Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3751365 A
Tipo de publicaciónConcesión
Fecha de publicación7 Ago 1973
Fecha de presentación7 Ene 1972
Fecha de prioridad22 Oct 1965
Número de publicaciónUS 3751365 A, US 3751365A, US-A-3751365, US3751365 A, US3751365A
InventoresR Karll, E Piasek
Cesionario originalStandard Oil Co
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products
US 3751365 A
Resumen  disponible en
Imágenes(11)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

United StatS Patent Oifice 3,751,365 Patented Aug. 7, 1973 3,751,365 CONCENTRATES AND CRANKCASE OILS COM- PRISIN G OIL SOLUTIONS OF BORON CONTAIN- ING HIGH MOLECULAR WEIGHT MANNICH REACTION CONDENSATION PRODUCTS Edmund J. Piasek, Chicago, and Robert E. Karl], Batavia, Ill., assignors to Standard Oil Company, Chicago, Ill. No Drawing. Application Apr. 14, 1969, Ser. No. 816,125,

now Patent No. 3,704,308, which is a continuation-mpart of application Ser. No. 502,368, Oct. 22, 1965, now Patent No. 3,539,633. Divided and this application Jan. 7, 1972, Ser. No. 216,272

Int. Cl. C10n1 1/54 US. Cl. 252-49.6 Claims ABSTRACT OF THE DISCLOSURE Oil solutions of boron-containing derivative of products of Mannich reaction by condensation of reactants (l) a high molecular weight alkyl-substituted hydroxyaromatic compound whose alkyl substituent has upward from 40 to 20,000 carbon atoms, (2) a lower alkyl-substituted phenol whose alkyl group has 2 to 20 carbon atoms, (3) an amine which contains a HN group, and (4) an aldehyde in the respective molar ratio of wherein the boron content of said derivative of the Mannich reaction expressed as a boron to nitrogen weight ratio (B/N) is in the range of 0.1-5.5:1.0 and said boron derivative is present in weight concentrations of 0.05 to 70 percent as solute in mineral oil of the lubricating oil types. Such oil solutions are useful as crankcase lubricating compositions, or as concentrates for fortifying used crankcase lubricating composition and for preparation of crankcase lubricating compositions. Such solutions provide detergency, dispersancy and antioxidant properties necessary for crankcase oil function under high severity engine operation.

RELATED APPLICATIONS This application is a divisional application of our application Ser. No. 816,125 filed Apr. 14, 1969, now US. Pat. No. 3,704,308 which is a continuation-in-part of our copending application Ser. No. 502,368, filed Oct. 22, 1965, and now US. Pat. No. 3,539,633.

BACKGROUND OF THE INVENTION Present-day automobile and diesel engines have been designed for higher-power output, lower combustion products emission and longer in service periods of use of crankcase lubricating oils. All of these design changes have necessitated devising higher efficiency lubricating oils that will under the increased severity of in service use aflFord protection against corrosion of and deposition of sludge and varnish on engine parts that otherwise tend to accelerate decrease in both operating efliciency and life of the engine. The principle ingredient of crankcase lubricants is lubricating oil, a mixture of hydrocarbons derived from petroleum. There is a limit to which those hydrocarbon oils per se can be improved, e.g. removal of polymerizable components, acidic or acid-forming components, waxes and other low temperature solids formers, and other deleterious components. A lubricant base oil refined even to the optimum still requires certain oilsoluble chemical addition agents to resist oxidation of the oil, deposition of sludge and varnish on metal parts and corrosion of metal parts and to provide added lubricity and regulated viscosity change from low to high temperatures. No one chemical addition agent has been found that provides all those extra functions.

Combustion products from the burning of fuel, lubricating oil and nitrogen of air as well as products of thermal degradation of hydrocarbon lubricating oils and addition agents tend to concentrate in the crankcase oil. Those products of combustion and thermal degradation tend to form oil-insoluble products that either surface coat metal parts lacquer or varnish like films) or settle out as viscous (sludge) deposits or form solid ash-like or carbonaceous deposits. Any of these deposits can restrict and even plug grooves, channels and holes provided for lubricant flow to moving surfaces requiring lubrication. Crankcase oils are formulated (dissolving of addition agents in highly refined hydrocarbon lubricating oils) not only to reduce thermal decomposition of oil solvent and addition agent solutes but also to keep in suspension (as a dispersant) or to resuspend (as a detergent) insoluble combustion and thermal degradation products as well as neutralize acidic products. Neutral and overbased metallo organic compounds such as the alkaline earth metal salts of sulfonic acids and hydrocarbon-P 8 reaction products were first used as dispersant-detergent addition agents. There in service drawbacks were that their combustion and/ or thermal degradation products left metal ash solids, they could not efliciently resuspend or disperse lacquer and varnish formers or sludge formers to meet present-day engine requirements and they lost their dispersant-detergent function when their alkaline earth metal component had been consumed by neutralizing acidic products of combustion.

Thus as the periods of in service use of crankcase oils were lengthened, lengthening of periods between oil drains for both automobile engines and railway diesel engines, more efiicient dispersancy and detergency performance acid neutralization and a lower ash-forming tendency were needed for chemical addition. agents used in lubricating oils. Many researchers have recently expended much effort directed to this problem. One new approach taken by researchers in diiferent laboratories was to devise amine derivatives, e.g. salts, amides, imides and amidines of polycarboxylic acids that would function as dispersantdetergent addition agents. Others devised polymeric compounds having pendent or grafted-on pendent polar groups that provided the dispersant-detergent function. Still others devised for that dispersant-detergent function combinations of alkaline earth metal sulfonates and Mannich condensation products of a low molecular weight alkyl-substituted (C to C hydroxyaromatic compound, an amine having at least one replaceable hydrogen on a nitrogen and an aldehyde or alkaline earth metal salts (phenates) of those Mannich condensation products. Those combinations did not overcome the formation of metal-ash nor were they particularly suitable for the increased dispersancy-detergency service for long drain service of present-day engine requirements even though the combination offered some anti-oxidation activity.

The present invention is directed to ashless type boroncontaining derivatives of high molecular weight Mannich condensation products derived from high molecular weight alkyl'ated hydroxyaromatic compounds. Mannich condensation products derived from alkyl-substituted hydroxyaromatic compounds having relatively low molecular weight alkyl substituents, i.e. 4 to 20 carbon atoms in the alkyl hydrocarbon substituent wax-hydrocarbon and chlorinated wax-hydrocarbon (both straight chain) type alkyl-substituents are known from prior US. patents such as Nos. 2,403,453, 2,353,491, 2,459,112, 2,984,550 and 3,036,003. However, those prior Mannich condensation products are not particularly suitable as highly efficient dispersant-detergent addition agents for the present-day long drain oil interval in service use. Boron derivatives of the lower molecular weight Mannich condensation products have not been proposed as useful lubricating oil addition agents.

The prior lower molecular weight Mannich condensation products are those illustrated below. The simplest Mannich condensation products can be illustrated from the reaction of an alkyl phenol, an N,N-disubstituted amine and formaldehyde according to the following equation:

(IJH

wherein R is a C to C alkyl group or wax-alkyl and chlorinated wax alkyl group and R and R are alkyl and/ or a l.

Pri br Mannich condensation products also are those obtained by reacting C to C alkylphenols, formaldehyde and a diamino alkane in the ratio of two moles of said alkylphenol and two moles formaldehyde for each mole of diamino alkane of the formula H N--R-NH Where R is a divalent alkylene hydrocarbon. Such compounds have been illustrated in the prior art by the following structural formula:

where R is divalent alkylene hydrocarbon and R is a C to C alkyl hydrocarbon group. Still other Prior Mannich condensation products are those resulting from the reaction of from 0.5 to 2 moles each of C to C alkyl phenol and formaldehyde for each basic nitrogen in an alkylene polyamine (also named azaalkylene diamines). Said alkylene polyamines are those having formula H2N AN H where A is a divalent alkyl hydrocarbon radical of 2 to 6 carbon atoms and n is an integer of from 1 to 10. The alkylene polyamines usually used are the di-, tri and tetraethylene tri-, tetraand pentamines, that is A is CHgCHzand n is 2, 3 and 4. The resulting products are illustrated in U.S. Pat. No. 3,036,003. For example the reaction of 3 moles each of p-tertiary octyl phenol and formaldehyde with one mole of diethylene triamine is illustrated as N N N -tri-(2-hydroxy-5-t.-octylbenzyl) diethylene triamine; the reaction of 2 moles each of p-t.--octyl phenol and one mole diethylene-triamine is illustrated as being either N ,N -di-(2-hydroxy-5-t.octyl-benzyl) or N N -di- (2-hydroxy-5-t.-octylbenzyl) diethylene triamine. It would appear from this reference that the reactants used for the preparation of those Mannich condensation products react equally with either the primary amino (NH group or the secondary amino (NH) group whose nitrogen is part of the azaalkylene amine chain substantially without preference.

Certain of the hydroxy-C to C alkyl benzyl substituted alkylene polyamines are disclosed by U.S. Pat. No. 3,036,003 as useful per se in lubricant oil formulations as ashless-type detergents. For example the tetra-(hydroxy- S-tertiary-octyl-benzyl) substituted product resulting from the molar ratio reaction of 4 moles p-t.octyl phenol, 4 moles formaldehyde and one mole tetraethylene pentamine did, in a carbon black suspension test reported in that patent, keep all the carbon black suspended in a solvent comprising a mixture of kerosene and a mineral oil. However, that patent demonstrates by an oxidation stability test that the same tetra- (hydroxy-t.octylbenzyl) substituted tetraethylene pentamine alone (no other detergent) promotes sludge and varnish formulation as well as oxidation of the base oil solvent. Thus U.S. Pat. No. 3,036,- 003 demonstrates its Mannich condensation products are not satisfactory when used alone as the sole dispersant or detergent addition agent.

Mannich condensation products of the above prior art are prepared by reacting the alkylphenol, lower aliphatic aldehyde such as formaldehyde, paraformaldehyde and acetaldehyde, and amine, diaminoalkane, diaminoarane or alkylene polyamine at to 350 F. in the absence or presence of a solvent. When a solvent is used, benzene, toluene, xylene and others easily removed from the condensation product are useful as are light mineral oil such as those used in blending stocks to prepare lubricant oil formulations as well as mixtures of these two types of solvents. Since Water is formed as a by-product, drying of the reaction mixture is accomplished by employing a reaction temperature suiliciently high, at least during the last part of the process, to drive off water alone, or as an azeotropic mixture with the aromatic solvent, or to drive off water by the aid of an inert stripping gas such as nitrogen, carbon dioxide, etc.

Also the prior art type Mannich condensation products were mainly used as lubricant addition agents in the form of their exactly neutralized or highly basic (or over-based) alkaline earth metal salts (alkaline earth metal phenate derivatives) to provide a combination of detergent-inhibitor properties in one additive agent. The exactly neutralized alkaline earth metal salts have one equivalent of alkaline earth metal for each hydroxy group present. The highly basic or over-based alkaline earth metal salts have for each hydroxy group present more than one equivalent of alkaline earth metal in the form of a hydroxy metaloxy, alkoxy metaloxy and even alkaline earth metal carbonate complex with hydroxy metaloxy on each benzene ring as a replacement for the phenol hydroxy group.

SUMMARY OF THE INVENTION Our invention is predicated upon the discoveries that: (a) boron-containing derivatives of high molecular Weight Mannich condensation products prepared from reactants 1) an alkyl-substituted hydroxyaromatic (phenolic) compounds having upward from 40 to about 20,000 carbon atoms in the alkyl substituent, (2) a lower molecular weight alkylphenol whose alkyl groups contain 2 to 20 carbon atoms, (3) a compound having an active hydrogen on a nitrogen, i.e. having an HN group, and (4) an aldehyde are novel oil-soluble compositions; (b) said boron-containing derivatives of those high molecular weight Mannich condensation products are useful as lubricant oil addition agent when having a boron to nitrogen (B/ N) weight ratio of 0.1 to 5.5; (e) such boron-containmg derivatives are novel dispersant-detergent addition agents even at relatively high in-service use temperatures; and (d) useful lubricating oil solutions of those boron derivatives of the high molecular weight Mannich condensation products are useful as addition agents in amounts of 0.05 to 70 weight percent are novel compositions that provide or can be used to provide improved lubricant compositions that have highly efficient dispersant-detergent properties and antioxidant properties because of the properties of the addition agents.

-In general the high molecular weight Mannich condensation products of this invention can be made by using the above named four reactants in the respective molar ratio of 1.0:0-0.7:0.1-10:1.0-10 for reactants (1), (2), (3) and 4). The technique for preparing such high molecular weight condensation products is, in general, the same as that used to prepare the prior art low molecular weight Mannich condensation products. More specifically the reactants are combined in the desired reactive amounts and heated to a temperature to which by-product water can be removed. When both high molecular weight alkyl-substituted hydroxyaromatic reactant (1) and lower molecular weight alkyl-substituted phenol reactant (2) and when using an amine having two or more HN groups are used as reactants it is preferred to combine reactants (1), (3) and (4) in the respective molar ratio of 1.0:0.71.0:0.7 1.0 and heat to eliminate by-product water and then react two moles of that product with 0.7 to 1.4 moles lower weight alkylphenol and 1.4 to 2.8 aldehyde at a temperature upward from 280 F. to eliminate by-product water.

The two step condensation provides predominantly the product obtained by coupling two moles of high molecular Mannich condensation with an alkyl-substituted hydroxyxylylene group, i.e. a group having the structure:

wherein R is an alkyl hydrocarbon having 2 to carbon atoms.

Both the one condensation route and the two condensation step route produce mixtures of condensation products having one or more CH-N radicals as a nuclear substituent on an aromatic ring carbon. The precise nature and character of the various condensation products is not understood. Since those mixtures of condensation products are reacted with boron-containing reactants to prepare the boron-containing derivatives of this invention, the boron-containing compounds of this invention are likewise mixtures of various chemical entities.

Suitable as boron-containing addition agents according to this invention are those of the high molecular Weight Mannich condensation products derived from the high molecular weight alkyl-substituted hydroxyaromatic compound whose alkyl substituent has upward from 40 to about 20,000 carbon atoms desirably polypropyl or polybutyl hydroxyaromatic compounds whose polybutyl or polypropyl substituents have a molecular weight in the range of 600-5000 and preferred are those derived from Mannich condensation products of the polybutyl and polypropyl phenols whose polybutyl and polypropyl groups have a number average molecular weight (NAMW) in the range suitably of 600-5000, desirably 800 to 3000 and preferably 750-2000.

The boron-containing derivatives of any of the foregoing high molecular weight Mannich condensation products, as before stated, are highly useful as lubricating oil addition agents. These boron-containing derivatives that have a B/N ratio of 0.1 to 5.5 can be made as reaction products of those high molecular weight Mannich condensation products and a boron compound reactive and/ or coordinatable with a polar group such as an hydroxy group and/or a nitrogen-containing group present in the Mannich condensation products. Boron compounds having that property of reaction and/ or coordination include boron oxide, boron oxide hydrate, boron trifluoride, boron tribromide, boron trichloride, HBF boron acids such as boronic acid (e.g., alkyl-B(OH) or ary1-B(OH) boric acid (i.e., B 130 tetraboric acid (i.e., H2B4O7), metaboric acid (i.e., HBO amides of such boron acids, and esters of such boron acids. The use of boric acid as the reactant to introduce boron into the high molecular Weight Mannich condensation products is preferred. The general manner of using such boron reactants with nitrogen-containing compounds is known and is disclosed for example in U.S. Pats. Nos. 3,000,916 and 3,087,936 among others.

The boron-containing derivatives of high molecular weight Mannich condensation products of this invention are exceptionally useful addition agents for lubricating oil imparting thereto dispersant-detergent and antioxidant properties at relatively low concentrations of the addition agents, e.g. 0.05 to 10 weight percent in formulated crankcase lubricating oil. Higher concentrations of those addition agents, e.g. 10 to 70 weight percent are useful con centrates for the preparation of those formulated crankcase lubricating oils and the fortification of crankcase oil in use prior to scheduled complete drain and replacement of crankcase oil. In contrast boron-containing derivatives of the prior known low molecular Weight Mannich condensation products derived from low molecular weight C to C alkyl substituted phenols are wholly unacceptable as dispersant-detergent addition agents for crankcase lubricating oils.

Illustration of the foregoing superiority of the high molecular weight Mannich condensation products of this invention over the prior art low molecular weight Mannich condensation products can be made by consideration of their abilities to prevent sludge and varnish deposition in standardized, industry accepted engine tests. To be acceptable dispersant-detergent addition agents for such in service use in present-day engines, the addition agents must provide dispersancy-detergency functions in those tests so that at the end of the engine test upon inspection of disassembled engine parts they provide over-all sludge and varnish deposit ratings of 40 and over. Those ratings are determined on a 0-50 scale where a rating of 50 for each of sludge and varnish means a clean engine free from detectable sludge and varnish. The low molecular Weight prior art Mannich condensation products used in crankcase lubricating oils as the sole source of dispersant-detergent addition agent at maximum concentration levels at which they can be incorporated in lubricating oil cannot provide acceptable sludge or varnish ratings when use in such a standardized engine test. However, the boron-containing high molecular weight Mannich condensation products of this invention used as the sole dispersantdetergent addition in lubricating oils suitably in the range of 005-10 and preferably 0.5 to 5.0, weight percent provide crankcase lubricating oils which in the same standardized engine tests give sludge and varnish ratings of 40 and over, even up to 45 to 49.5.

EMBODIMENTS OF THE INVENTION Representative boron-containing derivatives of high molecular weight Mannich condensation products contemplated by this invention are prepared from Mannich products derived from the following representative reactants of the classes before defined.

( 1) High molecular weight alkyl-substituted hydroxyaromatics Preferred of these high molecular weight alkyl-substituted hydroxyaromatic compounds are the polypropylphenol, polybutylphenol, polyam'ylphenol and other polyalkyl phenols having a single polypropyl, polybutyl, polyamyl or the like substituent on the ring of phenol. These polyalkylphenols can be obtained by known methods for alkylation of phenol with polypropylene, polybutylene, polyamylene and the like to give the suitable C to Czomo monoalkyl substituent on the benzene ring of phenol.

The C and higher high molecular weight alkyl substituent can be derived from the appropriate polypropylenes, polybutenes, polyamylene or from appropriate copolymers of propylene with monomers copolymerizable therewith wherein the copolym-er molecule contains at least of its units from propylene, or from copolymers of butenes (butene-l, butene-2- and isobutylene) with monomers copolymerizable therewith wherein the copolymer molecule contains at least 90% of its units from a butene. Said monomers copolymerizable with propylene or said butenes need not be hydrocarbon monomers for they can contain polar groups such as chloro, bromo, keto, ethereal, aldehydo and other polar groups. The (2011210110 mer polymerized with propylene or said butenes need not be aliphatic and can also contain non-aliphatic groups as are in styrene, u-methyl styrene, nap-dimethyl styrene, divinyl benzene and the like. From the foregoing limitation placed on the monomer copolymerized with propylene or said butenes, it is abundantly clear that said polymers and copolymers of propylene or butenes are substantially aliphatic hydrocarbon polymers. Thus the resulting alkylated phenols have C and higher carbon content substituent groups which are substantially alkyl hydrocarbon in nature.

In lieu of those polypropyl or polybutyl phenols there also can be used similarly high molecular weigh (polypropyl or polybutyl) substituted derivatives of resorcinol, hydro: quinone, catechol, cresol, xylenol, amylpheno], hydroxybiphenyl, benzylphenol, phenethylphenol, phenol resins, methylhydroxybiphenyl, guiacol, alpha and beta naphthol, alpha and beta methylnaphthol, tolylnaphthol, xylylnaphthol, benzylnaphthol, anthrol, phenylmethylnaphthol, phenanthrol, monomethyl ester of catechol, phenoxyphenol, chlorophenol and hydroxyphenol sulfides among others.

(2) HN group containing reactants Representative of this class of reactants are those having at least one active hydrogen atom on a nitrogen atom as the prior art pertinent to the lower molecular weight Mannich products have disclosed, such HN group containing reactants can contain only primary amino groups, only secondary amino groups or both primary and secondary amino groups. Monoand di-alkyl amines suitable for use in the preparation of lower molecular weight Mannich condensation products are suitable for the preparation of the high molecular weight Mannich products. Preferred for the purposes of this invention are the Mannich products from alkylene polyamine reactants which include ethylenediamine, diethylene triamine, triethylene tetrarnine, tetraethylene pentamine, pentaethylene hexamine, hexaethylene hepta-amine, heptaethylene octamine, octaethylene nonamine, nonaethylene decamine and decaethylene undecamine; the corresponding propylene polyamines and other alkylene polyamines of the formula H N(ANH--),,H, mentioned before mixtures of polyethylene polyamines or polypropylene polyamines which mixtures have the same nitrogen content as a particular polyamine entity; and urea or thiourea derivatives of such alkylene polyamines as are obtained as condensation products of x mole urea or thiourea with 22: moles of alkylene polyamines which condensation products can be illustrated in one product form as the linear product of the formula:

wherein A and n have the meaning before disclosed and Z is oxygen or sulfur.

ALDEHYDE R EACTANTS Aldehyde reactants suitable for the preparation of the high molecular weight Mannich condensation products used to prepare the boron-containing derivatives of this invention include the aldehydes disclosed in the prior art for the preparation of lower molecular weight Mannich products from the C to C alkyl phenols. We prefer to use a formaldehyde yielding compound such as formalin, formaldehyde, paraformaldehyde and trioxymethylenes.

Since the products of this invention are ultimately for use in preparing lubricant oil formulations, it is advantageous to use light mineral oil, e.g. from white mineral oils to solvent extracted SAE grade oils, as the reaction solvent. The boron-containing derivatives of high molecular weight Mannich condensation products of this invention are then obtained as solutes in concentrations of 40 to 70 weight percent in said mineral oil solvents. This is readily accomplished by using oil solutions of the C and higher carbon content alkyl-substituted phenol reactant dissolved in light mineral oil of from white mineral oil to SAE 10 grade oil.

It is known that boron halides such as boron trifiuoride, boron triiodide and boron trichloride can form an interaction product with phenolic hydroxy groups, i.e. hydroxy group substituents on a benzene ring. It has also been demonstrated that boron oxide, boron oxide hydrate, boron trifluoride, boron triiodide, boron tribromide, boron trichloride, boric acid, boronic acids (such as alkyl-B(OH) and aryl-B(OH) tetraboric acid, metaboric acid and esters of boric acids form interaction products with other polar groups such as the primary and secondary amino (NH and -NH) groups as well as phenolic hydroxy groups. Ethers, organic acids, inorganic acids or hydrocarbon complexes with boron halides can be used as convenient means for introducing the boron compound as a reactant into the oil solutions of the hydroxyalkylbenzyl substituted amine products of this in vention. More specifically in place of the aqueous solution of boric acid, dimethyl formamide (DMF) solution of boric acid and oil slurry of boric acid used in the examples hereinbefore set forth, there can be used boron trifluoride-diethyl ether complex, boron trifiuoride-phosphoric acid complex, boron trichloride-choroacetic acid complex, boron tri'bromide-dioxane complex, boron trifluoride-methyl ethyl ether complex.

The boron reactant when introduced as a boronic acid can be methylboronic acid, phenylboronic acid, cyclohexylboronic acid, p-octylphenylboronic acid, decylboronic acid and the like. The boron reactant when introduced as an ester of boric acid can be mono-, diand triesters derived by a means well known to the chemist by reacting one mole boric acid or tetraboric acid with such hydroxy compounds as alkanols, alkylene diols, cycloalkanols and the like. These esters of boric acids can he used to replace boric acid reactant illustrated in the examples hereinbefore set forth.

Since the boron reactant can form an interaction product with any or all of the polar groups, the phenolic hydroxy, the secondary amino and primary amino groups present in the Mannich products, it is not known with certainty which of the polar groups are involved in the formation of the interaction product. It is not essential for the purposes of this invention for the boron compound reactant to form an interaction product with one or more particular polar group present as long as a stable boron compound interaction product forms. By stable boron compound interaction produc is meant one that can be heated at least to 300350 F. and filtered at 300-350 F. without substantially completely removing boron from the solute in the filtrate. The B/ N ratios (weight ratio of boron to nitrogen) in the boron-containing derivatives of this invention are B/N ratios in the range suitably of from 0.01 to 4.0, desirably from 0.01 to 1.0 and preferably from 0.05 to 0.5. Such boron interaction products when used in lubricant oil formulations provide better anti-corrosi'on and/or anti-wear protection especially when alkaline earth metal salts of alkylbenzenes sulfonic acids (e.g. calcium or magnesium C to Cmooo alkyl substituted benzene sulfonic acids) are also employed as addition agents.

The following examples will illustrate specific embodiments of this invention.

Example 1 There are combined 1000 grams of a SAE 5 oil soluthan having 35 percent NAMW 892 alkylphenols (alkyl group from polypropylene) by weight (0.392 mole alkylphenol) and 0.392 mole TEPA. This mixture is stirred and heated to 210 F. and 32 milliliters formaldehyde (0.392 mole) are added slowly permitting the temperature of the reaction mixture to increase to about 240 F. The resulting mixture is heated to 340 F. and nitrogen is injected at 1.0 c.f.h. for minutes. The final temperature is 320 F. This mixture is stirred and cooled to 180 F. and an additional 332 milliliters formaldehyde are added increasing the reaction temperature to 200 F. At this temperature 40.9 grams (0.55 mole) boric acid (ratio of 0.4 B to 1.0 N) is added and the resulting mixture is stirred and heated to 330 F., held at this temperature with nitrogen injection at 1.0 c.f.h. for 10 hours. The resulting hazy reaction mixture is filtered. The filtrate, a clear liquid is analyzed for nitrogen and boron. The nitrogen content is 1.7 percent and boron content is 0.16 percent, both by weight.

Example 2 There are combined, stirred and heated to 180 F., a solvent extracted SAE W oil solution containing 2.38 millimoles of alkylphenol obtained by alkylating phenol with a 70,000 NAMW polybutene (solution has at 100 F. viscosity of 38,880 SSU) and 2.38 millimoles TEPA. Then two additions of 2.98 millimoles formaldehyde are made at 140 F. and 160 F., respectively, with heating to 300-320 F. and 1 c.f.h. nitrogen injection after each formaldehyde addition. Thereafter this very high molecular Weight Mannich product is reacted with boric acid as in Example 1.

Example 3 There are combined, stirred and heated to 170 F., 630 grams solvent extracted SAE 5 oil, 0.29 mole TEPA and 700 grams of 1836 NAMW alkylphenol (alkyl group from polybutene of 124 average carbons) to provide 0.29 mole of alkylphenol. Thereafter 0.29 mole formaldehyde is added, the liquid mixture is stirred and held at 320 F., held at 320 F. for two hours while injecting nitrogen at 2 c.f.h. Then 0.15 mole of p-nonylphenol is added, the resulting mixture stirred and cooled to 180 F. and a second addition of 0.29 mole formaldehyde is made. The resulting liquid mixture is stirred and heated to 340 F, held at 340 F. for 2 hours while injecting nitrogen at 2 c.f.h. The resulting liquid solution is filtered. The filtrate is a bright clear liquid having a 210 F. viscosity of 1018 SSU and is found by analysis to contain 1.4% nitrogen by weight and have a 33.02 TBN. The solute dissolved in the SAE 5W solvent extracted oil is reacted with boric acid to provide a B/N weight ratio of 3.0 using the technique described in Example 1 for such reaction with boric acid.

Example 4 In this preparation, bis-carbamide of TEPA, i.e. the compound derived by reacting 2 moles TEPA with one mole urea to split out two moles ammonia is employed in place of TEPA. There is employed 0.031 mole of said bis-carbamide of TEPA, 0.031 mole of 1713 NAMW polybutylphenol dissolved in SAE 5W oil (143 grams of solution) and two 0.031 mole portions of CH O each added at 180 F. with heating to 320 F. for 90 minutes and 1.5 c.f.h. nitrogen injection after each addition. The resulting liquid product is filtered. The filtrate is reacted with boric acid to provide a B/N ratio of 0.5 using the technique of Example 1.

Example 5 As an example of such a sulfur-containing dispersantdetergent oxidation inhibiting compound of this invention, there are reacted 0.32 mole of thiourea and 0.64 mole of diethylene triamine to produce 0.32 mole bis-thiocarbamide of diethylene triamine:

under conditions splitting out two moles ammonia. Then 0.32 mole of this bis-thiocarbamide is combined with 1088 grams of 1836 NAMW C polybutylphenol to provide 0.32 mole of C alkylphenol. After stirring and heating this mixture to 140 F. there is added 0.32 mole formaldehyde, this mixture is heated to 340 F., held at 340 F. while injecting 2.2 c.f.h. nitrogen for 75-80 minutes, cooled to 200 R, an additional 0.32 mole CH O is added, and the resulting liquid is stirred and heated to 340 F. and nitrogen at 2.2 c.f.h. is injected at 340 F. for 2 hours. The resulting mixture is filtered. The filtrate is reacted with boric acid to provide a B/N ratio of 0.1 using the technique of that described in Example 1.

Example 6 This bis-carbamide (0.29 mole) derived from DETA (Example 5) is used in place of 0.29 mole TEPA with the 0.29 mole C polybutylphenol and 0.15 mole pnonylphenol and two 0.29 mole portions formaldehyde in the process of Example 3 to produce a related sulfur-containing product as solute in SAE 5 oil. This solution is reacted with boric acid as before described to provide a B/N ratio of 0.05.

Example 7 There are combined, stirred and. heated to 180 F. 0.482 mole TEPA and 2500 grams of 33% by weight 1713 NAMW alkylphenol in solvent extracted SAE 5W oil to provide 0.482 mole of said alkylphenol. Then 0.482 mole CH O is added and the liquid mixture is stirred and heated to 340 F. and held at that temperature for minutes while injecting nitrogen at 2 c.f.h. Thereafter the liquid reaction mixture is cooled to 180 R, an additional 0.482 mole formaldehyde is added and the resulting liquid is stirred and heated to 340 F. while 2 c.f.h. nitrogen is injected for 5 hours. The resulting liquid is filtered at 300 F.

The 300 F. filtrate, a clear-bright liquid, is cooled to 250 F. under a nitrogen gas blanket and then 9.5 grams boric acid slurried in 20 grams SAE 5 oil is added. The resulting mixture is held at 250 F. for 60 minutes, is then heated to 300 F. and held at 300 F. with nitrogen injection at 2 c.f.h. for 60 minutes. The resulting solution of borated product solute in SAE 5 oil is filtered through Celite at about 300 F. The filtrate is a bright liquid, which from analysis, is found to contain 1.08% nitrogen and 0.04% boron, all by weight.

Example 8 There are combined, stirred and heated to F. 334 grams of 33 weight percent 1900 NAMW (0.058 mole) alkylphenol in SAE 5W oil and 0.058 mole of a boric acid derivative of TEPA (0.2 B/N). Then 0.058 mole CH O is added, the mixture is heated to 200 F. and an additional 0.058 mole CH O is added 45 minutes after the first addition. The mixture is stirred and heated to 270 F., held at 270 F. for 2 hours With 1.5 c.f.h. nitrogen injection. The liquid product is filtered at 270 F.

To 250 grams of filtrate there is slowly "added 3.14 grams boric acid dissolved in 10 ml. dimethylformamide to minimize frothing by DMF boiling. This mixture is heated to 340 F. and 2 c.f.h. nitrogen is injected for 60 minutes. The liquid product is bright and clear. DMF appears to promote the interaction of boric acid with the free amine groups. The liquid product is filtered. The filtrate is a bright clear liquid having 0.25% boron and 0.83% nitrogen as determined by analysis.

When the foregoing process is repeated, the liquid re action mixture became crystal clear in 30 minutes at 320 F. after addition of the DMF solution of boric acid.

Example 9 There are combined 0.217 mole TEPA and 0 grams of 33 weight percent 1900 NAMW alkylphenol dissolved in SAE 5 oil to provide 0.217 mole of that alkylphenol and the mixture is stirred and heated to 120 F. The first 0.217 mole CH O is added at 120 F., nitrogen is injected at 2 c.f.h. for 30 minutes, the mixture is heated to and held at 220 F. for 105 minutes, then cooled to 200 F. at which temperature the second addition of 0.217 mole CH O is made and the reaction temperature is raised to 220 F. and there held for 2 hours. Thereafter 16 grams boric acid dissolved in 25 grams Water is added at 200 F. by means of a dropping funnel. Then the reaction temperature is increased to 300 F. and held there for 90 minutes with 2 c.f.h. nitrogen injection. The liquid product is filtered. The clear bright filtrate is found, by analysis, to contain 0.16% boron and 1.07% nitrogen by weight.

Example 10 (A) There are combined, stirred and heated to 140 F. 0.058 mole diethylene triamine and 306 grams of a 38% solution of 2000 NAMW alkylphenol (0.058 mole) in white oil. A first addition of 0.058 mole formaldehyde is made and the mixture is stirred and heated to 220 F. and held at 200 F. for 60 minutes. Thereafter the mixture is cooled to 200 F. and the second addition of 0.058 mole formaldehyde is made. This mixture is stirred and heated to 300 F. and held at that temperature for 2 hours. There is no evidence of unreacted formaldehyde or amine. The liquid product is filtered. The filtrate, a light and clear liquid has a 210 F. viscosity of 1531 SSU, a specific gravity of 0.8996 at 77 F. and from analysis is found to contain 0.67% nitrogen by weight.

(B) B substituting 0.058 mole bis-carbamide derived from DETA in the foregoing reaction, a liquid product of 1.3 to 1.5% nitrogen by weight may be obtained.

Both (A) and (B) are reacted with boric acid to provide products having 0.5 and 0.3 B/N ratios respectively.

Example 11 There are combined, stirred and heated to 140 F. While injecting 2 c.f.h. nitrogen, 0.48 mole TEPA and 2500 grams of solution containing 33% by weight 1713 NAMW alkylphenol in SAE W oil. The first addition of 0.48 mole formaldehyde is made and the liquid mixture is heated to 220 F. while stirring and nitrogen injection is continued for 105 minutes. The liquid reaction mixture is cooled to 200 F., the second addition of 0.48 mole formaldehyde is made and the liquid mixture is heated to 220 F. with continued stirring and nitrogen injection for 105 minutes. Thereafter a solution of 32 grams boric acid in 76 grams water heated to 210 F. is added dropwise to the stirred liquid reaction product still at 220 F. After the aqueous solution of boric acid is added, the reaction temperature is increased to 300 F. and held at 300 F. for 90 minutes with continued stirring and nitrogen injection. The resulting oil solution of borated reaction product is filtered at 300 F. The filtrate is a clear, bright liquid and by analysis is found to contain 0.17% boron and 1.05% nitrogen, both by weight. The weight ratio B/N in said product is 0.16.

Example 12 There are combined, stirred and heated to 140 F. with nitrogen injection at 1.5 c.f.h., a solution of 33% alkylphenol of 1713 NAMW (0.159 mole) in SAE 5W oil and 0.159 mole TEPA. The first addition of 0.159 mole formaldehyde is made, the reaction temperature is increased to 320 F. and held there for 90 minutes with continued stirring and nitrogen injection. The reaction mixture is cooled to 160 F. and the second addition of 0.159 mole formaldehyde is made and 11.5 grams boric acid crystals are also added. This mixture is stirred and heated to 300 F. under a nitrogen atmosphere and held at 300 F. until no solid boric acid can be seen. Thereafter nitrogen is injected at 1.5 c.f.h. until water is substantially removed. The filtered solution of reaction product is found by analysis to have 1.11% nitrogen and 0.18% boron, both by Weight. The solute reaction product has a B/ N weight ratio Of 0.16.

12 Example 13 There are combined, stirred and heated to F., 2700 grams of solution of 1713 NAMW alkylphenol (0.58 mole) in SAE 5W oil and 0.58 mole TEPA. At 140 F. the first addition of 0.58 mole formaldehyde is made and the mixture is stirred and heated to 200 F. while injecting nitrogen at 1.0 c.f.h. for 30 minutes and then the second 0.58 mole formaldehyde addition is made at 200 F. With no nitrogen injection. This mixture is heated to 260 F. With nitrogen injection and stirred for 3 hours at 260 F. Thereafter a slurry of 63 grams boric acid in 50 grams SAE 5W oil is added with no nitrogen injection but while stirring the resulting mixture under a nitrogen blanket atmosphere. The oil solution-boric acid slurry is stirred and heated to 300 F. and held at 290 to 300 F. for 60 minutes while injecting nitrogen at 1.0 c.f.h. The resulting SAE 5W oil solution of reaction product is filtered at 320 F. The filtrate is found by analysis to contain 0.16% boron and 1.12% nitrogen (B/N weight ratio of 0.14) and has a 210 F. viscosity of 1700 SSU.

Example 14 The process of Example 13 is repeated using 2990 grams of 37.2% by Weight 1900 NAMW alkylphenol (0.58 mole), 0.58 mole TEPA, two additions of 0.58 mole each of formaldehyde, and 43 grams boric acid slurried in 50 grams SAE 5W oil. The filtrate has a 210 F. viscosity of 1776 SSU and is found by analysis to contain 0.08% boron and 1% nitrogen with weight ratio of B/ N of 0.08.

Example 15 The process of Example 13 is repeated using 2255 gallons of 46% by weight 1750 NAMW alkylphenol (4.32 pound moles), 376 gallons SAE 5W oil, 98 gallons (4.42 pound moles) TEPA, two additions of 350 pounds Formalin (37% CH O) to provide 4.32 pound moles formaldehyde at each addition, 200 pounds boric acid slurried in 100 gallons SAE 5W oil at 250 F., and 50 gallons SAE 5W oil at 250 F. to wash boric acid slurry transfer line into the reactor. The filtrate obtained from such a process typically has a 210 F. viscosity in the range of 800 to 900 SSU and contains about 40 weight percent borated reaction product dissolved in SAE 5W oil (40% product-60% oil by Weight), 1.18 to 1.22% nitrogen by Weight, 0.09 to 0.11% boron by weight and a B/N ratio of 0.075 to 0.085.

A screening detergent-dispersant test is made using crankcase oil drained from a Lincoln Sequence V Engine Test. Two equal volumes of the drained oil are taken as sample. To one volume there is added 0.56 gram of the product of Example 7. Nothing is added to the second volume (control sample). The treated and untreated samples of the drained oil are heated and stirred at 300 F. for 16 hours. An aliquot of each is transferred to blotting paper. The deposits on the blotting paper are measured to determine D (diameter of sludge ring) and D (diameter of oil ring). The ratio D /D XIOO is calculated. For the used oil with product of Example 7 added the D /D X 100 is 91.5. For the used oil untreated (control) the D /D X 100 is 60. This establishes the super detergency-dispersancy power of the boron-containing high molecular Weight Mannich products of this invention.

The same test procedure conducted with borated Mannich condensation products of C to C alkyl-substituted phenol, typical of boron derivatives of prior art products made for example from 2 moles nonylphenohl mole TEPA and 2 moles formaldehyde, do not impart sufficiently good dispersancy-detergency properties to show improvement over the control.

Example 16 There are combined, stirred and heated to 180 F., 100 grams SAE 5W weight oil, 0.056 mole (50 grams) of 892 NAMW polypropyl substituted phenol (polypropyl group of 57 average carbon content) and 2.62 grams (0.014 mole) tetraethylene pentamine. Thereafter 0.06 mole of formaldehyde (4.9 grams of Formalin) are added over a two minute period causing the temperature of the reaction mixture to rise to 210 F. The reaction mixture is held at 210 F. for about one hour. Nitrogen is injected into the stirred mixture heated to about 230 F. to remove by-product water. The resulting oil solution prepared in this manner contains as solute about 34.6% of 3580 (calculated) molecular weight Mannich condensation product having 1.84% nitrogen, the ,solution has 0.64% nitrogen. A 0.3 B/N product solute is prepared by reacting that solution with boric acid in DMF as before described.

Example 17 There are combined, stirred and heated to 180 F., 0.222 mole of polypropyl substituted phenol (900 NAMW) and 0.222 mole of diethanolamine. Thereafter 0.222 mole of formaldehyde is added and then the temperature of the stirred mixture is raised to 310 F. At that temperature nitrogen was injected into the stirred liquid to remove by-product water. The respective molar ratio of phenolzaminezaldehyde used is 1:1:1. The dried liquid product is clear but upon cooling becomes a dark viscous liquid and has a molecular weight (1005 NAMW) and a viscosity of 16,269 SSU at 210 F. This product is reacted at 220 F. with boric acid in DMF as before described to obtain a solute having a B/N ratio of 0.59.

Example 18 There are combined, stirred and heated to 200 F., 200 grams of a solution of (83%) polypropyl-substituted phenol (0.186 mole) of 892 NAMW in SAE 5W weight oil and 7.8 grams (0.062 mole) of melamine. Then milliliters of Formalin (37% CH O) to provide 0.186 mole formaldehyde is added and the mixture became milky white. The milky white appearance remained until the stirred mixture is heated to 470480 F. whereupon water vapors came ofi and water condensate appeared in an air cooled vapor take 01f condenser. The resulting product is reacted with boric acid in DMF to provide a B/N ratio of 0.3.

Example 19 The use of high molecular weight alkyl-substituted phenol and low molecular weight alkyl-substituted phenol in a one step Mannich condensation reaction is conducted in the following manner. There are combined, stirred and heated to 180 F., 200 grams of the oil solution (83%) of the polypropyl-substttuted phenol (0.186 mole) of 892 NAMW, 123 grams (0.558 mole) of nonylphenol and 3S milliliters (0.186 mole) of tetraethylene pentamine. To this mixture there is added 60 milliliters of formalin (37% OH O) to provide 0.744 mole formaldehyde. The resulting mixture is heated first to 320 F. and then held at 280-300 F. for four hours to remove by-product water. The resulting oil solution is deep red in color, has a nitrogen content of 2.97 and an oxygen content of 4.13%. The molecular weight (NAMW) of the dissolved high molecular weight Mannich condensation product is 1339. This solution is reacted with boric acid to DMF to obtain a product with a B/N ratio of 0.5.

Example 20 There are combined, stirred and heated to 300 F., 100 grams (0.093 mole) of the oil solution (83%) of polypropyl-substituted phenol (892 NAMW) described in Example 18, 0.093 mole nonylphenol and 0.093 mole of hydrazine hydrate. To this stirred mixture there is added 15 milliliters of formalin (37% CH O) to provide 0.186 mole formaldehyde. The mixture is maintained at 300 F. for 20 hours. The dried product is dark in color and is an oil solution of high molecular weight Mannich condensation product of hydrazine as the NH compound reactant. Boration with boric acid in DMF readily can provide B/N ratios of 0.05 to 0.6.

Example 21 A high molecular weight Mannich condensation product is prepared by the one step process before described using high molecular weight alkyl-substituted (alkyl has an average of 60 carbons) phenol (916 NAMW) dissolved in SAE 5W oil, 0.9 mole tetraethylene pentamine and 1.8 mole formaldehyde for a respective molar ratio of reactants of 1:0.5 :1. The dry product contains 82% high molecular weight Mannich condensation product (2000 NAMW) in the solvent oil.

This product is borated in the following manner. For each 250 grams of product (82% of 2000 NAMlW Mannich condensation product) there is added 250 grams of SAE 5W oil and 19 grams boric acid. The mixture is stirred, heated slowly to and held at 300 F. for 7 hours while injecting nitrogen to remove by-product water. The dried product is filtered to remove unreacted boric acid using Celite-filter-aid. The filtrate is a clear solution containing 0.23% boron.

Example 22 They are combined, stirred and heated to 160 F., 2000 grams of SAE 5 oil solution of (45.9%) polybutylsubstituted phenol of 1600 NAMW to provide 0.716 mole of that substituted phenol, 94 grams (0.495 mole) tetraethylene pentamine and 420 grams of SAE 5W oil. Then one drop of liquid silicon anti-foam agent and milliliters of formalin (37% CH O) to provide 1.318 moles formaldehyde are added at one time to the hot stirred mixture. After the temperature increase from the reaction of the added formaldehyde has occurred, the temperature of the stirred solution of reaction product is increased to 300 F. and nitrogen is injected into the stirred and heated solution. Nitrogen injection and stirring is continued while the solution is held at a temperature of about 310 F. (:10 F.) for two hours to drive off by-product water. Then the solution is filtered. The hot filtrate is bright, i.e., has a good clarity. The solution contains about 42% by weight of high molecular weight Mannich condensation product, a nitrogen content of 1.02% and a viscosity of 1013 SSU at 210 F. The reactants polybutyl-substituted phenol, amine and formalcliehyde are used in the respective molar ratio of 1:0.69:

The product of the foregoing example, oil solution having 1.07% nitrogen and of the high molecular weight Mannich condensation product as solute in the 42% concentration, is borated with boric acid to a boron content of 0.1%. This boric acid borated. derivative is used in a crankcase lubricant oil formulation at a 4.5 volume percent concentration (about 23 weight percent of condensation product) with either 2.0 volume percent of 300 total base number (TBN) calcium sulfonate or 1.0 volume percent 300 TBN magnesium sulfonate and 1.0 volume percent of the solution of zinc: dialkyl dithiophosphate anti-wear and anti-corrosion agent (hereafter more specifically defined). Both crankcase lubricant oil formulations (one with 300 TBN Ca-sulfonate and the other with 300 TBN Mg-sulfonate) when used in the Ford 289 cubic inch displacement Engine Test hereafter described, result in Total Sludge values in the range of 41 to 48 and Total Varnish values in the range of 41 to 43. Similar crangcase lubricant oil formulations, the only exception being the use of 3 volume percent of boric acid borated product of the foregoing example having 0.3% boron produce equivalent high detergency-dispersancy results in the Ford 289 Engine Test (Sludge values of 41 to 48 and varnish values of 40 to 43) and provide in the CLR-L38 Engine Test (hereafter described) designed to evaluate high temperature oxidation stability of crankcase lubricant oils, varnish and bearing loss values in the passing range for premium oils. Spot Dispersancy Test (hereafter described) using 3.1 volume percent of the oil solution having 0.3% boron produced a value of 88.5.

ENGINE TESTS The effectiveness of the substituted amine products of this invention as detergent-dispersant addition agent for lubricant oil compositions can be demonstrated by their use in such compositions as crankcase lubricants in actual engine tests such as the Lincoln Sequence V Engine Test, the Ford 289 Engine Test and the L-38 Engine Test aforementioned.

It will be noted that the hydroxyalkyl benzyl substituted amine products of this invention used in said tests unlike hydroxyalkyl benzyl substituted amines of the prior art are not used as their calcium, barium, magnesium or other alkaline earth metal or alkali metal salts.

The compounds of this invention can function as detergent-dispersant addition agents in lubricant oil compositions in the weight percent range suitably of from 0.1 to 10%;, desirably in the range of 0.2 to 8.0% and preferably in the range of 0.5 to However, lubricant oil solutions having to 50% or more by weight of the novel hydroxyalkyl benzyl substituted polyalkylene amines of this invention including the bis (polyalkylene amine) carbamindes and thiocarbamides are useful in the preparation of finished lubricant oil compositions because they can be readily and conveniently combined with concentrates of other lubricant oil addition agents such as oil solutions of the alkaline earth metal sulfonates, e.g. normal and high based calcium and magnesium salts of petroleum sulfonic acids such as sour oil, mahogany acid and alkyl substituted benzene sulfonic acids having alkyl hydrocarbon groups of a carbon content of greater than 16 and more specifically of to 20,000 carbon atom alkyl hydrocarbon group size, oil solutions of zinc dialkyldithiophosphates and other concentrate solutions of lubricant addition agents all of which are used for their anti-wear, anti-corrosion, anti-foam, oxidation inhibition, oiliness, viscosity-index improving properties. For example, the oil solution concentrates having 10 to by weight of the novel substituted amine products of this invention can be easily blend mixed with base oils and oil solution concentrates of the aforementioned addition agents having anti-wear, anti-corrosion, viscosity-index improving, antifoam, etc. properties in transfer line blending, i.e. each concentrate and base oil are charged to a transfer line from sources of supply of each concentrate in the required proportions so that there flows from the transfer line a completely finished, fully formulated lubricant oil composition ready for packaging in quart, gallon, 5 quart, 30 gallon or gallon containers or tank car and/or truck for delivery to the ultimate consumer. Such finished and fully formulated lubricant oil compositions are useful as crankcase lubricants for automobile, truck and railway gasoline and/or diesel engines.

The aforementioned Lincoln Sequence V Engine Test, Ford 289 'Engine Test and L-38 Engine Test are conducted in the following manner.

LINCOLN SEQUENCE V ENGINE Phase 1 Phase 2 Phase 3 Duration.-. 45 minutes" 2 hours minutes. Speed, r.p.m 50 L d Temperature, F.:

Water out -120 -130 -175.

O11sump-. 120-125 -180 205-210. A/F 9.55:0.5 15.51015---" 15.53416.

The four-hour cycle is reset a total of 48 times (192 hours running time). After each 16 hours of operation the engine is shut down for 8 hours. Two-ounce samples of oil are taken every 30 hours and the oil level is adjusted with fresh oil to a level of five quarts. Added oil is weighed. At the time of the test, the hot oil is drained, weighed and recorded. The engine is then disassembled and tested for deposits of varnish and sludge among other observable results as set out in the table below. Engine components are examined visually and rated on a scale of 1 to 10, 10 being a perfect reading indicating no sludge or varnish. A rating of 50 for total sludge and for total varnish is considered perfect; a rating of 60 percent or lower is considered passing for screen clogging; and a rating of 50 percent or lower is considered passing for ring plugging.

FORD-289 ENGINE TEST The Ford 289 cubic inch displacement engine test, hereinafter designated as 1 -289 Test, is conducted in the same manner as the Lincoln Test Sequence V except for the apparent difference in test engines. This F289 Test is more severe with respect to both sludge and varnish formation and deposition. Also the F-289 Test is conducted with vapors from the crankcase being introduced into the engine fuel intake system by means of a positive crankcase ventilation system which, in part, results in the more severe sludge and varnish formation during test operation.

L-38 ENGINE TEST The L-38 Engine Test is also known as CLR L-38 Engine Test and is designed to evaluate high temperature.

oxidation stability of the formulated lubricant oil and such evaluation is based on piston varnish deposit and copper-lead bearing corrosion. In this test a single cylinder water cooled Labeco oil test engine is operated at 3150 r.p.m. for 40 hours with the test oil formulation. The oil is maintained at 300 F. and cooling water is maintained at 195 F. Copper-lead connecting rod bearings are weighed before and after the 40 hour test. Bearing weight;

loss (BWL) of 50 milligrams or less is desired. After the 40 hour test the piston is visually evaluated and a varnish value is assigned by comparison to varnish deposit pictorial standards having assigned values of 1 to 10 for the color and extent of varnish deposit. In this varnish value scale of 1 to 10, the value 10 represents a clean and varnish free piston and the value 1 represents a substantially complete dark varnish coated piston. To qualify as a premium oil additive the varnish value should be 9.0 and above.

The following lubricant formulations in which all percent of the addition agent indicated are by volume, are prepared for use in the foregoing engine tests. Products of this invention are identified by reference to the appropriate example of preparation and the volume percent solution produced. The weight percent of the solute product or dissolved is that of the active ingredient, i.e. the dissolved substituted amine product, is shown under weight percent. Where used Ca-300 and Mg-300 designate the respective sulfonates dissolved as concentrates in SAE 5W oil with a total base number of 300 for the solution and other higher or lower number designate higher or lower solution total base numbers. The designation ZOP is used to identify a zinc dialkyldithiophosphate anti-wear anti-corrosion addition agent whose alkyl groups are derived from the conjoint reaction of three different alcohols (two of which are primary alcohols such as C and C oxo-derived alcohols and the third is a secondary alcohol such as isopropyl or isobutyl alcohols), with phosphorus pentasulfide and the total moles of the three alcohols is the stoichiometric amount required to obtain dialkyl dithiophosphoric acid for reactionwith zinc or zinc oxide. Thus the ZOP is a statistical mixture of the zinc salts having the three aforementioned alcohol derived TABLE I.-TEST OIL FORMULATIONS 18 of a Mannich reaction product of the condensation of the reactants (1) a high molecular weight alkyl-substituted phenol wherein said alkyl-substituent has from 4020,000'

carbon atoms, (2) a lower molecular weight alkylphenol whose alkyl group has 2-20 carbon atoms, (3) a polyamine of the formulae: (A) H(l |T-A)N'H Example Formulation Volume Weight Percent Percent Percent Percent number Number percent percent 201 (la-300 Mfg-300 base oil The results of using above formulations in the Lincoln or Sequence V Engine Test are presented in Table II.

TABLE II.LINCOLN SEQUENCE V ENGINE TEST RESULTS Percent Formulation oil ring Number Sludge Varnish plugging I 50 48 0 III 41 38 0 The results of the use of the indicated formulations in Ford 289 Engine Test are given in Table 111.

TABLE TIL-FORD-289 ENGINE TEST RESULTS Percent Formulation oil ring Number Sludge Varnish plugging The results from the CLR L-38 Engine Test using the formulations indicated are given in Table IV.

TABLE IV.CLR L-38 ENGINE TEST RESULTS Bearing Formulation Piston weight Number varnish loss, mg.

I 9. 8 II 9. 8 45 wherein x is an integer of from 1-10, A is the divalent ethylene radical and (4) a formaldehyde alfording compound in the respective reactant molar ratio of 1.0:0.35 0.7:0.7-1.0:1.4-2.0 condensed with boron oxide, halide or acid to provide a boron-containing product having a B/ N weight ratio of 01-4210.

2. The lubricant oil composition of claim 1 wherein the concentration of said boron-containing derivative is from 0.5-5.0 weight percent and the alkyl group in said high molecular weight alkyl-substituted phenol has a molecular weight of 600-3000.

3. The lubricant oil composition of claim 2 wherein the alkyl-substituent is polypropylor polybutyl-substituent.

4. The lubricant oil composition of claim 3 wherein reactant (2) is nonylphenol, reactant (3) is tetraethylene pentamine and the boron compound is boric acid.

5. The lubricant oil composition of claim 3 wherein reactant (2) is nonylphenol, reactant (3) is the polyamine of Formula B wherein x is 4 and the boron compound is boric acid.

References Cited UNITED STATES PATENTS 3,000,716 9/1961 Klass et a1. 25249.6 X 3,036,003 5/1962 Verdol 25233.4 3,087,936 4/1963 Le Suer 260-462 R 3,368,972 2/1968 Otto 252-515 R DANIEL E. WYMAN, Primary Examiner W. H. CANNON, Assistant Examiner US. Cl. X.R. 252-3 89 I UNITED STATES PATENT OFFICE @ETEFIQATE @F CRRECTIN Patent No. 3,751,365 Dated August 7, 1973 Edmund J. Piasek et a1.

Inventor(s It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 3, line 21: "R'" should read R' Column 6, line, 39: following "addition" the word agent was omitted.

Column 9, line 19: "2.98" should be 2.38

Column 11, line 'B" should-be By Column 12,- line 29: *1776? should read 1766 Signed and sealed this 19th day of March 197A.

(SEAL) Attest:

EDWARD M.FLETCHER,JRA 1 =0. MARSHALL DANN Attesting Officer Y I Commissioner of Patents 1 FORM PO-1050 (10- I uscoMM-oc scan-P09 "15. GOVERNMFNT PRlNTlNG OFFICE 9G5 0-355-53M 6 UNI ED STATES PATENT OFFICE w fiERTIFICATE 0F CQRRECTIGN Patent No. 3,751,365 Dated August 7, 1973 Inventor s Edmund J. Piasek et a1,

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

6 Column 3 line 21: "B" should read R I Column 6, line. 39: following "addition" the word agent was omitted.

Column 9, line 19; "2.98" should be 2.38 Column 11, line 28:] "B" should 'be By Column 12, line 29: "1776"" Should read 1766 Signed and sealed this 19th day of l larcli 197L Y (SEAL) Attest:

EDWARD M. FLETCHERJR'. 3 v s0. ."MAESEALL DANN Q I Attesting Officer j I Commissioner of Patents FORM PO-1050 (10-69) USCOMM-DC eos1a-peo fl' LLS. GOVERNMFP IT PRINTING OFFICE Z '9", 0-35-33,

Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US4328113 *14 Ene 19804 May 1982Mobil Oil CorporationFriction reducing additives and compositions thereof
US4743386 *27 Ago 198510 May 1988Mobil Oil CorporationGrease compositions containing phenolic- or thio-amine borates and hydroxy-containing soap thickeners
US4780227 *4 May 198725 Oct 1988Mobil Oil CorporationGrease composition containing borated alkoxylated alcohols
US4828734 *14 May 19879 May 1989Mobil Oil CorporationGrease compositions containing borated oxazoline compounds and hydroxy-containing soap thickeners
US4961868 *7 Mar 19899 Oct 1990Mobil Oil CorporationGrease composition
US5084194 *14 Nov 199028 Ene 1992Mobil Oil CorporationGrease composition
US5124055 *16 Mar 199023 Jun 1992Ethyl Petroleum Additives, Inc.Lubricating oil composition
US662758428 Ene 200230 Sep 2003Ethyl CorporationAutomatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US682467117 May 200130 Nov 2004Exxonmobil Chemical Patents Inc.Low noack volatility poly α-olefins
US686991716 Ago 200222 Mar 2005Exxonmobil Chemical Patents Inc.Functional fluid lubricant using low Noack volatility base stock fluids
US69496886 Oct 200427 Sep 2005Exxonmobil Chemical Patents Inc.Low Noack volatility poly α-olefins
US721464931 Dic 20038 May 2007Afton Chemical CorporationHydrocarbyl dispersants including pendant polar functional groups
US764572817 Feb 200412 Ene 2010Afton Chemical CorporationLubricant and fuel additives derived from treated amines
US783395328 Ago 200616 Nov 2010Afton Chemical CorporationLubricant composition
US787977514 Jul 20061 Feb 2011Afton Chemical CorporationLubricant compositions
US788829913 Ene 200415 Feb 2011Afton Chemical Japan Corp.Extended drain, thermally stable, gear oil formulations
US790213314 Jul 20068 Mar 2011Afton Chemical CorporationLubricant composition
US794763627 Feb 200424 May 2011Afton Chemical CorporationPower transmission fluids
US854631110 Mar 20091 Oct 2013Volkswagen AktiengesellsschaftMethod for lubricating a clutch-only automatic transmission component requiring lubrication
US855775222 Mar 200615 Oct 2013Afton Chemical CorporationLubricating compositions
US858652027 Jun 201219 Nov 2013Exxonmobil Research And Engineering CompanyMethod of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
US87036661 Jun 201222 Abr 2014Exxonmobil Research And Engineering CompanyLubricant compositions and processes for preparing same
US870366917 Feb 200922 Abr 2014Afton Chemical CorporationUltra-low sulfur clutch-only transmission fluids
US922814927 Jun 20135 Ene 2016Exxonmobil Research And Engineering CompanyEnhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
US926709321 May 201023 Feb 2016Afton Chemical CorporationMethods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
US948772922 Oct 20138 Nov 2016Exxonmobil Chemical Patents Inc.Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives
US950600819 Mar 201429 Nov 2016Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
US950600929 May 201429 Nov 2016Exxonmobil Research And Engineering CompanyLubricating oil compositions with engine wear protection
US970854918 Dic 201318 Jul 2017Chevron Phillips Chemical Company LpMethod for making polyalphaolefins using aluminum halide catalyzed oligomerization of olefins
US973230023 Jul 201515 Ago 2017Chevron Phillipa Chemical Company LPLiquid propylene oligomers and methods of making same
US20020193650 *17 May 200119 Dic 2002Goze Maria Caridad B.Low noack volatility poly alpha-olefins
US20040033908 *16 Ago 200219 Feb 2004Deckman Douglas E.Functional fluid lubricant using low Noack volatility base stock fluids
US20040147410 *13 Ene 200429 Jul 2004Milner Jeffrey LExtended drain, thermally stable, gear oil formulations
US20050045527 *6 Oct 20043 Mar 2005Goze Maria Caridad B.Low noack volatility poly alpha-olefins
US20050065043 *23 Sep 200324 Mar 2005Henly Timothy J.Power transmission fluids having extended durability
US20050070446 *25 Sep 200331 Mar 2005Ethyl Petroleum Additives, Inc.Boron free automotive gear oil
US20050101496 *6 Nov 200312 May 2005Loper John T.Hydrocarbyl dispersants and compositions containing the dispersants
US20050143265 *31 Dic 200330 Jun 2005Loper John T.Hydrocarbyl dispersants including pendant polar functional groups
US20050181959 *17 Feb 200418 Ago 2005Esche Carl K.Jr.Lubricant and fuel additives derived from treated amines
US20060264339 *19 May 200523 Nov 2006Devlin Mark TPower transmission fluids with enhanced lifetime characteristics
US20070054813 *25 Oct 20068 Mar 2007Chip HewetteBoron free automotive gear oil
US20070111906 *12 Nov 200517 May 2007Milner Jeffrey LRelatively low viscosity transmission fluids
US20080009426 *15 Ago 200710 Ene 2008Iyer Ramnath NLubricant Compositions and Methods Comprising Dispersant and Detergent
US20080015124 *14 Jul 200617 Ene 2008Devlin Mark TLubricant composition
US20080274921 *14 Jun 20076 Nov 2008Ian MacphersonEnvironmentally-Friendly Lubricant Compositions
US20090031614 *1 Ago 20075 Feb 2009Ian MacphersonEnvironmentally-Friendly Fuel Compositions
US20090071067 *17 Sep 200719 Mar 2009Ian MacphersonEnvironmentally-Friendly Additives And Additive Compositions For Solid Fuels
US20090156445 *13 Dic 200718 Jun 2009Lam William YLubricant composition suitable for engines fueled by alternate fuels
US20090233822 *17 Feb 200917 Sep 2009Afton Chemical CorporationUltra-low sulfur clutch-only transmission fluids
US20090233823 *10 Mar 200917 Sep 2009Volkswagen AktiengesellschaftMethod for lubricating a clutch-only automatic transmission component requiring lubrication
US20100263262 *30 Mar 201021 Oct 2010Exxonmobil Research And Engineering CompanyUnleaded aviation gasoline
US20100279901 *21 May 20104 Nov 2010Iyer Ramnath NMethods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids
DE102009001301A13 Mar 200924 Sep 2009Audi AgVerfahren zum Schmieren einer Komponente nur für die Kupplung eines automatischen Getriebes, welche Schmierung erfordert
DE102009012567A111 Mar 20091 Oct 2009Afton Chemical Corp.Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent
EP0359522A1 *12 Sep 198921 Mar 1990Ethyl Petroleum Additives, Inc.Oil-soluble phosphorus antiwear additives for lubricants
EP0399764A121 May 199028 Nov 1990Ethyl Petroleum Additives LimitedLubricant compositions
EP0713908A121 Nov 199529 May 1996Ethyl CorporationPower transmission fluids
EP1568759A224 Feb 200531 Ago 2005Afton Chemical CorporationPower transmission fluids
EP2017329A117 Abr 200821 Ene 2009Afton Chemical CorporationEnvironmentally-Friendly Lubricant Compositions
EP2025737A130 Jul 200818 Feb 2009Afton Chemical CorporationEnvironmentally-friendly fuel compositions
EP2072611A111 Nov 200824 Jun 2009Afton Chemical CorporationLubricant composition suitable for engines fueled by alternate fuels
EP2230292A18 Nov 200422 Sep 2010Afton Chemical CorporationMethods of lubricating transmissions
EP2420553A117 Abr 200822 Feb 2012Afton Chemical CorporationEnvironmentally-Friendly Lubricant Compositions
WO2008013698A117 Jul 200731 Ene 2008Exxonmobil Research And Engineering CompanyMethod for lubricating heavy duty geared apparatus
WO2009119831A127 Mar 20091 Oct 2009Fujifilm CorporationComposition and method for forming coating film
WO2013003392A127 Jun 20123 Ene 2013Exxonmobil Research And Engineering CompanyMethod of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
WO2013003394A127 Jun 20123 Ene 2013Exxonmobil Research And Engineering CompanyLubricating compositions containing polyetheramines
WO2013003405A127 Jun 20123 Ene 2013Exxonmobil Research And Engineering CompanyLubricating compositions containing polyalkylene glycol mono ethers
WO2013003406A127 Jun 20123 Ene 2013Exxonmobil Research And Engineering CompanyLow viscosity engine oil with superior engine wear protection
WO2013055480A112 Sep 201218 Abr 2013Exxonmobil Research And Engineering CompanyLow viscosity engine oil compositions
WO2013055481A112 Sep 201218 Abr 2013Exxonmobil Research And Engineering CompanyHigh efficiency engine oil compositions
WO2013055482A112 Sep 201218 Abr 2013Exxonmobil Research And Engineering CompanyLubricating compositions
WO2013066915A131 Oct 201210 May 2013Exxonmobil Research And Engineering CompanyLubricants with improved low-temperature fuel economy
WO2013074498A113 Nov 201223 May 2013Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2013096532A120 Dic 201227 Jun 2013Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2013181318A130 May 20135 Dic 2013Exxonmobil Research And Engineering CompanyLubricant compostions and processes for preparing same
WO2014008121A128 Jun 20139 Ene 2014Exxonmobil Research And Engineering CompanyEnhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
WO2014066444A123 Oct 20131 May 2014Exxonmobil Research And Engineering ComapnyFunctionalized polymers and oligomers as corrosion inhibitors and antiwear additives
WO2014107315A119 Dic 201310 Jul 2014Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2014158533A124 Feb 20142 Oct 2014Exxonmobil Research And Engineering CompanyLubricating composition providing high wear resistance
WO2015050690A115 Sep 20149 Abr 2015Exxonmobil Research And Engineering CompanyCompositions with improved varnish control properties
WO2015095336A117 Dic 201425 Jun 2015Chevron Phillips Chemical Company LpMethod for making polyolefins using aluminum halide catalyzed oligomerization of olefins
WO2015099819A11 Abr 20142 Jul 2015Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2015099820A11 Abr 20142 Jul 2015Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2015099821A11 Abr 20142 Jul 2015Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2015099907A119 Nov 20142 Jul 2015Exxonmobil Research And Engineering CompanyLow viscosity ester lubricant and method for using
WO2015171292A120 Abr 201512 Nov 2015Exxonmobil Research And Engineering CompanyMethod for preventing or reducing engine knock and pre-ignition
WO2015171978A18 May 201512 Nov 2015Exxonmobil Research And Engineering CompanyMethod for preventing or reducing low speed pre-ignition
WO2015171980A18 May 201512 Nov 2015Exxonmobil Research And Engineering CompanyMethod for preventing or reducing low speed pre-ignition
WO2015171981A18 May 201512 Nov 2015Exxonmobil Research And Engineering CompanyMethod for preventing or reducing low speed pre-ignition
WO2015183455A129 Abr 20153 Dic 2015Exxonmobil Research And Engineering CompanyLubricating oil compositions with engine wear protection
WO2016043944A127 Ago 201524 Mar 2016Exxonmobil Research And Engineering CompanyComposition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2016073149A113 Oct 201512 May 2016Exxonmobil Research And Engineering CompanyLow transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
WO2016106211A121 Dic 201530 Jun 2016Exxonmobil Research And Engineering CompanyMethods for authentication and identification of petroleum products
WO2016106214A121 Dic 201530 Jun 2016Exxonmobil Research And Engineering CompanyMethods for determining condition and quality of petroleum products
WO2016109322A122 Dic 20157 Jul 2016Exxonmobil Research And Engineering CompanyLubricating oil compositions containing encapsulated microscale particles
WO2016109325A122 Dic 20157 Jul 2016Exxonmobil Research And Engineering CompanyLubricating oil compositions containing encapsulated microscale particles
WO2016109376A128 Dic 20157 Jul 2016Exxonmobil Research And Engineering CompanyLubricating oil compositions with engine wear protection
WO2016109382A128 Dic 20157 Jul 2016Exxonmobil Research And Engineering CompanyLubricating oil compositions with engine wear protection
WO2016191409A124 May 20161 Dic 2016Exxonmobil Research And Engineering CompanyComposition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2016200606A125 May 201615 Dic 2016Exxonmobil Research And Engineering CompanyInverse micellar compositions containing lubricant additives
WO2017007670A130 Jun 201612 Ene 2017Exxonmobil Research And Engineering CompanyComposition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2017117178A128 Dic 20166 Jul 2017Exxonmobil Research And Engineering CompanyBright stock production from deasphalted oil
WO2017146896A17 Feb 201731 Ago 2017Exxonmobil Research And Engineering CompanyLubricant compositions containing controlled release additives
WO2017146897A17 Feb 201731 Ago 2017Exxonmobil Research And Engineering CompanyLubricant compositions containing controlled release additives
WO2017172254A13 Mar 20175 Oct 2017Exxonmobil Research And Engineering CompanyLubricant compositions
Eventos legales
FechaCódigoEventoDescripción
28 Mar 1990ASAssignment
Owner name: AMOCO CORPORATION
Free format text: CHANGE OF NAME;ASSIGNOR:STANDARD OIL COMPANY;REEL/FRAME:005300/0377
Effective date: 19850423
Owner name: AMOCO CORPORATION,ILLINOIS