20.
  • This differential amplifier 20 is part of a servo control that also comprises a dosing valve 22, an electromagnetic control 21 for the valve, and a transducer 23 for providing the signal voltage corresponding to the actual setting of the valve 22 for controlling the latter.
  • the function generator 19 delivers a signal corresponding to the desired amount of fuel that is to be supplied to the injection valves.
  • the signal from the function generator which represents a desired value, is compared by the differential amplifier 20 with the sigto the positive line 40.
  • the dosing valve 22 is opened more by the electromagnetic control 21.
  • the function generator 19 is designed so that its output signal is dependent upon the amount of air passing through the intake manifold 11.
  • the engine rpm and the angular position of the throttle valve are obtained from the transducers 16 (or 160) and 18 as correction signals, and delivered to the other two inputs of the function generator.
  • FIG. 3a shows a first embodiment of the function generator 19.
  • two resistors 150 and 152 Positioned in the intake manifold 11 are two resistors 150 and 152, which together with two other resistors 151 and 153 constitute a Wheatstone bridge. The voltage across the diagonal of the bridge is conducted by respective resistors 193 and 199 to the two inputs of an operational amplifier 198.
  • the output of the operational amplifier 198 is connected to the base of a voltage amplification transistor 194 and by a resistor 197 to the positive line 41
  • the collector of the transistor 194 is connected to the base of a power transistor 195, the emitter of the transistor 194 being connected to the collector of the transistor 19S and to the junction between the resistors 150 and 152.
  • the emitter of the transistor 195 is connected by a resistor 196 i
  • the junction between the resistors 150, 151, and 199 is connected to an input resistor 192 of a non-linear amplifier 190, the output of which is connected by a resistor 191 to the input of the differential amplifier 20.
  • the position of the accelerator 13 is obtained by means of a potentiometer 24, the wiper of which moves with the accelerator and is connected by a resistor 241 to the input of the differential amplifier 20.
  • the multivibrator 18 is connected by a rectification stage 181 and a resistor 182 to the input of the differential amplifier 20.
  • the Wheatsone bridge consists of a low ohmage branch 150,151 and of a high ohmage branch 152,153, so that most of the current flowing through the bridge and through the power transistor 195 flows through the low ohmage branch.
  • the value of the resistor 150 in the intake manifold 11 is such that the current through it heats the resistor to a temperature of about 200C.
  • the current control circuit which includes the operational amplifier 198 and transistors 194 and 195, serves to keep the current at such a value that the resistor 151i remains at a temperature of about 200C. no matter what amount of air streams through the intake manifold.
  • the resistor 150 Since the resistor 150 has a positive temperature coefficient, the voltage drop across it will become smaller if the air stream in the intake manifold cools the resistor. Consequently, the voltage at the junction between the resistors 150 and 151 becomes more positive. The voltage at the output of the operational amplifier 198 falls, the transistors 194 and 195 thereby becoming more conductive so as toincrease the amount of current flowing through the bridge and to maintain the resistor 150 at its original temperature.
  • the current through the bridge is a measure of the amount of air flowing through the intake manifold 11, since the higher the rate at which air streams past the resistor 15% the more the resistor is cooled. Since the bridge current is not a linear function of the air flow per unit time, the voltage drop across the resistor 151 is not proportional to this air flow.
  • the non-linear amplifier 190 serves to make linear the voltage drop across resistor 151.
  • This amplifier can comprise, for example, a resistor-diode network, such as is shown in FIG. 4a(components 252 to 259).
  • the second resistor positioned in the intake manifold, the resistor 152 is part of the high ohmage branch and therefore does not heat up as a consequence of the current.
  • the value of its resistance does, however, depend on the temperature of the streaming air.
  • the resistor 152 thus compensates for the ambient temperature. With the aid of the operational amplifier 198 and transistors 194 and 195, the difference in temperature between the resistors 1511 and 152 is therefore held constant. 1
  • FIG. 3b shows a second, simplified, embodiment of the function generator 19.
  • the amount of air per unit time is measured by means of a static plate 15a, which is mechanically connected to the wiper 165 of a potentiometer 160.
  • a spring 166 holds the wiper in its position of rest.
  • the potentiometer has a series of fixed taps, respective resistors 161,152,163, and 164 being connected between neighboring taps.
  • the potentiometer 160 is connected between the positive rail 40 and ground.
  • a resistor 167 connects the wiper 165 to the input of the-differential amplifier 20. in other respects, this embodiment is the same as the embodiment shown in FIG. 3a.
  • the purpose of the resistors 160 to 164 is to provide on the wiper 165 a voltage that is linearly related to the air flow per unit time. in this embodiment, it is not necessary to compensate for the ambient temperature, since the movement of the static plate 15a depends on the air density and therefore on the temperature. 0therwise, the operation of this embodiment is the same as that of the first embodiment shown in FIG. 3a.
  • the function generator controls both the amount of fuel and the amount of combustion air.
  • the electronic function generator 25 has two outputs. The first output is connected to the input of the differential amplifier 2b, which, as in the embodiment shown in FIG. 3, controls the dosing valve 22. The second output of the function generator is connected to the input of a. second differential amplifier 26, which by means of a second electromagnetic control 27 controls the throttle valve 12.
  • the three inputs of the function generator 25 are respectively connected to the transducer 13, the transducer 24, and to themultivibrator 18. The functions of these three components have already been described.
  • the function generator 25 can have one or two other inputs to which, if required, transducers 28 and 29 for respectively refurnishing signals corresponding to air temperature and/or the air pressure can be connected.
  • the function generator 25 controls both the dosing valve 22 and the throttle valve 12, the latter being controlled by means of a servo loop.
  • the signal inputs to the function generator 25 are obtained from the transducers 24,18, and 14.
  • additional inputs of the function generator 25 can be connected to the aforesaid transducers 28 and 29, which furnish correctionssignals in dependence on the air temperature and the air pressure.
  • FIG. 4a is a wiring diagram of one form of the function generator 25.
  • the heart of the generator is an electronic multiplier 48 having two multiplying inputs 481 and 482 and two correction inputs 483 and 484.
  • the output of the multiplier is connected to the input of the differential amplifier 20.
  • the first multiplying input is connected to a diode-resistor network (components 252 to 259) and is connected by a resistor 251 to the output of the transducer 24.
  • the diode-resistor network contains two voltage dividers 252,254 and 253,255, which are connected between the positive line 40 and ground. The tap of each of these voltage dividers is connected by a diode and a resistor connected in series (256 and 257, or 258 and 259) to the first multiplying input 481.
  • a resistor 43 connects the output of the transducer 24 to the input of the differential amplifier 26.
  • a Zener diode 45 is connected between this input and ground.
  • the rectification stage 181 is connected between the second multiplying input 482 of the multiplier 48 and the multivibrator 18.
  • the first correction input 483 is connected by a resistor 282 to the tap of the voltage divider consisting of a resistor 281 and of a negative temperature coefficient resistor 280.
  • the NTC resistor 280 measures the ambient temperature.
  • a resistor 29! connects the second correction input 484 to the wiper of a potentiometer 290. This wiper is mechanically connected to a bellows for measuring the air pressure.
  • FIGS. 4b and 4c show the two families of curves that can be obtained with the function generator shown in FIG. 4a.
  • FIG. 4b illustrates how the amount of fuel Q is dependent on the engine rpm n. O and n are given in percent of their maximum values.
  • the fixed parameter is the position (1p of the accelerator, which is also given in percent of the maximum possible value.
  • FIG. 4c illustrates the dependence of the amount of fuel Q on the accelerator position or; for different fixed values of the parameter n. Practical tests have shown these two families of curves to be best.
  • the knees in the curves shown in FIG. 4c are obtained by the diode of the resistor network 252 to 259.
  • the diode 256 or the diode 258 is conductive as long as its cathode potential is lower than the precisely set voltage at the respective tap of the voltage divider. When one or both of these diodes is conductive, an additional current flows through one or both of the voltage dividers to the first multiplying input 41.
  • the Zener diode 45 ensures that the throttle valve 12 is completely opened at some intermediate position, such as 70 percent of maximum position, of the accelerator 13, as shown in FIG. 7.
  • FIG. 2 shows the dependence of hydrocarbon concentration on the sparking time.
  • the third embodiment of the invention shown in FIG. 5, has all of the features of the first two embodiments in addition to having means for prolonging the sparking time to at least 2 milliseconds and means for adjusting the ignition timing.
  • the devices for metering the air and fuel are so designed that the internal combustion engine at partial load is fed a very lean mixture with a A as large as 1.4.
  • By prolonging the sparking time to above 2 milliseconds there are obtained the curves 43a,44a, and 45a (see FIG. 1) for hydrocarbon concentration. These curves show that the exhaust is very clean.
  • the third embodiment of the invention incorporates a function generator 32 having 4 inputs and 3 outputs. Aside from the two transducers 24 and 18, previously described, there are connected to respective ones of the inputs two additional transducers 33 and 34, respectively providing a signal corresponding to the temperature of the cooling water and to the pressure of the air.
  • the first output of the function generator is connected to the fuel regulating system 35, which controls the amount of fuel supplied to the fuel injection valves 30.
  • a second output of the function generator is connected to a throttle valve control amplifier36, which regulates the throttle valve 12 by means of a control device 37.
  • a third output of the function generator is connected to an ignition timer setting device 38, the output of which is connected to an ignition device 39, to which is connected a plurality of spark .plugs 31.
  • FIG. 5 Unnecessary complication of FIG. 5 is avoided by showing feedback circuit 37a for only the throttle valve control amplifier 36.
  • the feedback circuit enables comparison between the actual setting of the throttle valve 12 and the desired setting. Similar feedback circuits for comparing actual and desired settings can also be provided for the fuel regulating system 35 and the v ignition timer setting device 38..
  • FIG. 6 shows the wiring diagram of the function generator 32, the transducers 33 and 34 being omitted.
  • FIGS. 7, 8, and 9 show the dependence of the position a of the throttle valve 12 on the position or; of the accelerator 13.
  • FIG. 8 shows the dependence of the required amount q of fuel for each piston stroke on the engine rpm n and on the accelerator position 02,.
  • the value of r. and the acceleratorposition of a, are given for each of the curves in FIG. 8.
  • FIG. 9 shows the dependence of the spark advance a, on the engine rpiit n and on the accelerator position (1p.
  • the most important parts of the function generator shown in FIG. 6 are the multiplier 48, the first control amplifier 55, the second control amplifier 61, and the three Zener diodes 45,47, and 57.
  • the transducer 24, which provides a signal corresponding to the position of the accelerator 13, is a potentiometer or an inductive voltage divider of which the upper terminal is connected to a positive direct current voltage 40. In the following description it will be assumed that the transducer 24 is a potentiometer.
  • a resistor 43 connects the wiper of the potentiometer 24 to an output terminal 44, which is connected to the input of the throttle valve control amplifier 36.
  • the positive direct current potential on the potentiometer wiper is also connected by a resistor 46 to a first input of the multiplier 48 by a resistor 53 to the input of the first control amplifier 55, and by a resistor 59 to the input of the second control amplifier 61.
  • the Zener diode 45 limits the amplitude of the output signal of the potentiometer 24, causing the knee in the curve shown in FIG. 7.
  • the electronic multiplier 48 delivers the control signal for the fuel regulating system 35.
  • the family of curves shown in FIG. 8 graphs this signal.
  • a negative direct current voltage is applied to the first input terminal 41 of the multiplier 48.
  • a resistor 49 connects this input terminal to the multiplier 48.
  • the other input of the multiplier is connected to the output of the-multivibrator 18, the multivibrator, as previously explained, providing a voltage signal corresponding to the engine rpm n. i
  • the curves of FIG. '8 should have a knee, as shown. This knee is provided by the Zener diode 47.
  • the first control amplifier 55 has a negative feedback circuit, composed of a resistor 56 and of a Zener diode 57. This amplifier causes advance of the sparking in measure as the engine rpm rises and the accelerator is depressed, but only until the accelerator pedal reaches one-half of its maximum position.
  • the Zener diode 57 causes the knees in the curves at high engine rpm, as shown in FIG. 9. When the accelerator pedal is pushed to beyond one-half of its maximum position, the spark must be retarded, as shown in FIG. 9.
  • the second control amplifier 61 is provided.
  • the input of this amplifier is connected by a resistor 59 to the output of the transducer 24, which provides a signal corresponding to the angular position of the accelerator, and by a resistor 60 to a negative direct current voltage at the terminal 42. Because of the negative feedback circuit, composed of the resistor 62, and of the diode 63, no signal appears at the output of the amplifier 61, so long as the summation signal at the input has a negative value for small angular positions of the accelerator pedal. As soon as the input signal to 'the amplifier 61 is positive, the output of the amplifier provides a negative signal that is proportional to the angular position of the accelerator pedal.
  • the voltage output of the amplifier 61 when it exceeds a certain value, has a negative effect at the input of the amplifier 55. In this way, the ignition is retarded for larger and larger values of the'angular position of the accelerator.
  • the multiplier can be, for example, a Hall effect multiplier.
  • the current in the Hall probe is equal to the input current of the first multiplier input 481, and the magnetic field is proportional to the current of the second input 482.
  • the correction voltages can be conducted by summing resistors, thereby enabling omission of additional correction inputs.
  • the third embodiment is a very advantageous compromise solution. It provides good cleaning of the exhaust and yet can bemanufactured at a price that is substantially below that of exhaust purifiers that have after burners.
  • An electronic system for controlling the air-fuel mixture in an internal combustion engine having an accelerator, at least one cylinder and a throttle valve, first means for providing a first signal corresponding to the position of the accelerator and a second signal corresponding to the engine rpm; second means including an electronic function generator having input means connected to receive said first and second signals for controlling the amount of fuel supplied to the cylinder so as to obtain a desired excess air coefficient alpha for each operating condition of the engine, and said second means further including means for controlling the position of the throttle valve comprising an amplifier having an input connected to receive said first signal, and a Zener diode connected between ground and said input of said amplifier to become conductive when said accelerator is greatly depressed so that the throttle valve is completely opened before the accelerator is moved to its maximum position.
  • An electronic system for controlling the air-fuel mixture in an internal combustion engine having a throttle valve, an accelerator and at least one cylinder comprising, in combination first means comprising a first transducer for providing a first signal corresponding to the position of the accelerator and a second transducer for providing a second signal corresponding to the engine rpm; second means connected to receive said signals as input for controlling, in dependence upon said signals, the amount of fuel supplied to an engine cylinder so as to obtain a desired excess air coefficient alpha for each operating condition of the engine, said second means including an electronic function generator for selecting the ignition timing in dependence upon said signals, said function generator including an electronic multiplier having first and second inputs respectively connected to receive said first and second signals, said second means further including ignition timing setting means for adjusting the ignition timing, a first control circuit having an input connected to receive said first and second signals and an output connected to said ignition timing setting means to control the latter in dependence upon said signals, and wherein said second means further includes throttlevalve setting means for adjusting the throttlevalve position and a second control circuit having an input connected
  • said second means includes means for providing a rich mixture only at full load operation and at operation at low engine rpm and small load. 7
  • said firs means includes a static plate for measuring the amount of air passing through said intake manifold, and first transducer means for converting the movements of said static plate into said third electrical signal.
  • said first means includes temperature dependent resistance means located in the intake manifold air flow for providing a temperature dependent resistance, and transducer means connected to said resistance means for converting the temperature dependency thereof into said third signal.
  • said first means provides a third signal corresponding to the air temperature, a fourth signal corresponding to the air pressure, and a fifth signal corresponding to the engine temperature, and means for connecting said input means of said function generator to said third, fourth, and fifth signals.
  • said second means includes dosing valve means for controlling the amount of fuel fed to'the cylinder, and an electronic function generator connected to said dosing valve means to regulate the latter in dependence on said engine operating parameters.
  • said second means includes fuel injection valve means for controlling the amount of fuel fed to the cylinder, and an electronic function generator connected to said fuel injection valve means to regulate the open time of the latter in dependence on said engine operating parameters.
  • said second means includes metering means for controlling the flow of fuel to the cylinder, and control means for setting said ignition timing, said metering means, and the throttle valve.
  • control means includes servo loop means and feedback means for feeding back said operating parameters as an actual value insaid servo loop means.
  • a system as defined in claim 1 including a further differential amplifier for controlling the amquntof fuel supplied to the cylinder, said function generator including an electronic. multiplier having first and second inputs and an output, said output being connected to the input of said further differential amplifier, said first input being connected to receive said first signal, and wherein said first means includes a further transducer for providing said second signal, and further including rectifying means having an input and an output, said input being connected to receive said second signal and said output being connected to said second input of said multiplier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

A function generator is fed input signals corresponding to at least two different engine operating parameters, such as the position of the accelerator pedal and the engine rpm, the function generator, in dependence on these input signals, controlling the amount of fuel supplied to the cylinder so as to maintain a desired excess air coefficient lambda for each operating condition of the engine. In one form of the invention, the function generator controls the fuel and air supplied, as well as the ignition timing.

Description

United States Patent 1191 1111 3,759,632 Zechnall Aug. 7, 1973 1 ELECTRONIC CONTROL FOR THE 3,601,108 8/1971 Nambu 123/139 AIR FUEL MIXTURE AND FOR THE 3,646,914 3/1972 Menwesson.... 123/139 IGNITON OF AN INTERNAL COMBUSTION 3,650,258 3/1972 Jackson 122/39 ENGINE FOREIGN PATENTS R APPLICATIONS 75 Inventor: Richard Z n s fi': 600,895 4/1948 Great Britain .1 123/32 Germany 1,099,267 2/1961 Germany 123/32 [73 Assignee: Robert Bosch Gmbh,Stuttgart, OTHER PUBUCATIONS Germany Aircraft Carburetion, Thorner 1947, Pages 38, 39, I 40, 41, 82-85 [22] F1led: Mar. 25, 1971 [21] Appl. No.: 128,617 Primary Examiner--Laurence M. Goodridge Assistant Examiner-Ronald B. Cox [30] Foreign Application Priority Data Attorney-Michael Smker Mar. 26, 1970 Germany P 20 14 633.2 Feb. 5, 1971 Germany P 21 353.2 [57] F P A function generator 1s fed mput s1gnals correspondmg [52 S CL 123 32 EA, 123 32 R, 23/139 E to at least two different engine operating parameters,
2 4 E, 23 7 R such as the position of the accelerator pedal and the en- [51] Int. Cl. F02b 3/00, F02p 5/04, F02p 1/00 S p the function generator, in dependence 581 Field of Search 123/32 EA, 119 R, these input Signals, controlling the amount of fuel P- 1 23 39 w 99 04 plied to the cylinder so as to maintain a desired excess air coefticient A for each operating condition of the en- 5 References Cited gine. In one form of the invention, the function genera- ,UNITED STATES PATENTS tor controls the fuel and air supplied, as well as the igni- 3,4o7,793 10/1968 Lang 123/32 EA 3,483,851 12/1969 Reichardt 123/32 18 Claims, 14 Drawing Figures 3,665,900 5/1972 Schlimme... 123/32 EA 3,020,897 2/1962 Sekine 123/32 3,626,910 l2ll97l Porsche 123/32 l l l l l g,
PATENIEL, AUG 7 I875 SHEEI 3 0F 8 PATENTEDAUB 7 I975 3, 7 5O 6 3 2 SHEU t UP 8 Fig. 4
IN VENTOR:
ig. 5 Ric/wand ZECHA/ALL M5 ATTORNE)! PATENTEDAUE 1m 3.750.632
SHEET 5 0F 8 INVENTORS Richard ZECHNALL y hm /l his ATTORNEY 1 ELECTRONIC CONTROL FOR THE AIR-FUEL MIXTURE AND FOR THE IGNITION OF AN INTERNAL COMBUSTION ENGINE BACKGROUND OF THE INVENTION The invention relates to an electronic system for controlling the air-fuel mixture for Otto engines.
The major requirement placed on these systems is to reduce the concentration of partly burned or unburned components in the exhaust of internal combustion engines. Some known system completely out off the fuel supply when the vehicle is coasting so that the engine is driven by the wheels. However, there are other operating conditions of the internal combustion engine for which exhaust purification is both possible and necessary.
After burning is one known method for purifying the exhaust. This method increases the consumption of fuel, and requires an expensive after burner.
SUMMARY OF THE INVENTION An object of the invention is an electronic system for controlling the excess air coefficient A throughout as many operating conditions of the engine as possible so as to obtain an exhaust with a greatly reduced concentration of harmful components.
The excess air coefficient A expresses the ratio between air and fuel. By definition, A has a value of l for a stoichiometric mixture.
Among the poisonous components, particularly unburned hydrocarbons, carbon monoxide, and nitrogen oxide should be removed from the exhaust.
Briefly, the invention consists of first means for providing a respective electrical signal for each of at least two different engine operating parameters, the electrical signals corresponding to the parameters taken into account, and second means connected to receive these signals as input for controlling, in dependence on these signals, at least the amount for fuel supplied to the cylinder so as to obtain a desired excess air coefficient A for each operating condition of the engine.
The novel features which are considered as characteristic for the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the dependence of unburned hydrocarbons and nitrogen oxide concentration on A and on the ignition timing;
FIG. 2 is a graph showing the dependence on unburned hydrocarbons and carbon monoxide concentration on the sparking time;
FIGS. 3, 4, and are block diagrams of three different embodiments of the invention;
FIGS. 30, 3b, 4a, and 6 are wiring diagrams of four different embodiments of the electronic function generator of the invention; and
FIGS. 4d, 4c, 7, 8, and 9 are graphs used in explaining the operation of the function generators shown in FIGS. 4a and 6.
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. I shows graphically the discharge of poisonous exhaust fumes in dependence on the excess air coefficient A. The curves 40,41, and 42 pertain to nitgrogen oxide, with the respective ignition points of 25,35", and 50 of topdead center. The curves 43,44, and 45 pertain to unburned hydrocarbon at the respective ignition points of 25,35, and 50 of top-dead center. The concentration of carbon monoxide is not shown, the concentration falling with increasing A until A exceeds 1.2 whereupon the concentration does not further decline.
Accordingly, it is most advantageous to operate the internal combustion engine with a A of about 1.2. With still greater values of A, combustion slips can occur, so that the concentration of unburned hydrocarbons increases sharply, as shown in FIG. I. The fact that the greatest output of the engine occurs at A=0.9 must also be taken into account.
In accordance with the invention, a sensible compromise between engine output and clean exhaust is obtained in the following manner. A lean mixture is used during those driving conditions that prevail in the city, when maximum engine output is not required, thereby obtaining as clean an exhaust as possible; and a rich mixture is used during those driving conditions that prevail when driving across country, when a clean exhaust is not required.
In accordance with the invention, the speed of the vehicle is used to distinguish between these two groups of driving conditions.
FIG. 3 shows a first embodiment for use with an internal combustion engine having fuel injection. In accordance with the invention, this embodiment can, with slight modifications, also be used with carburetor engines.
The accelerator 13 controls the position of the throttle valve in the intake manifold 11 of an internal combustion engine so as to control the amount of air flowing through the cylinders. This air flow is measured either by a heated temperature sensor 15, which is cooled by the air stream, or by a static plate 15a. The measured values are converted into electrical signals of suitable amplitude by a respective transducer 16 or 16a, the output of which is connected to a first input of w an electronic function generator 19. A transducer 14 measures the angular position of the throttle valve 12, the output of this transducer being connected to the second input of the function generator 19. Connected to the third input of the function generator is a multivibrator 18, which delivers pulses at a frequency proportional to the engine rpm. The input of the multivibrator is connected to the primary winding 17 of the ignition coil, not shown. The output of the function generator 19 is connected to a first input of a differential amplifier 20. This differential amplifier 20 is part of a servo control that also comprises a dosing valve 22, an electromagnetic control 21 for the valve, and a transducer 23 for providing the signal voltage corresponding to the actual setting of the valve 22 for controlling the latter.
The function generator 19 delivers a signal corresponding to the desired amount of fuel that is to be supplied to the injection valves. The signal from the function generator, which represents a desired value, is compared by the differential amplifier 20 with the sigto the positive line 40.
nal from the transducer 23, which represents the actual value. if the signal of the desired value is larger than that of the actual value, the dosing valve 22 is opened more by the electromagnetic control 21.
The function generator 19 is designed so that its output signal is dependent upon the amount of air passing through the intake manifold 11. The engine rpm and the angular position of the throttle valve are obtained from the transducers 16 (or 160) and 18 as correction signals, and delivered to the other two inputs of the function generator.
Consequently, the fuel supplied to the cylinders is so measured that in all operating conditions of the engine a suitable excess air coefficient it is obtained.
FIG. 3a shows a first embodiment of the function generator 19. Positioned in the intake manifold 11 are two resistors 150 and 152, which together with two other resistors 151 and 153 constitute a Wheatstone bridge. The voltage across the diagonal of the bridge is conducted by respective resistors 193 and 199 to the two inputs of an operational amplifier 198. The output of the operational amplifier 198 is connected to the base of a voltage amplification transistor 194 and by a resistor 197 to the positive line 41 The collector of the transistor 194 is connected to the base of a power transistor 195, the emitter of the transistor 194 being connected to the collector of the transistor 19S and to the junction between the resistors 150 and 152. The emitter of the transistor 195 is connected by a resistor 196 i The junction between the resistors 150, 151, and 199 is connected to an input resistor 192 of a non-linear amplifier 190, the output of which is connected by a resistor 191 to the input of the differential amplifier 20. The position of the accelerator 13 is obtained by means of a potentiometer 24, the wiper of which moves with the accelerator and is connected by a resistor 241 to the input of the differential amplifier 20. The multivibrator 18 is connected by a rectification stage 181 and a resistor 182 to the input of the differential amplifier 20.
The Wheatsone bridge consists of a low ohmage branch 150,151 and of a high ohmage branch 152,153, so that most of the current flowing through the bridge and through the power transistor 195 flows through the low ohmage branch. The value of the resistor 150 in the intake manifold 11 is such that the current through it heats the resistor to a temperature of about 200C. The current control circuit, which includes the operational amplifier 198 and transistors 194 and 195, serves to keep the current at such a value that the resistor 151i remains at a temperature of about 200C. no matter what amount of air streams through the intake manifold.
Since the resistor 150 has a positive temperature coefficient, the voltage drop across it will become smaller if the air stream in the intake manifold cools the resistor. Consequently, the voltage at the junction between the resistors 150 and 151 becomes more positive. The voltage at the output of the operational amplifier 198 falls, the transistors 194 and 195 thereby becoming more conductive so as toincrease the amount of current flowing through the bridge and to maintain the resistor 150 at its original temperature.
Thus, the current through the bridge is a measure of the amount of air flowing through the intake manifold 11, since the higher the rate at which air streams past the resistor 15% the more the resistor is cooled. Since the bridge current is not a linear function of the air flow per unit time, the voltage drop across the resistor 151 is not proportional to this air flow. The non-linear amplifier 190 serves to make linear the voltage drop across resistor 151. This amplifier can comprise, for example, a resistor-diode network, such as is shown in FIG. 4a(components 252 to 259).
These signal voltages -proportional to the air flow per unit time, to the position of the accelerator 13, and to the engine rpm are conducted by the adding resistors 191, 241, and 182 to the input of the differential amplifier 211. Accordingly, the dosing valve 22 is opened wider the greater the air flow, the higher the engine rpm, and the more the accelerator is depressed.
The second resistor positioned in the intake manifold, the resistor 152, is part of the high ohmage branch and therefore does not heat up as a consequence of the current. The value of its resistance does, however, depend on the temperature of the streaming air. The resistor 152 thus compensates for the ambient temperature. With the aid of the operational amplifier 198 and transistors 194 and 195, the difference in temperature between the resistors 1511 and 152 is therefore held constant. 1
FIG. 3b shows a second, simplified, embodiment of the function generator 19. in this embodiment, the amount of air per unit time is measured by means of a static plate 15a, which is mechanically connected to the wiper 165 of a potentiometer 160. A spring 166 holds the wiper in its position of rest. The potentiometer has a series of fixed taps, respective resistors 161,152,163, and 164 being connected between neighboring taps. The potentiometer 160 is connected between the positive rail 40 and ground. A resistor 167 connects the wiper 165 to the input of the-differential amplifier 20. in other respects, this embodiment is the same as the embodiment shown in FIG. 3a.
The purpose of the resistors 160 to 164 is to provide on the wiper 165 a voltage that is linearly related to the air flow per unit time. in this embodiment, it is not necessary to compensate for the ambient temperature, since the movement of the static plate 15a depends on the air density and therefore on the temperature. 0therwise, the operation of this embodiment is the same as that of the first embodiment shown in FIG. 3a.
In the second embodiment of the invention, shown'in FIG. 4, the function generator controls both the amount of fuel and the amount of combustion air.
.The electronic function generator 25 has two outputs. The first output is connected to the input of the differential amplifier 2b, which, as in the embodiment shown in FIG. 3, controls the dosing valve 22. The second output of the function generator is connected to the input of a. second differential amplifier 26, which by means of a second electromagnetic control 27 controls the throttle valve 12. The three inputs of the function generator 25 are respectively connected to the transducer 13, the transducer 24, and to themultivibrator 18. The functions of these three components have already been described.
The function generator 25 can have one or two other inputs to which, if required, transducers 28 and 29 for respectively refurnishing signals corresponding to air temperature and/or the air pressure can be connected.
In this embodiment, the function generator 25 controls both the dosing valve 22 and the throttle valve 12, the latter being controlled by means of a servo loop.
The signal inputs to the function generator 25 are obtained from the transducers 24,18, and 14. In a refinement of this embodiment, additional inputs of the function generator 25 can be connected to the aforesaid transducers 28 and 29, which furnish correctionssignals in dependence on the air temperature and the air pressure.
FIG. 4a is a wiring diagram of one form of the function generator 25. The heart of the generator is an electronic multiplier 48 having two multiplying inputs 481 and 482 and two correction inputs 483 and 484. The output of the multiplier is connected to the input of the differential amplifier 20. The first multiplying input is connected to a diode-resistor network (components 252 to 259) and is connected by a resistor 251 to the output of the transducer 24. The diode-resistor network contains two voltage dividers 252,254 and 253,255, which are connected between the positive line 40 and ground. The tap of each of these voltage dividers is connected by a diode and a resistor connected in series (256 and 257, or 258 and 259) to the first multiplying input 481. I
A resistor 43 connects the output of the transducer 24 to the input of the differential amplifier 26. A Zener diode 45 is connected between this input and ground. The rectification stage 181 is connected between the second multiplying input 482 of the multiplier 48 and the multivibrator 18.
The first correction input 483 is connected by a resistor 282 to the tap of the voltage divider consisting of a resistor 281 and of a negative temperature coefficient resistor 280. The NTC resistor 280 measures the ambient temperature. A resistor 29! connects the second correction input 484 to the wiper of a potentiometer 290. This wiper is mechanically connected to a bellows for measuring the air pressure.
FIGS. 4b and 4c show the two families of curves that can be obtained with the function generator shown in FIG. 4a. FIG. 4b illustrates how the amount of fuel Q is dependent on the engine rpm n. O and n are given in percent of their maximum values. The fixed parameter is the position (1p of the accelerator, which is also given in percent of the maximum possible value. FIG. 4c illustrates the dependence of the amount of fuel Q on the accelerator position or; for different fixed values of the parameter n. Practical tests have shown these two families of curves to be best.
The knees in the curves shown in FIG. 4c are obtained by the diode of the resistor network 252 to 259. The diode 256 or the diode 258 is conductive as long as its cathode potential is lower than the precisely set voltage at the respective tap of the voltage divider. When one or both of these diodes is conductive, an additional current flows through one or both of the voltage dividers to the first multiplying input 41. The Zener diode 45 ensures that the throttle valve 12 is completely opened at some intermediate position, such as 70 percent of maximum position, of the accelerator 13, as shown in FIG. 7.
In this second embodiment of the invention (FIG. 4), as in the first embodiment (FIG. 3), the dosing valve 22 is opened wider in measure as the accelerator 13 approaches its maximum position and as the engine rpm is raised. The volume of air is not taken into account,
since the function generator 25 also controls'the throttle valve 12.
FIG. I shows that the nitrogen oxide concentration is still quite large at h=l.2, and that it can be reduced both by increasing the value of A, and by delaying the ignition point. Misfirings, which cause a pronounced increase in hydrocarbon concentration at large values of A, can be reduced by prolonging the sparking time. FIG. 2 shows the dependence of hydrocarbon concentration on the sparking time.
The third embodiment of the invention, shown in FIG. 5, has all of the features of the first two embodiments in addition to having means for prolonging the sparking time to at least 2 milliseconds and means for adjusting the ignition timing. The devices for metering the air and fuel are so designed that the internal combustion engine at partial load is fed a very lean mixture with a A as large as 1.4. By prolonging the sparking time to above 2 milliseconds, there are obtained the curves 43a,44a, and 45a (see FIG. 1) for hydrocarbon concentration. These curves show that the exhaust is very clean. a Y
The third embodiment of the invention incorporates a function generator 32 having 4 inputs and 3 outputs. Aside from the two transducers 24 and 18, previously described, there are connected to respective ones of the inputs two additional transducers 33 and 34, respectively providing a signal corresponding to the temperature of the cooling water and to the pressure of the air. The first output of the function generator is connected to the fuel regulating system 35, which controls the amount of fuel supplied to the fuel injection valves 30. A second output of the function generator is connected to a throttle valve control amplifier36, which regulates the throttle valve 12 by means of a control device 37. A third output of the function generator is connected to an ignition timer setting device 38, the output of which is connected to an ignition device 39, to which is connected a plurality of spark .plugs 31.
Unnecessary complication of FIG. 5 is avoided by showing feedback circuit 37a for only the throttle valve control amplifier 36. The feedback circuit enables comparison between the actual setting of the throttle valve 12 and the desired setting. Similar feedback circuits for comparing actual and desired settings can also be provided for the fuel regulating system 35 and the v ignition timer setting device 38..
FIG. 6 shows the wiring diagram of the function generator 32, the transducers 33 and 34 being omitted.
The output signals of the function generator 32 are shown in FIGS. 7, 8, and 9. FIG. 7 shows the dependence of the position a of the throttle valve 12 on the position or; of the accelerator 13. FIG. 8 shows the dependence of the required amount q of fuel for each piston stroke on the engine rpm n and on the accelerator position 02,. The value of r. and the acceleratorposition of a, are given for each of the curves in FIG. 8. FIG. 9 shows the dependence of the spark advance a, on the engine rpiit n and on the accelerator position (1p.
The families of curves shown respectively in FIGS. 4b and 8 are different, because, along the ordinate, the amount of fuel is plotted for continuous metering in FIG. 4d, whereas in FIG. 8 the amount is plotted per injection. Experiments have shown that both families of curves are ideal for the particular operating conditions.
The most important parts of the function generator shown in FIG. 6 are the multiplier 48, the first control amplifier 55, the second control amplifier 61, and the three Zener diodes 45,47, and 57.
The transducer 24, which provides a signal corresponding to the position of the accelerator 13, is a potentiometer or an inductive voltage divider of which the upper terminal is connected to a positive direct current voltage 40. In the following description it will be assumed that the transducer 24 is a potentiometer.
A resistor 43 connects the wiper of the potentiometer 24 to an output terminal 44, which is connected to the input of the throttle valve control amplifier 36. The positive direct current potential on the potentiometer wiper is also connected by a resistor 46 to a first input of the multiplier 48 by a resistor 53 to the input of the first control amplifier 55, and by a resistor 59 to the input of the second control amplifier 61.
The Zener diode 45 limits the amplitude of the output signal of the potentiometer 24, causing the knee in the curve shown in FIG. 7.
By way of a resistor 50 and of the first output terminal 51, the electronic multiplier 48 delivers the control signal for the fuel regulating system 35. The family of curves shown in FIG. 8 graphs this signal. In order to ensure that the curves, as n 0, do not converge towards the origin but instead towards point A, a negative direct current voltage is applied to the first input terminal 41 of the multiplier 48. A resistor 49 connects this input terminal to the multiplier 48. The other input of the multiplier is connected to the output of the-multivibrator 18, the multivibrator, as previously explained, providing a voltage signal corresponding to the engine rpm n. i
For angular positions of the accelerator that approach the maximum position, the curves of FIG. '8 should have a knee, as shown. This knee is provided by the Zener diode 47.
' Whereas the signals corresponding to the engine rpm and to the position of the accelerator are multiplied to gether to determine the amount of fuel per system stroke, these two signals are added together at the input of the first controlamplifier 55 to adjust the ignition timing. There results the family of parallel straight lines, shown in FIG. 9. A resistor 52 conducts the rpm dependent signal, and a resistor 53 conducts the accelerator position dependent signal, to the input of amplifier 55.
The first control amplifier 55 has a negative feedback circuit, composed of a resistor 56 and of a Zener diode 57. This amplifier causes advance of the sparking in measure as the engine rpm rises and the accelerator is depressed, but only until the accelerator pedal reaches one-half of its maximum position. The Zener diode 57 causes the knees in the curves at high engine rpm, as shown in FIG. 9. When the accelerator pedal is pushed to beyond one-half of its maximum position, the spark must be retarded, as shown in FIG. 9. For this purpose, the second control amplifier 61 is provided. The input of this amplifier is connected by a resistor 59 to the output of the transducer 24, which provides a signal corresponding to the angular position of the accelerator, and by a resistor 60 to a negative direct current voltage at the terminal 42. Because of the negative feedback circuit, composed of the resistor 62, and of the diode 63, no signal appears at the output of the amplifier 61, so long as the summation signal at the input has a negative value for small angular positions of the accelerator pedal. As soon as the input signal to 'the amplifier 61 is positive, the output of the amplifier provides a negative signal that is proportional to the angular position of the accelerator pedal. By suitably choosing the value of the resistor 54, the voltage output of the amplifier 61, when it exceeds a certain value, has a negative effect at the input of the amplifier 55. In this way, the ignition is retarded for larger and larger values of the'angular position of the accelerator.
In the second and third embodiments of the invention (FIGS. 4 and 5), the multiplier can be, for example, a Hall effect multiplier. In this case, for example, the current in the Hall probe is equal to the input current of the first multiplier input 481, and the magnetic field is proportional to the current of the second input 482. The correction voltages can be conducted by summing resistors, thereby enabling omission of additional correction inputs.
'1 he advantageous features of the third embodiment of the invention will now be briefly described. Two fundamental steps reduce the concentration of harmful components in the exhaust. First, the internal combustion engine is operated with excess air in order to reduce the concentration of carbon monoxide and of hydrocarbons. Second, the concentration of nitrogen oxide is reduced by lowering the maximum combustion temperature. This is done by making theexcess air coefficient )t very-large (A. =l.4). Combustion slips, or misfirings, are avoided by prolonging the sparking time to several milliseconds and by advancing the spark. Means are provided for eliminating the steps to'cleanse the exhaust when a large output is required from the internal combustion engine. In the third embodiment, thecriterion for the elimination of these steps is the speed of the vehicle. These steps can also be eliminated by providing, as with automatic drive, a kick down switch; the steps are bypassed when the accelerator is pushed all the-way down to the floorboard.
The third embodiment is a very advantageous compromise solution. It provides good cleaning of the exhaust and yet can bemanufactured at a price that is substantially below that of exhaust purifiers that have after burners.
It will be understood that each of the elements described above, or two or more together, may also find a useful application in other types of circuits differing from the types described above.
While the invention has been illustrated and, described as embodied in an electronic control for the airfuel mixture and for the ignition of an internal combustion engine, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can by applying current knowledge readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics'of the generic or specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.
What is claimed as new and desired to be protected by Letters Patent is set forth in'the appended claims.
1. An electronic system for controlling the air-fuel mixture in an internal combustion engine having an accelerator, at least one cylinder and a throttle valve, first means for providing a first signal corresponding to the position of the accelerator and a second signal corresponding to the engine rpm; second means including an electronic function generator having input means connected to receive said first and second signals for controlling the amount of fuel supplied to the cylinder so as to obtain a desired excess air coefficient alpha for each operating condition of the engine, and said second means further including means for controlling the position of the throttle valve comprising an amplifier having an input connected to receive said first signal, and a Zener diode connected between ground and said input of said amplifier to become conductive when said accelerator is greatly depressed so that the throttle valve is completely opened before the accelerator is moved to its maximum position.
2. An electronic system for controlling the air-fuel mixture in an internal combustion engine having a throttle valve, an accelerator and at least one cylinder comprising, in combination first means comprising a first transducer for providing a first signal corresponding to the position of the accelerator and a second transducer for providing a second signal corresponding to the engine rpm; second means connected to receive said signals as input for controlling, in dependence upon said signals, the amount of fuel supplied to an engine cylinder so as to obtain a desired excess air coefficient alpha for each operating condition of the engine, said second means including an electronic function generator for selecting the ignition timing in dependence upon said signals, said function generator including an electronic multiplier having first and second inputs respectively connected to receive said first and second signals, said second means further including ignition timing setting means for adjusting the ignition timing, a first control circuit having an input connected to receive said first and second signals and an output connected to said ignition timing setting means to control the latter in dependence upon said signals, and wherein said second means further includes throttlevalve setting means for adjusting the throttlevalve position and a second control circuit having an input connected to said transducers to receive said signals and having an output connected to said throttle-valve setting means to control the latter in dependence upon said signals.
3. A system as defined in claim 1, wherein said second means includes means for providing a rich mixture only at full load operation and at operation at low engine rpm and small load. 7
4. A system as defined in claim 1, wherein said first means provide a third signal corresponding to the amount of air passing through the intake manifold, and wherein said function generator input means is connected to receive said third signal.
5. A system as defined in claim 4, wherein said firs means includes a static plate for measuring the amount of air passing through said intake manifold, and first transducer means for converting the movements of said static plate into said third electrical signal.
6. A system as defined in claim 4, wherein said first means includes temperature dependent resistance means located in the intake manifold air flow for providing a temperature dependent resistance, and transducer means connected to said resistance means for converting the temperature dependency thereof into said third signal.
7. A system as defined in claim 1, wherein said first means provides a third signal corresponding to the air temperature, a fourth signal corresponding to the air pressure, and a fifth signal corresponding to the engine temperature, and means for connecting said input means of said function generator to said third, fourth, and fifth signals.
8. A system as defined in claim 2, wherein said second means includes dosing valve means for controlling the amount of fuel fed to'the cylinder, and an electronic function generator connected to said dosing valve means to regulate the latter in dependence on said engine operating parameters.
9. A system as defined in claim 2, wherein said second means includes fuel injection valve means for controlling the amount of fuel fed to the cylinder, and an electronic function generator connected to said fuel injection valve means to regulate the open time of the latter in dependence on said engine operating parameters.
10. A system as defined in claim 1, wherein said second means includes metering means for controlling the flow of fuel to the cylinder, and control means for setting said ignition timing, said metering means, and the throttle valve. I
11. A system as defined in claim 10, wherein said control means includes servo loop means and feedback means for feeding back said operating parameters as an actual value insaid servo loop means.
12. A system as defined in claim 1, including a further differential amplifier for controlling the amquntof fuel supplied to the cylinder, said function generator including an electronic. multiplier having first and second inputs and an output, said output being connected to the input of said further differential amplifier, said first input being connected to receive said first signal, and wherein said first means includes a further transducer for providing said second signal, and further including rectifying means having an input and an output, said input being connected to receive said second signal and said output being connected to said second input of said multiplier.
13. A system as defined in claim 12, further including resistance-diode network means connected to said first input of said multiplier for providing a non-linear function.
14. A system as defined in claim 2, further including a first resistor and a second control amplifier connected in parallel between the output of said first transducer and said input of said first control amplifier.
15. A system as defined in claim 14, including a negative feedback circuit connected between the input and output of said second control amplifier, said feedback circuit including a diode and a resistor connected in parallel.
16. A system as defined in claim2, including a negative feedback circuit connected between said input and output of said first control amplifier, said feedback circuit including a Zener diode and a resistor connected in parallel.
17. A system as defined in claim 2, including a Zener diode connected between said output and said first input of said multiplier.
18. A system as defined in claim 14, wherein said first multiplier input is connected to a first constant bias voltage and the input of said second control amplifier is connected to a second constant bias voltage.
i i 4 i v

Claims (18)

1. An electronic system for controlling the air-fuel mixture in an internal combustion engine having an accelerator, at least one cylinder and a throttle valve, first means for providing a first signal corresponding to the position of the accelerator and a second signal corresponding to the engine rpm; second means including an electronic function generator having input means connected to receive said first and second signals for controlling the amount of fuel supplied to the cylinder so as to obtain a desired excess air coefficient alpha for each operating condition of the engine, and said second means further including means for controlling the position of the throttle valve comprising an amplifier having an input connected to receive said first signal, and a Zener diode connected between ground and said input of said amplifier to become conductive when said accelerator is greatly depressed so that the throttle valve is completely opened before the accelerator is moved to its maximum position.
2. An electronic system for controlling the air-fuel mixture in an internal combustion engine having a throttle valve, an accelerator and at least one cylinder comprising, in combination first means comprising a first transducer for providing a first signal corresponding to the position of the accelerator and a second transducer for providing a second signal corresponding to the engine rpm; second means connected to receive said signals as input for controlling, in dependence upon said signals, the amount of fuel supplied to an engine cylinder so as to obtain a desired excess air coefficient alpha for each operating condition of the engine, said second means including an electronic function generator for selecting the ignition timing in dependence upon said signals, said function generator including an electronic multiplier having first and second inputs respectively connected to receive said first and second signals, said second means further including ignition timing setting means for adjusting the ignition timing, a first control circuit having an input connected to receive said first and second signals and an output connected to said ignition timing setting means to control the latter in dependence upon said signals, and wherein said second means further includes throttle-valve setting means for adjusting the throttle-valve position and a second control circuit having an input connected to said transducers to receive said signals and having an output connected to said throttle-valve setting means to control the latter in dependence upon said signals.
3. A system as defined in claim 1, wherein said second means includes means for providing a rich mixture only at full load operation and at operation at low engine rpm and small load.
4. A system as defined in claim 1, wherein said first means provide a third signal corresponding to the amount of air passing through the intake manifold, and wherein said function generator input means is connected to receive said third signal.
5. A system aS defined in claim 4, wherein said first means includes a static plate for measuring the amount of air passing through said intake manifold, and first transducer means for converting the movements of said static plate into said third electrical signal.
6. A system as defined in claim 4, wherein said first means includes temperature dependent resistance means located in the intake manifold air flow for providing a temperature dependent resistance, and transducer means connected to said resistance means for converting the temperature dependency thereof into said third signal.
7. A system as defined in claim 1, wherein said first means provides a third signal corresponding to the air temperature, a fourth signal corresponding to the air pressure, and a fifth signal corresponding to the engine temperature, and means for connecting said input means of said function generator to said third, fourth, and fifth signals.
8. A system as defined in claim 2, wherein said second means includes dosing valve means for controlling the amount of fuel fed to the cylinder, and an electronic function generator connected to said dosing valve means to regulate the latter in dependence on said engine operating parameters.
9. A system as defined in claim 2, wherein said second means includes fuel injection valve means for controlling the amount of fuel fed to the cylinder, and an electronic function generator connected to said fuel injection valve means to regulate the open time of the latter in dependence on said engine operating parameters.
10. A system as defined in claim 1, wherein said second means includes metering means for controlling the flow of fuel to the cylinder, and control means for setting said ignition timing, said metering means, and the throttle valve.
11. A system as defined in claim 10, wherein said control means includes servo loop means and feedback means for feeding back said operating parameters as an actual value in said servo loop means.
12. A system as defined in claim 1, including a further differential amplifier for controlling the amount of fuel supplied to the cylinder, said function generator including an electronic multiplier having first and second inputs and an output, said output being connected to the input of said further differential amplifier, said first input being connected to receive said first signal, and wherein said first means includes a further transducer for providing said second signal, and further including rectifying means having an input and an output, said input being connected to receive said second signal and said output being connected to said second input of said multiplier.
13. A system as defined in claim 12, further including resistance-diode network means connected to said first input of said multiplier for providing a non-linear function.
14. A system as defined in claim 2, further including a first resistor and a second control amplifier connected in parallel between the output of said first transducer and said input of said first control amplifier.
15. A system as defined in claim 14, including a negative feedback circuit connected between the input and output of said second control amplifier, said feedback circuit including a diode and a resistor connected in parallel.
16. A system as defined in claim 2, including a negative feedback circuit connected between said input and output of said first control amplifier, said feedback circuit including a Zener diode and a resistor connected in parallel.
17. A system as defined in claim 2, including a Zener diode connected between said output and said first input of said multiplier.
18. A system as defined in claim 14, wherein said first multiplier input is connected to a first constant bias voltage and the input of said second control amplifier is connected to a second constant bias voltage.
US00128617A 1970-03-26 1971-03-25 Electronic control for the air-fuel mixture and for the ignition of an internal combustion engine Expired - Lifetime US3750632A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19702014633 DE2014633C2 (en) 1970-03-26 1970-03-26 Device for controlling the mixture fed to an externally ignited internal combustion engine
DE19712105353 DE2105353A1 (en) 1971-02-05 1971-02-05 Electronic mixture dosing system

Publications (1)

Publication Number Publication Date
US3750632A true US3750632A (en) 1973-08-07

Family

ID=25758889

Family Applications (1)

Application Number Title Priority Date Filing Date
US00128617A Expired - Lifetime US3750632A (en) 1970-03-26 1971-03-25 Electronic control for the air-fuel mixture and for the ignition of an internal combustion engine

Country Status (8)

Country Link
US (1) US3750632A (en)
CA (1) CA932430A (en)
CH (1) CH514780A (en)
CS (1) CS149438B2 (en)
ES (1) ES389567A1 (en)
GB (1) GB1337448A (en)
NL (1) NL7104034A (en)
SE (1) SE371470B (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815560A (en) * 1972-03-09 1974-06-11 Bosch Gmbh Robert Ignition system for internal combustion engines
US3831564A (en) * 1972-06-20 1974-08-27 Bosch Gmbh Robert Method to reduce noxious components in internal combustion engine exhaust gases, and apparatus therefor
US3861366A (en) * 1972-04-14 1975-01-21 Nissan Motor Air-fuel mixture supply control system for use with carburetors for internal combustion engines
US3875907A (en) * 1972-10-19 1975-04-08 Bosch Gmbh Robert Exhaust gas composition control system for internal combustion engines, and control method
US3886915A (en) * 1973-09-28 1975-06-03 Bendix Corp Passive adaptive engine control system for improved vehicle driveability
US3908371A (en) * 1971-12-29 1975-09-30 Nissan Motor Apparatus for supplying fuel to a dual-catalyst exhaust treatment system
US3951113A (en) * 1974-04-25 1976-04-20 Robert Bosch G.M.B.H. Fuel injection system
US3960130A (en) * 1974-05-28 1976-06-01 The Bendix Corporation Start air control system
US3964457A (en) * 1974-06-14 1976-06-22 The Bendix Corporation Closed loop fast idle control system
US3969614A (en) * 1973-12-12 1976-07-13 Ford Motor Company Method and apparatus for engine control
US3980062A (en) * 1974-04-25 1976-09-14 Robert Bosch G.M.B.H. Fuel injection system
US3983848A (en) * 1974-04-25 1976-10-05 Robert Bosch G.M.B.H. Fuel injection system
US4033310A (en) * 1972-10-04 1977-07-05 C.A.V. Limited Fuel pumping apparatus with timing correction means
US4121545A (en) * 1975-02-06 1978-10-24 Nissan Motor Company, Limited Electronic fuel injection control apparatus using variable resistance for relating intake air speed to engine speed
DE2816886A1 (en) * 1977-04-20 1978-10-26 Bendix Corp PULSE TIME ADDITION CIRCUIT, IN PARTICULAR FOR THE FUEL INJECTION SYSTEM OF A COMBUSTION ENGINE
US4125090A (en) * 1975-11-25 1978-11-14 Toyota Jidosha Kogyo Kabushiki Kaisha Control method and system for car-mounted fuel reformer
FR2404742A1 (en) * 1977-09-29 1979-04-27 Bendix Corp SYSTEM AND METHOD OF CLOSED LOOP CONTROL OF THE AIR-FUEL MIXTURE IN AN INTERNAL COMBUSTION ENGINE
US4166437A (en) * 1976-07-27 1979-09-04 Robert Bosch Gmbh Method and apparatus for controlling the operating parameters of an internal combustion engine
US4195598A (en) * 1977-08-06 1980-04-01 Robert Bosch Gmbh Method and apparatus for determining the injection time in externally ignited internal combustion engines
US4201166A (en) * 1977-10-20 1980-05-06 Hitachi, Ltd. Air to fuel ratio control system for internal combustion engine
US4203395A (en) * 1977-09-16 1980-05-20 The Bendix Corporation Closed-loop idle speed control system for fuel-injected engines using pulse width modulation
US4205636A (en) * 1977-07-12 1980-06-03 Ntn Toyo Bearing Company, Limited Apparatus for controlling the air fuel mixture of an internal combustion engine
FR2475131A1 (en) * 1980-01-31 1981-08-07 Mikuni Kogyo Kk ELECTRONICALLY CONTROLLED FUEL INJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINE WITH SPARK IGNITION
DE3049398A1 (en) * 1979-12-28 1981-09-17 Hitachi, Ltd., Tokyo ENGINE SPEED CONTROL SYSTEM
US4308838A (en) * 1978-08-30 1982-01-05 Toyota Jidosha Kogyo Kabushiki Kaisha Acceleration signal detector
US4335694A (en) * 1978-08-30 1982-06-22 Robert Bosch Gmbh Fuel supply system for internal combustion engines
FR2510659A1 (en) * 1981-07-29 1983-02-04 Mikuni Kogyo Kk FUEL SUPPLY SYSTEM FOR INTERNAL COMBUSTION ENGINE
EP0087621A1 (en) * 1982-02-08 1983-09-07 Hitachi, Ltd. Air flow meter for internal-combustion engine
EP0095190A2 (en) * 1982-05-26 1983-11-30 Hitachi, Ltd. Electronically controlled injection system for internal combustion engines
US4453516A (en) * 1980-05-22 1984-06-12 Daimler-Benz Aktiengesellschaft Device for controlling an internal combustion engine
US4470396A (en) * 1982-12-02 1984-09-11 Mikuni Kogyo Kabushiki Kaisha Internal combustion engine control system with means for reshaping of command from driver's foot pedal
EP0142856A2 (en) * 1983-11-21 1985-05-29 Hitachi, Ltd. Air-fuel ratio control apparatus for internal combustion engines
EP0176967A2 (en) * 1984-09-29 1986-04-09 Mazda Motor Corporation Engine control system
US4615319A (en) * 1983-05-02 1986-10-07 Japan Electronic Control Systems Co., Ltd. Apparatus for learning control of air-fuel ratio of airfuel mixture in electronically controlled fuel injection type internal combustion engine
FR2591278A1 (en) * 1985-12-06 1987-06-12 Inf Milit Spatiale Aeronaut COMBUSTION ENGINE CONTROL DEVICE AND METHOD OF USING SUCH A DEVICE.
US4715344A (en) * 1985-08-05 1987-12-29 Japan Electronic Control Systems, Co., Ltd. Learning and control apparatus for electronically controlled internal combustion engine
US4729359A (en) * 1985-06-28 1988-03-08 Japan Electronic Control Systems Co., Ltd. Learning and control apparatus for electronically controlled internal combustion engine
US4986242A (en) * 1988-02-05 1991-01-22 Weber S.R.L. Electronic fuel injection system for an internal combustion engine
US20030145808A1 (en) * 2002-02-01 2003-08-07 Volkmar Foelsche Method and arrangement for controlling a drive unit including an internal combustion engine
US20170089288A1 (en) * 2014-05-20 2017-03-30 Continental Automotive Gmbh Device And Method For Controlling A Fuel Injection Valve

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818877A (en) * 1972-08-24 1974-06-25 Ford Motor Co Signal generating process for use in engine control
JPS5219254B2 (en) * 1973-09-19 1977-05-26
US3915134A (en) * 1974-03-04 1975-10-28 Dana Corp Exhaust gas recirculation system for internal combustion engines

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB600895A (en) * 1945-12-14 1948-04-21 John Kenneth Wadsworth Baines Improved means for controlling the mixture of fuel and air supplied to internal combustion engines
DE1099267B (en) * 1957-09-14 1961-02-09 Bosch Gmbh Robert Injection system for internal combustion engines, in particular for motor vehicles
US3020897A (en) * 1959-11-18 1962-02-13 Sony Corp Ignition system for an internal combustion engine
US3407793A (en) * 1966-05-20 1968-10-29 Bosch Gmbh Robert Electronic controller for diesel engines
US3483851A (en) * 1966-11-25 1969-12-16 Bosch Gmbh Robert Fuel injection control system
US3601108A (en) * 1969-08-08 1971-08-24 Nissan Motor Intake manifold for automotive fuel injection system
US3626910A (en) * 1967-12-20 1971-12-14 Porsche Kg Ignition and injection control for internal combustion engine
US3646914A (en) * 1969-02-25 1972-03-07 Sibe Fuel feed devices for internal combustion engines
US3650258A (en) * 1969-01-08 1972-03-21 Petrol Injection Ltd Fuel injection systems
US3665900A (en) * 1968-11-07 1972-05-30 Bosch Gmbh Robert Electronic control system for shaping the fuel-speed characteristics of an internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB600895A (en) * 1945-12-14 1948-04-21 John Kenneth Wadsworth Baines Improved means for controlling the mixture of fuel and air supplied to internal combustion engines
DE1099267B (en) * 1957-09-14 1961-02-09 Bosch Gmbh Robert Injection system for internal combustion engines, in particular for motor vehicles
US3020897A (en) * 1959-11-18 1962-02-13 Sony Corp Ignition system for an internal combustion engine
US3407793A (en) * 1966-05-20 1968-10-29 Bosch Gmbh Robert Electronic controller for diesel engines
US3483851A (en) * 1966-11-25 1969-12-16 Bosch Gmbh Robert Fuel injection control system
US3626910A (en) * 1967-12-20 1971-12-14 Porsche Kg Ignition and injection control for internal combustion engine
US3665900A (en) * 1968-11-07 1972-05-30 Bosch Gmbh Robert Electronic control system for shaping the fuel-speed characteristics of an internal combustion engine
US3650258A (en) * 1969-01-08 1972-03-21 Petrol Injection Ltd Fuel injection systems
US3646914A (en) * 1969-02-25 1972-03-07 Sibe Fuel feed devices for internal combustion engines
US3601108A (en) * 1969-08-08 1971-08-24 Nissan Motor Intake manifold for automotive fuel injection system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Aircraft Carburetion, Thorner 1947, Pages 38, 39, 40, 41, 82 85 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908371A (en) * 1971-12-29 1975-09-30 Nissan Motor Apparatus for supplying fuel to a dual-catalyst exhaust treatment system
US3815560A (en) * 1972-03-09 1974-06-11 Bosch Gmbh Robert Ignition system for internal combustion engines
US3861366A (en) * 1972-04-14 1975-01-21 Nissan Motor Air-fuel mixture supply control system for use with carburetors for internal combustion engines
US3831564A (en) * 1972-06-20 1974-08-27 Bosch Gmbh Robert Method to reduce noxious components in internal combustion engine exhaust gases, and apparatus therefor
US4033310A (en) * 1972-10-04 1977-07-05 C.A.V. Limited Fuel pumping apparatus with timing correction means
US3875907A (en) * 1972-10-19 1975-04-08 Bosch Gmbh Robert Exhaust gas composition control system for internal combustion engines, and control method
US3886915A (en) * 1973-09-28 1975-06-03 Bendix Corp Passive adaptive engine control system for improved vehicle driveability
US3969614A (en) * 1973-12-12 1976-07-13 Ford Motor Company Method and apparatus for engine control
US3980062A (en) * 1974-04-25 1976-09-14 Robert Bosch G.M.B.H. Fuel injection system
US3983848A (en) * 1974-04-25 1976-10-05 Robert Bosch G.M.B.H. Fuel injection system
US3951113A (en) * 1974-04-25 1976-04-20 Robert Bosch G.M.B.H. Fuel injection system
US3960130A (en) * 1974-05-28 1976-06-01 The Bendix Corporation Start air control system
US3964457A (en) * 1974-06-14 1976-06-22 The Bendix Corporation Closed loop fast idle control system
US4121545A (en) * 1975-02-06 1978-10-24 Nissan Motor Company, Limited Electronic fuel injection control apparatus using variable resistance for relating intake air speed to engine speed
US4125090A (en) * 1975-11-25 1978-11-14 Toyota Jidosha Kogyo Kabushiki Kaisha Control method and system for car-mounted fuel reformer
US4166437A (en) * 1976-07-27 1979-09-04 Robert Bosch Gmbh Method and apparatus for controlling the operating parameters of an internal combustion engine
DE2816886A1 (en) * 1977-04-20 1978-10-26 Bendix Corp PULSE TIME ADDITION CIRCUIT, IN PARTICULAR FOR THE FUEL INJECTION SYSTEM OF A COMBUSTION ENGINE
US4205636A (en) * 1977-07-12 1980-06-03 Ntn Toyo Bearing Company, Limited Apparatus for controlling the air fuel mixture of an internal combustion engine
US4195598A (en) * 1977-08-06 1980-04-01 Robert Bosch Gmbh Method and apparatus for determining the injection time in externally ignited internal combustion engines
US4203395A (en) * 1977-09-16 1980-05-20 The Bendix Corporation Closed-loop idle speed control system for fuel-injected engines using pulse width modulation
FR2404742A1 (en) * 1977-09-29 1979-04-27 Bendix Corp SYSTEM AND METHOD OF CLOSED LOOP CONTROL OF THE AIR-FUEL MIXTURE IN AN INTERNAL COMBUSTION ENGINE
US4201166A (en) * 1977-10-20 1980-05-06 Hitachi, Ltd. Air to fuel ratio control system for internal combustion engine
US4308838A (en) * 1978-08-30 1982-01-05 Toyota Jidosha Kogyo Kabushiki Kaisha Acceleration signal detector
US4335694A (en) * 1978-08-30 1982-06-22 Robert Bosch Gmbh Fuel supply system for internal combustion engines
DE3049398A1 (en) * 1979-12-28 1981-09-17 Hitachi, Ltd., Tokyo ENGINE SPEED CONTROL SYSTEM
US4524745A (en) * 1980-01-31 1985-06-25 Mikuni Kogyo Co., Ltd. Electronic control fuel injection system for spark ignition internal combustion engine
FR2475131A1 (en) * 1980-01-31 1981-08-07 Mikuni Kogyo Kk ELECTRONICALLY CONTROLLED FUEL INJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINE WITH SPARK IGNITION
US4453516A (en) * 1980-05-22 1984-06-12 Daimler-Benz Aktiengesellschaft Device for controlling an internal combustion engine
FR2510659A1 (en) * 1981-07-29 1983-02-04 Mikuni Kogyo Kk FUEL SUPPLY SYSTEM FOR INTERNAL COMBUSTION ENGINE
EP0087621A1 (en) * 1982-02-08 1983-09-07 Hitachi, Ltd. Air flow meter for internal-combustion engine
EP0095190A2 (en) * 1982-05-26 1983-11-30 Hitachi, Ltd. Electronically controlled injection system for internal combustion engines
EP0095190A3 (en) * 1982-05-26 1985-11-06 Hitachi, Ltd. Electronically-controlled system for supplying fuel into cylinder
US4470396A (en) * 1982-12-02 1984-09-11 Mikuni Kogyo Kabushiki Kaisha Internal combustion engine control system with means for reshaping of command from driver's foot pedal
US4615319A (en) * 1983-05-02 1986-10-07 Japan Electronic Control Systems Co., Ltd. Apparatus for learning control of air-fuel ratio of airfuel mixture in electronically controlled fuel injection type internal combustion engine
EP0142856A2 (en) * 1983-11-21 1985-05-29 Hitachi, Ltd. Air-fuel ratio control apparatus for internal combustion engines
EP0142856A3 (en) * 1983-11-21 1987-02-04 Hitachi, Ltd. Air-fuel ratio control apparatus for internal combustion engines
EP0176967A3 (en) * 1984-09-29 1986-05-28 Mazda Motor Corporation Engine control system
EP0176967A2 (en) * 1984-09-29 1986-04-09 Mazda Motor Corporation Engine control system
US4763264A (en) * 1984-09-29 1988-08-09 Mazda Motor Corporation Engine control system
US4729359A (en) * 1985-06-28 1988-03-08 Japan Electronic Control Systems Co., Ltd. Learning and control apparatus for electronically controlled internal combustion engine
US4715344A (en) * 1985-08-05 1987-12-29 Japan Electronic Control Systems, Co., Ltd. Learning and control apparatus for electronically controlled internal combustion engine
FR2591278A1 (en) * 1985-12-06 1987-06-12 Inf Milit Spatiale Aeronaut COMBUSTION ENGINE CONTROL DEVICE AND METHOD OF USING SUCH A DEVICE.
EP0227536A1 (en) * 1985-12-06 1987-07-01 Cimsa Sintra Feedback control apparatus for an internal-combustion engine, and method using such an apparatus
US4748957A (en) * 1985-12-06 1988-06-07 Compagnie D'informatique Militaire Spatiale Et Aeronautique Device for regulating a combustion engine
US4986242A (en) * 1988-02-05 1991-01-22 Weber S.R.L. Electronic fuel injection system for an internal combustion engine
US20030145808A1 (en) * 2002-02-01 2003-08-07 Volkmar Foelsche Method and arrangement for controlling a drive unit including an internal combustion engine
US7025033B2 (en) * 2002-02-01 2006-04-11 Robert Bosch Gmbh Method and arrangement for controlling a drive unit including an internal combustion engine
US20170089288A1 (en) * 2014-05-20 2017-03-30 Continental Automotive Gmbh Device And Method For Controlling A Fuel Injection Valve
US10309331B2 (en) * 2014-05-20 2019-06-04 Continental Automotive Gmbh Device and method for controlling a fuel injection valve

Also Published As

Publication number Publication date
CA932430A (en) 1973-08-21
SE371470B (en) 1974-11-18
CS149438B2 (en) 1973-07-05
CH514780A (en) 1971-10-31
NL7104034A (en) 1971-09-28
ES389567A1 (en) 1974-03-01
GB1337448A (en) 1973-11-14

Similar Documents

Publication Publication Date Title
US3750632A (en) Electronic control for the air-fuel mixture and for the ignition of an internal combustion engine
US4015566A (en) Electronic ignition control system for internal combustion engines
US3745768A (en) Apparatus to control the proportion of air and fuel in the air fuel mixture of internal combustion engines
US4073269A (en) Fuel injection system
US3890946A (en) Method and system to reduce noxious components in the exhaust emission from internal combustion engines with carburetor supply
GB1516987A (en) Method of mixture control in mixture-compressing spark-ignited internal combustion engines
GB1484766A (en) Air-fuel mixture control apparatus for carburetted internal combustion engines
SE7907936L (en) ELECTRONIC FUEL INJECTION SYSTEM FOR COMBUSTION ENGINES
US4280465A (en) Throttle control for an electronic fuel-injection control circuit
US3871338A (en) Method and apparatus to reduce noxious components in the exhaust emissions of internal combustion engines
US4251990A (en) Air-fuel ratio control system
GB2243462A (en) I.C. engine control apparatus
EP0134672A3 (en) Air-fuel ratio controller
KR920701637A (en) Fuel mixing rate detection method
EP0151768A3 (en) Measuring system for the fuel-air mixture of a combustion engine
GB1510177A (en) Fuel injection systems
US3720191A (en) Acceleration enrichment circuitry for electronic fuel system
US4391254A (en) Atomization compensation for electronic fuel injection
US4500866A (en) Electric potentiometer
US3482558A (en) Fuel injection system
ES443650A1 (en) Metering control for the air-fuel mixture in internal combustion engines
US3964454A (en) Differential ignition timing firing control system
US4143621A (en) Fuel injection system with augmented temperature sensitive fuel enrichment for transient engine loads
EP0338017A1 (en) Electronic fuel injection circuit with altitude compensation
ES419752A1 (en) Control of the composition of the exhaust gas of internal combustion engines