US3753705A - Agglomeration imaging process using hardenable material - Google Patents

Agglomeration imaging process using hardenable material Download PDF

Info

Publication number
US3753705A
US3753705A US00862907A US3753705DA US3753705A US 3753705 A US3753705 A US 3753705A US 00862907 A US00862907 A US 00862907A US 3753705D A US3753705D A US 3753705DA US 3753705 A US3753705 A US 3753705A
Authority
US
United States
Prior art keywords
layer
imaging method
agglomerable
hardenable
softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00862907A
Inventor
W Goffe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Application granted granted Critical
Publication of US3753705A publication Critical patent/US3753705A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/56Processes using photosensitive compositions covered by the groups G03C1/64 - G03C1/72 or agents therefor

Definitions

  • ABSTRACT An imaging system comprising providing an imaging member comprising an agglomerable layer in contact with an imagewise hardenable-softenable layer and imagewise hardening said member. An image is developed by imagewise softening said member to cause relative transparentizing in the imagewise softened areas due to an agglomeration of the agglomerable layer in the imagewise softened portions of said member.
  • the imagewise migration in depth imaging system while extremely advantageous in terms of simplicity and the high quality of the resulting images, does gener-. ally employ, in many of its modes, a charging step or an electrostatic latent image and an electrically insulating softenable layer and a photoconductive migration layer.
  • a still further object of this invention is to provide an imaging system wherein image resolution is not limited by the spreading of heat.
  • an imaging member comprising an agglomerable layer contacting an imagewise hardenable softenable layer and imagewise hardening said member and then softening said member to cause relative transparentizing in the imagewise unhardened areas due to an agglomeration of the agglomerable layer in the imagewise unhardened portions of said member.
  • FIG. 1 represents a partially schematic drawing representing. a preferred embodiment of an imaging member according to the invention.
  • FIG. 1 there is shown a schematic drawing of an example of one embodiment of an imaging member 10 according to this invention comprising substrate 11, hardenablesoftenable layer 12 which contains at its upper surface agglomerable layer 13. of particulate material.
  • Substrate '11 may be omitted in many imaging,.mem-
  • softenable layer is self-supporting but may conveniently be included as a base for coating or otherwise forming many suitable materials for softenable layer 12.
  • Any substrate with sufficient mechanical coherence and strength to support layers 12 and 13 may be used. Elec; trically insulating, conductive or semi-conductiye'rnaterials may be used.
  • the substrate of member 10 may be in any suitable form such as a strip, sheet, plate, coil, cylinder, drum, endless belt, moebius strip and the like. If desired, the substrate may be substantially transparent to allow for hardening exposure of the member from the substrate side and to permit theresultant imaged member to be viewed in transmitted light, for example to be used as a projection. transparency.
  • I-Iardenable-softenable layer 12 which may comprise one or more layers of softenable materials may be any suitable material, typically a plastic or thermoplastic material, photohardenable material which is imagewise hardenable; for example, in the case of a photohardenable material, capable of being hardened by suitable electromagnetic radiation; the unhardened portions of which are softenable by reason of contacting with heat, a softening liquid, a softening vapor and combinations thereof and other suitable softening means to provide for the agglomerating effect and resultant transparentizing.
  • softenable as used herein to describe layer 12 is intended to mean any material which can be rendered more permeable to material or particles of layer 13 migrating substantially laterally through the bulk of layer 12.
  • Hardenable on the other hand, as used herein to describe layer 12 is intended to mean any material which can be rendered less permeable to material or particles of layer 13.
  • I-Iardenablesoftenable layer 12 can be electrically conductive, insulating or semiconductive.
  • layer 12 is the layer which is primarily hardened by the photohardening radiation
  • the material of layer 12 must, of course, also be a photohardenable material.
  • any photohardenable material conventionally used in photomechani cal applications in the printing, photoengraving and relatedarts may be used so long as the unhardened portions of which are also softenable.
  • thermoplastic materials which are not normally thought of as photohardenable such as Staybelite Ester 10, a partially hydrogenated rosin ester from Hercules Powder Co., more particularly described in U.S. Pat. No. 3,307,941 to Gundlach may be imagewise hardened when exposed to. hardening radiation.
  • Typical substantially electrical insulating hardenablesoftenable thermoplastics similar to Staybelite Ester 10, include Foral Ester, a hydrogenated rosin triest'er, and Neolyne 23, an alkyd resin, all from Hercules Powder Co.; SR type silicone resins available from General Electric Corporation; Sucrose Benzoate, Eastman Chemical; Velsicol X-37, a polystyrene-olefin copolymer from Velsicol Chemical Corp.; Hydrogenated Piccopale 100, Piccopale H-2, highly branched polyolefins, Piccotex 100, a styrene-vinyl toluene copolymer, Piccolastic A-75, 100 and 125, all polystyrenes, Piccodiene 2215, a polystyrene-olefin copolymer, all from Pennsylvania Industrial Chemical Corp.; Araldite 6060 and 6071, epoxy resins from Ciba; R5061A, a
  • Rubber Co. a chlorinated hydrocarbon available under the trademark Aroclor from Monsanto Chemical Co.; thermoplastic polyvinyl resins available under the trademark Vinylite from Union Carbide Co.; other thermoplastics disclosed in Gunther et al. US, Pat. No. 3,196,011; waxes and blends, mixtures and copolymers thereof.
  • Typical conductive softenable materials include Ethocel, an ethyl cellulose material from Dow Chemical Co.; polyxylene adipate, polyhexamethylene sebacate, polyvinyl alcohol, polyvinylbenzyltrimethyl ammonium chloride and others.
  • the photohardenable characteristics of the above materials may be enchanced by mixing known photopolymers with the above described hardenablesoftenable materials, for example, as described in Gundlach U.S. Pat. No. 3,307,941.
  • photohardenable materials for use herein because when combined with many hardenable-softenable thermoplastics, such as Staybelite Ester 10, material is produced which is preferred in this invention i.e., a material which in layer form is both imagewise hardenable and softenabl'e in the unhardened areas.
  • Typical photohardenable materials are systems comprising a non-photosensitive polymer and a photosensitive low molecular-weight compound with which it is capable of reacting on exposure to produce insolubility typified by polymeric materials such as eastain and rubber, in combination with photosensitive azidistilbene sulfonate derivatives; systems comprising a monomer, a dimer and/or a low-molecular weight polymer with a filler and one or more polymerization catalysts typified by materials as described in Plambeck U.S. Pat. Nos.
  • 2,760,863 and 2,791,504 systems comprising a non-photosensitive polymer and photosensitive low-molecular weight compounds wherein the photosensitive agent reacts with itself on exposure to create insolubility in exposed portions typifiedby ethylcellulose, polymethyl methacrylate and numerous other commerical plastics containing photosensitive chalcone or unsaturated ltetone derivatives typified by materials as described in Murray U.S. Pat. No. 1,965,710 and Van Deusen U.S. Pat. No.
  • Layer 12 may. be of any suitable thickness.
  • the primary determination in this regard is that the thickness of softenable. layer separating the agglomerable layer from the softening agent bysufficiently thin to permit softening agents such as softening vapor or heat to permeate or be effectively transferred by the softenable layer to the agglomerable layer to cause the transparentizing effect of this invention.
  • imaging memberswithsoftenable layer thicknesses of about 3 microns have been softened by infra red radiation, through.
  • the substrate constitutingan' aluminized 3 mil thick Mylar polyester terephthalate film from duPont where the aluminum layer was about 50 percent transmissive of visible light to cause thetransparentizing imaging effect of this invention.
  • Radiation exposure softening may take place through even thicker softenable layers, especially where the. material of the layer is not an effective absorber of'athat radiation being used, but layer 13 is. lmagewise hardening of layer 12 can also be accomplished by deposition of plastic materials which contact the particles of layer 13 directly or contact the particles by slight mixing with the softenablelayer.
  • the hardenable-softenable layer is first treated with vapors which soften it and then contacted in; an imagewise-pattern with a powder'comprising finely divided polystyrene pigmented with carbon black.
  • the layer. is then heated to about C for about 3 seconds where"- upon the agglomerable layer agglomeratesin theareas.
  • the softening step of this invention will be a uniform exposure to softening agents or agent over the area of the imagingmember desired to be imaged to provide for uniform resultant image characteristics.
  • the Figures show the preferred positioning of layer 13 relative to softenable layer 12, where layer 13 is embedded in the softenable layer 12 but spaced apart from any substrate 11.
  • This imaging member makeup provides for optimum image efficiency.
  • imaging according to this invention can be done with agglomerable layer 13 actually touching the softenable layer 12 substrate 11 interface.
  • layer 13 may be located on or at any place in layer 12.
  • Layer 13 may be comprise any suitable agglomerable material including electrical insulators, electrical conductors, photoconductive materials and nonphotoconductive materials.
  • the agglomerable material can be opaque or light-scattering transparent or translucent material.
  • Agglomerable and the several variant forms thereof used herein defines the effect of substantial massing or fusing together of the imagewise unhardened, softened portions of layer 13 to greatly reduce the crosssectional area and transparentize or effect a color change of layer 13 in said areas, the color change associated with the light scattering caused, for example, by the particles in the imaged areas of a particle layer 13 (see copending application Ser. No. 725,676, now abandoned), which may be accompanied by some dispersing of individual portions or particles of layer 13 in depth in layer 12 which produce additional transparentizing and color changes; specifically including the massing together of closely packed particles into a smaller number of larger spheres of less total surface area.
  • greater sensitivities may be obtained for color changes as opposed to a change to near neutral density.
  • an image is very pronouncedly different from the color of the background (for example a purple image in a yellow-orange background) may give sub stantially greater contrast density for the same softening than a change to a near neutral density in a yelloworange background.
  • Preferred agglomerable materials for use herein,'because of the excellent quality of the resultant images and because of the sensitivity of the system include: crystalline selenium, amorphous selenium, amorphous selenium alloyed with various materials such as arsenic, tellurium, antimony, bismuth, etc.; amorphous selenium or its alloys doped with halogens; tellurium and mixtures of amorphous selenium and one or more crystalline forms of selenium including the monoclinic and hexagonal forms.
  • An optimum agglomerable material comprises predominantly, greater than 50 percent by weight, amorphous selenium.
  • Suitable materials for layer 13 especially in the preferred radiation exposure mode hereof have a low glass transition temperature i.e., generally below about 50 or 60C and a high absorption coefficient in the visible, such as selenium.
  • agglomerable material may be used in layer 13.
  • Typical additional agglomerable materials include sulfur, dyed polyvinyl carbazole and others.
  • Agglomerable layer 13 portions of which laterally migrate during imagewise softening, is shown to be a microscopically discontinuous layer of closely packed particles. It is preferred for images of highest resolution, density and utility and to provide for the most sensitive system that layer 13 be a microscopically discontinuous layerand optimally that the layer 13 be particulate in order to best promote the agglomerating effect of this invention. However, layer 13 taking the form of a Swiss cheese pattern or even a completely continuous thin layer will work.
  • layer 13 is preferably from about 0.1 to about 1 micron thick although about 0.05 to about 5 micron layers have been found to give images according to this invention.
  • microscopically discontinuous layer 13 may also be formed by other methods such as cascading, dusting, etc. as shown in copending application, Ser.,No. 460,377, filed June 1, 1965, now U.S. Pat. No. 3,520,681, or by stripping and other methods as described in copending application, Ser. No. 685,536, filed Nov. 24, 1967, now abandoned,
  • layer 12 may be softened slightly by heating, for example, to permit particles deposited on its surface to seat themselves, i.e., to embed a short distance into the plastic after which additional particles may be cascaded across or dusted over the softenable layer 12.
  • Especially suitable selenium films when viewed under a microscope show either a network of cracks or apertures or else a network of dark lines indicating a micro scopically discontinuous layer. Electron micrographs show that optimum predominantly amorphous selenium films are actually composed of discrete spherical amorphous particles of an average: particle size preferably between about 0.1 and about 0.5 microns.
  • the binder structure where agglomerable particles are disposed in the softenable layer may also be used and is specifically intended to be included in the claim language 'an imaging member comprising an agglomerable layer contacting a softenable layer.
  • Preferred particle/binder ratios are found to be between about 1/1 to about one-third and preferred binder layer thicknesses are generally less than about 5 microns to give good resolution.
  • the binder layer may be placed on a softenable layer or sandwiched between softenable layers to create an imaging member much thicker than the 5 micron maximum which is preferred for the binder part of the overall structure. Further information on the makeup of binder'layers for use herein is found in copending application, Ser. No. 634,757, filed Apr. 28, 1967, now abandoned.
  • the imaging members hereof are imaged by image wise hardening preferably optically as by exposing to an image pattern of hardening radiation such as UV radiation and softening preferably by uniformly exposing the member to softening radiation, contacting with a softening liquid or vapor, heat and combinations thereof and other suitable softening means.
  • image wise hardening preferably optically as by exposing to an image pattern of hardening radiation such as UV radiation and softening preferably by uniformly exposing the member to softening radiation, contacting with a softening liquid or vapor, heat and combinations thereof and other suitable softening means.
  • the preferred mode of imagewise hardening comprises exposing the members hereof to an image pattern of hardening radiation 14 preferably ultra violet radiation, such as radiation of a wavelength between about 1,800 and 4,000 angstrom units, typically by any suitable conventional projection technique. Radiation of a wavelength above about 4,000 angstrom units can'be employed,
  • member 10 is exposed to vapors 24 of solvent 26 in container 28 to cause imagewise agglomeration and transparentization in softened area 16 which are also those areas which were not photohardened by photohardening radiation 14 as shown in FIG. 2 to cause imagewise agglomeration and transparentization in the softened areas 16.
  • agglomeration causes reduction of surface area of layer 13 by the formation of larger spheres 17 of the same mass as the total mass of the agglomerated smaller particles of layer 13 but with a smaller surface area than the total of the surface areas of the agglomerated smaller particles.
  • a. layer 12 may comprise a relatively thin photohardenable material touching the particles over another material which need not be softenable or imagewise hardenable;
  • the particles of layer 13 themselves may be photohardenable rather than the material of layer 12.
  • the agglomerating effect may result from radiation absorption by substrate 11, layer 12, layer 13 or combinations thereof.
  • substrate 11 may be exposed with conduction and convection transferring the heat to layers 12 and 13 to cause the agglomerating efiect hereof.
  • FIG. 4 shows a liquid in the form of a spray 30 being uniformly applied to contact and soften layers 12 and 13 as an alternative method of softening layers 12 and 13. Heating layers 12 and 13 to soften them is another alternative method of softening or the heating step may be used in conjunction with vapor or liquid treatment.
  • the following Examples further specifically define the present invention with respect to the imaging system of this invention. The parts and percentages are by weight unless otherwise indicated. The Examples below are intended to illustrate various preferred embodiments of the imagewise hardening and uniform softening imaging system of this invention.
  • An imaging member such as that illustrated in FIG. I is prepared by first dissolving about parts of Staybelite Ester in about parts of cyclohexanone and about 75 parts toluene. Using a gravure roller the solution is then roll coated onto about a 3 mil Mylar polyester film having a thin semi-transparent aluminum overcoating, the aluminum coating about 50 percent visible light transmissive. The coating is applied so that when air dried for about 2 hours to allow for evaporation of the cyclohexanone and toluene solvent, about a 2 micron thick layer of Staybelite Ester is formed on the aluminized Mylar.
  • a thin layer of particulate amorphous selenium approximately 0.5 microns in thickness and comprising spheres about 0.5 microns in diameter is then deposited contiguous on the Staybelite surface by vacuum deposition utilizing the process set forth in copending application, Ser. No. 423,167, filed Jan. 4, 1967 incorporated herein by reference.
  • the imaging member is photohardened by laying an imagewise optical mask on layer 13 and then exposing the member from the layer 13 side to ultraviolet radiation from a high pressure quartz mercury vapor arc lamp manufactured by the Hanovia Lamp Div. of Englehard Industries, Newark, New Jersey at a power input of about watts, and about 1.2 amps, the lamp held about 10 inches from the surface of the member, the exposure duration being for about 10 seconds.
  • the lamp transmits the complete UV spectrum from about 1,800 to about 4,000 angstrom units.
  • the imaging member is then uniformly exposed to the vapors of l,l,l-trichloroethane emanating from a small mouth gallon jug with the bottom covered with solvent, for about 10 seconds.
  • the member is then placed on a hotplate with the hotplate contacting the substrate and heated at about 100C for about three seconds to cause agglomeration and relative transparentization of the imaging member in those areas of the member which where not exposed to UV radiation.
  • the imaged member exhibits a resolution of about 20 line pairs/millimeter with a contrast density of about 1.5.
  • the imaged member is then inserted into a slide projector and an image focused on a viewing screen to give a dark image in a lighter background, the dark image corresponding to the cut out portion of the optical mask used in the ultraviolet exposure step.
  • Example I The procedure of Example I is repeated except that the Staybelite Ester is replaced by a styrene-vinyl toluene copolymer available from the Pennsylvania Industral Chemical Co. as Piccotex 100. An image of comparable quality to that obtained in Example 1 is produced.
  • particles of the agglomeration layer 13 may consist of more than one particle, for example, coloring material such as dyes or pigments in a resin binder.
  • coloring material such as dyes or pigments in a resin binder.
  • the material. of layer 13 is opaque in many embodiments, it need not be opaque. Clear or colorless material may still show a substantially reduced projection light scattering effect in agglomerated areas to produce satisfactory transparencies according to the invention.
  • agglomeration has been spoken of as producing its most prominent transparentizing effect
  • the imagewise agglomeration hereof may produce a variety of color changes in a member which can then be directly observed or used as a projection transparency; and transparentizing and the variant forms thereof used herein is specifically intended to include these color changes.
  • Temporary softening as opposed to irreversible softening is sufficient to cause agglomerization hereof and is usually preferred to provide a self-fixing mechanism.
  • a substrate 11 when used, it may be a substantial absorber of heating radiation and cause indirect heating of layer 13 and softenable material by convection and conduction from the substrate.
  • An imaging method comprising the steps of:
  • an imaging member comprising an agglomerable layer in contact with a hardenablesoftenable layer capable of being imagewise hardened and capable of being softened more readily in the unhardened areas than in the imagewise hardened areas;
  • microscopically discontinuous agglomerable layer is composed of closely packed particles.
  • An imaging method wherein the average diameter of said particles is between about 0.1 and about 0.5 microns.
  • An imaging method according to claim 1 wherein said member comprises agglomerable particles dispersed in a binder.
  • An imaging method according to claim 12 wherein the weight ratio of particles to binder is between about III and one-third.
  • agglomerable layer is between about 0.05 and about 5 microns thick, is microscopically discontinuous and comprises predominantly amorphous selenium.
  • agglomerable layer is between about 0.05 and about 5 microns thick, is microscopically discontinuous and comprises predominantly amorphous selenium.
  • An imaging method according to. claim .28 wherein said agglomerable layer comprises predominantly amorphous selenium and is composed of closely packed particles and is between about 0.05 and about 5 microns thick.

Abstract

An imaging system comprising providing an imaging member comprising an agglomerable layer in contact with an imagewise hardenable-softenable layer and imagewise hardening said member. An image is developed by imagewise softening said member to cause relative transparentizing in the imagewise softened areas due to an agglomeration of the agglomerable layer in the imagewise softened portions of said member.

Description

United States Patent [1 1 [111v 3,753,705 Goffe [45 Aug. 21, 1973 1 AGGLOMERATION IMAGING PROCESS 3,484,238 12/1969 Fox 96/115 x USING HARDENABLE MATERIAL 3,556,781 1/ 1971 Levy et a1. 96/1 inventor: William L. Goffe, Webster, NY.
Assignee: Xerox Corporation, Stamford, Conn.
Filed: Oct. 1, 1969 App]. No.: 862,907
US. Cl 96/1 R, 96/l.5, 96/27, 96/35.l, 96/48, 96/l.5 R
Int. Cl........ G033 5/00, G03c 5/16, G03c 5/24 Field of Search 96/1, 1.5, 27, 35.1, 96/1 15 References Cited UNITED STATES PATENTS 2/1966 Phlipot 96/35.1 X
Primary Examiner-Roland E. Martin, Jr. Attorney-James J. Ralabate, David C. Petre and Raymond C. Loyer [57] ABSTRACT An imaging system comprising providing an imaging member comprising an agglomerable layer in contact with an imagewise hardenable-softenable layer and imagewise hardening said member. An image is developed by imagewise softening said member to cause relative transparentizing in the imagewise softened areas due to an agglomeration of the agglomerable layer in the imagewise softened portions of said member.
35 Claims, 4 Drawing Figures Pmmznwazl um I 3.753705 f 1 X /3 .OOO O... 1 v
Fl G 4 INVENTOR. WILLIAM L. GOFFE AGGLOMERATION IMAGING PROCESS USING HARDENABLE MATERIAL BACKGROUND OF THE INVENTION This invention relates in general to imaging and more specifically to a new migration imaging system.
There has recently been developed a migration imaging system capable of producing high quality images of high density, continuous tone and high resolution wherein migration material is caused to imagewise migrate in depth in a softenable layer, in some embodiments to deposit in imageconfiguration on a substrate. This system is described in detail, with references to related applications, in copending application Ser. No. 725,676, filed May 1, 1968, now abandoned.
The imagewise migration in depth imaging system, while extremely advantageous in terms of simplicity and the high quality of the resulting images, does gener-. ally employ, in many of its modes, a charging step or an electrostatic latent image and an electrically insulating softenable layer and a photoconductive migration layer.
My related copending application, Ser. No. 755,306, filed Aug. 26, 1968, discloses a system of providing an imaging member similar to the ones used herein but with imagewise softening of the member of cause relative transparentizing of said member in the softened areas due to an agglomeration of the agglomerable layer in the softened portion of said member.
SUMMARY OF THE INVENTION It is an object of this invention to provide a mode of imaging, using imaging members similar to the type disclosed in aforementioned copending application .Ser. No. 725,676, which eliminates the charging step and in some embodiments produces an image merely by imagewise exposure and softening of the imaging member.
It is a further object of this invention to provide an imaging system which does not require an electrically insulating softenable layer.
It is a further object of this invention to provide an imaging system which does not require use of a charged photosensitive material. 1 i
A still further object of this invention is to provide an imaging system wherein image resolution is not limited by the spreading of heat.
The foregoing objects and others are accomplished in accordance with this invention by providing an imaging member comprising an agglomerable layer contacting an imagewise hardenable softenable layer and imagewise hardening said member and then softening said member to cause relative transparentizing in the imagewise unhardened areas due to an agglomeration of the agglomerable layer in the imagewise unhardened portions of said member.
BRIEF DESCRIPTION OF THE DRAWINGS For a better understanding of the invention as well as other objects and further features thereof,.reference is made to the following detailed disclosure of this invention taken in conjunction with the accompanying drawin'gs wherein:
FIG. 1 represents a partially schematic drawing representing. a preferred embodiment of an imaging member according to the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to theFigures and in particular to FIG. 1, there is shown a schematic drawing of an example of one embodiment of an imaging member 10 according to this invention comprising substrate 11, hardenablesoftenable layer 12 which contains at its upper surface agglomerable layer 13. of particulate material.
Substrate '11 may be omitted in many imaging,.mem-
ber embodiments of thisinvention where the softenable layer is self-supporting but may conveniently be included as a base for coating or otherwise forming many suitable materials for softenable layer 12. Any substrate with sufficient mechanical coherence and strength to support layers 12 and 13 may be used. Elec; trically insulating, conductive or semi-conductiye'rnaterials may be used.
The substrate of member 10 may be in any suitable form such as a strip, sheet, plate, coil, cylinder, drum, endless belt, moebius strip and the like. If desired, the substrate may be substantially transparent to allow for hardening exposure of the member from the substrate side and to permit theresultant imaged member to be viewed in transmitted light, for example to be used as a projection. transparency.
I-Iardenable-softenable layer 12 which may comprise one or more layers of softenable materials may be any suitable material, typically a plastic or thermoplastic material, photohardenable material which is imagewise hardenable; for example, in the case of a photohardenable material, capable of being hardened by suitable electromagnetic radiation; the unhardened portions of which are softenable by reason of contacting with heat, a softening liquid, a softening vapor and combinations thereof and other suitable softening means to provide for the agglomerating effect and resultant transparentizing. softenable as used herein to describe layer 12 is intended to mean any material which can be rendered more permeable to material or particles of layer 13 migrating substantially laterally through the bulk of layer 12. Hardenable," on the other hand, as used herein to describe layer 12 is intended to mean any material which can be rendered less permeable to material or particles of layer 13. I-Iardenablesoftenable layer 12 can be electrically conductive, insulating or semiconductive.
In the embodiment hereof where layer 12 is the layer which is primarily hardened by the photohardening radiation, the material of layer 12 must, of course, also be a photohardenable material. Almost any photohardenable material conventionally used in photomechani cal applications in the printing, photoengraving and relatedarts may be used so long as the unhardened portions of which are also softenable. Also, many thermoplastic materials which are not normally thought of as photohardenable such as Staybelite Ester 10, a partially hydrogenated rosin ester from Hercules Powder Co., more particularly described in U.S. Pat. No. 3,307,941 to Gundlach may be imagewise hardened when exposed to. hardening radiation.
Typical substantially electrical insulating hardenablesoftenable thermoplastics similar to Staybelite Ester 10, include Foral Ester, a hydrogenated rosin triest'er, and Neolyne 23, an alkyd resin, all from Hercules Powder Co.; SR type silicone resins available from General Electric Corporation; Sucrose Benzoate, Eastman Chemical; Velsicol X-37, a polystyrene-olefin copolymer from Velsicol Chemical Corp.; Hydrogenated Piccopale 100, Piccopale H-2, highly branched polyolefins, Piccotex 100, a styrene-vinyl toluene copolymer, Piccolastic A-75, 100 and 125, all polystyrenes, Piccodiene 2215, a polystyrene-olefin copolymer, all from Pennsylvania Industrial Chemical Corp.; Araldite 6060 and 6071, epoxy resins from Ciba; R5061A, a phenylmethyl silicone resin, from Dow Corning; Epon 1001, a biphenol A-epichlohydrin epoxy resin, from Shell Chemical Corp.; and RS-2, PS-3, both polystyrenes, and ET-693, a phenolformaldehyde resin, from Dow Chemical; custom synthesized copolymers of styrene and hexylmethacrylate, a custom synthesized polydiphenylsiloxane; a custom synthesized polyadipate; acrylic resins available under the trademark Acryloid from Rohm & Haas Co., and available under the trademark Lucite from the EL duPont de Nemours & Co.; thermoplastic resins available under the trademark Pliolite from the Goodyear Tire 8:. Rubber Co.; a chlorinated hydrocarbon available under the trademark Aroclor from Monsanto Chemical Co.; thermoplastic polyvinyl resins available under the trademark Vinylite from Union Carbide Co.; other thermoplastics disclosed in Gunther et al. US, Pat. No. 3,196,011; waxes and blends, mixtures and copolymers thereof.
Typical conductive softenable materials include Ethocel, an ethyl cellulose material from Dow Chemical Co.; polyxylene adipate, polyhexamethylene sebacate, polyvinyl alcohol, polyvinylbenzyltrimethyl ammonium chloride and others.
The photohardenable characteristics of the above materials may be enchanced by mixing known photopolymers with the above described hardenablesoftenable materials, for example, as described in Gundlach U.S. Pat. No. 3,307,941.
The photohardenable materials disclosed in Gundlach U.S. Pat. No. 3,307,941, namely, the cinnamate esters of polyvinyl alcohol and/or cellulose which may be further sensitized by the presence of anthrones and their derivatives, polynuclear quinone derivatives and certain ketones such as Michlers Ketone and which are commercially available under the trademarks Kodak Photoresist (KPR), KMER and KOR from the Eastman Kodak Co. are found to be preferred photohardenable materials for use herein because when combined with many hardenable-softenable thermoplastics, such as Staybelite Ester 10, material is produced which is preferred in this invention i.e., a material which in layer form is both imagewise hardenable and softenabl'e in the unhardened areas.
However, any suitable photohardenable material may be used. Typical photohardenable materials are systems comprising a non-photosensitive polymer and a photosensitive low molecular-weight compound with which it is capable of reacting on exposure to produce insolubility typified by polymeric materials such as eastain and rubber, in combination with photosensitive azidistilbene sulfonate derivatives; systems comprising a monomer, a dimer and/or a low-molecular weight polymer with a filler and one or more polymerization catalysts typified by materials as described in Plambeck U.S. Pat. Nos. 2,760,863 and 2,791,504 systems-comprising a non-photosensitive polymer and photosensitive low-molecular weight compounds wherein the photosensitive agent reacts with itself on exposure to create insolubility in exposed portions typifiedby ethylcellulose, polymethyl methacrylate and numerous other commerical plastics containing photosensitive chalcone or unsaturated ltetone derivatives typified by materials as described in Murray U.S. Pat. No. 1,965,710 and Van Deusen U.S. Pat. No. 2,544,905; systems of chromate compounds in colloids such as gelatin, albumen and glue or protein colloids sensitized, for example, with potassium bichromate or cellulose derivatives sensitized, for example, with ammonium dichromate or other polyvinyls such as polyvinylalcohol, polyvinylacetal, polyvinyl methyl ether and polyvinylpyrrolidone sensitized for example with ammonium dichromate or polyamides sensitized by dichromates; diazo-sensitized materials and others.
The above groups of photohardenable and softenable materials are not intended to be limiting but merely illustrative of materials suitable for imagewise hardenable-softenable layer 12. Layer 12 may. be of any suitable thickness. The primary determination in this regard is that the thickness of softenable. layer separating the agglomerable layer from the softening agent bysufficiently thin to permit softening agents such as softening vapor or heat to permeate or be effectively transferred by the softenable layer to the agglomerable layer to cause the transparentizing effect of this invention. In this regard, imaging memberswithsoftenable layer thicknesses of about 3 microns have been softened by infra red radiation, through. the rear i.e., from the substrate 11 side, the substrate constitutingan' aluminized 3 mil thick Mylar polyester terephthalate film from duPont where the aluminum layer was about 50 percent transmissive of visible light to cause thetransparentizing imaging effect of this invention. Radiation exposure softening may take place through even thicker softenable layers, especially where the. material of the layer is not an effective absorber of'athat radiation being used, but layer 13 is. lmagewise hardening of layer 12 can also be accomplished by deposition of plastic materials which contact the particles of layer 13 directly or contact the particles by slight mixing with the softenablelayer. For example, the hardenable-softenable layer is first treated with vapors which soften it and then contacted in; an imagewise-pattern with a powder'comprising finely divided polystyrene pigmented with carbon black. The layer. is then heated to about C for about 3 seconds where"- upon the agglomerable layer agglomeratesin theareas.
It will be appreciated that typically the softening step of this invention will be a uniform exposure to softening agents or agent over the area of the imagingmember desired to be imaged to provide for uniform resultant image characteristics.
The Figures show the preferred positioning of layer 13 relative to softenable layer 12, where layer 13 is embedded in the softenable layer 12 but spaced apart from any substrate 11. This imaging member makeup provides for optimum image efficiency. However, imaging according to this invention can be done with agglomerable layer 13 actually touching the softenable layer 12 substrate 11 interface. Thus, layer 13 may be located on or at any place in layer 12.
Layer 13 may be comprise any suitable agglomerable material including electrical insulators, electrical conductors, photoconductive materials and nonphotoconductive materials. The agglomerable material can be opaque or light-scattering transparent or translucent material.
Agglomerable and the several variant forms thereof used herein defines the effect of substantial massing or fusing together of the imagewise unhardened, softened portions of layer 13 to greatly reduce the crosssectional area and transparentize or effect a color change of layer 13 in said areas, the color change associated with the light scattering caused, for example, by the particles in the imaged areas of a particle layer 13 (see copending application Ser. No. 725,676, now abandoned), which may be accompanied by some dispersing of individual portions or particles of layer 13 in depth in layer 12 which produce additional transparentizing and color changes; specifically including the massing together of closely packed particles into a smaller number of larger spheres of less total surface area.
In fact, greater sensitivities may be obtained for color changes as opposed to a change to near neutral density. For example, an image is very pronouncedly different from the color of the background (for example a purple image in a yellow-orange background) may give sub stantially greater contrast density for the same softening than a change to a near neutral density in a yelloworange background.
Preferred agglomerable materials for use herein,'because of the excellent quality of the resultant images and because of the sensitivity of the system include: crystalline selenium, amorphous selenium, amorphous selenium alloyed with various materials such as arsenic, tellurium, antimony, bismuth, etc.; amorphous selenium or its alloys doped with halogens; tellurium and mixtures of amorphous selenium and one or more crystalline forms of selenium including the monoclinic and hexagonal forms. An optimum agglomerable material comprises predominantly, greater than 50 percent by weight, amorphous selenium.
It is found that especially suitable materials for layer 13 especially in the preferred radiation exposure mode hereof, have a low glass transition temperature i.e., generally below about 50 or 60C and a high absorption coefficient in the visible, such as selenium.
Any suitable agglomerable material may be used in layer 13. Typical additional agglomerable materials include sulfur, dyed polyvinyl carbazole and others.
Agglomerable layer 13, portions of which laterally migrate during imagewise softening, is shown to be a microscopically discontinuous layer of closely packed particles. It is preferred for images of highest resolution, density and utility and to provide for the most sensitive system that layer 13 be a microscopically discontinuous layerand optimally that the layer 13 be particulate in order to best promote the agglomerating effect of this invention. However, layer 13 taking the form of a Swiss cheese pattern or even a completely continuous thin layer will work.
For optimum results layer 13 is preferably from about 0.1 to about 1 micron thick although about 0.05 to about 5 micron layers have been found to give images according to this invention.
Optimum layers in this regard are thin, optimally between about 0.1 and about 0.5 micron thick microscopically discontinuous layers comprising predominantly amorphous selenium, for example, vacuum evaporated by techniques as disclosed in copending application, Ser. No. 423,167, filed Jan. 4, 1965. Microscopically discontinuous layer 13 may also be formed by other methods such as cascading, dusting, etc. as shown in copending application, Ser.,No. 460,377, filed June 1, 1965, now U.S. Pat. No. 3,520,681, or by stripping and other methods as described in copending application, Ser. No. 685,536, filed Nov. 24, 1967, now abandoned,
or any other suitable method. If thicker coatings are desired, layer 12 may be softened slightly by heating, for example, to permit particles deposited on its surface to seat themselves, i.e., to embed a short distance into the plastic after which additional particles may be cascaded across or dusted over the softenable layer 12.
Especially suitable selenium films when viewed under a microscope show either a network of cracks or apertures or else a network of dark lines indicating a micro scopically discontinuous layer. Electron micrographs show that optimum predominantly amorphous selenium films are actually composed of discrete spherical amorphous particles of an average: particle size preferably between about 0.1 and about 0.5 microns.
While the layered configuration as described and illustrated is'preferred, the binder structure where agglomerable particles are disposed in the softenable layer may also be used and is specifically intended to be included in the claim language 'an imaging member comprising an agglomerable layer contacting a softenable layer. Preferred particle/binder ratios are found to be between about 1/1 to about one-third and preferred binder layer thicknesses are generally less than about 5 microns to give good resolution. It will be appreciated that the binder layer may be placed on a softenable layer or sandwiched between softenable layers to create an imaging member much thicker than the 5 micron maximum which is preferred for the binder part of the overall structure. Further information on the makeup of binder'layers for use herein is found in copending application, Ser. No. 634,757, filed Apr. 28, 1967, now abandoned.
The imaging members hereof are imaged by image wise hardening preferably optically as by exposing to an image pattern of hardening radiation such as UV radiation and softening preferably by uniformly exposing the member to softening radiation, contacting with a softening liquid or vapor, heat and combinations thereof and other suitable softening means.
Referring now to FIG. 2, the preferred mode of imagewise hardening, because of its simplicity and be cause of the good images produced, comprises exposing the members hereof to an image pattern of hardening radiation 14 preferably ultra violet radiation, such as radiation of a wavelength between about 1,800 and 4,000 angstrom units, typically by any suitable conventional projection technique. Radiation of a wavelength above about 4,000 angstrom units can'be employed,
but the intensity is reduced to avoid particle fusion in the agglomerable layer.
Referring now to FIG. 3, member 10 is exposed to vapors 24 of solvent 26 in container 28 to cause imagewise agglomeration and transparentization in softened area 16 which are also those areas which were not photohardened by photohardening radiation 14 as shown in FIG. 2 to cause imagewise agglomeration and transparentization in the softened areas 16.
It is seen that agglomeration causes reduction of surface area of layer 13 by the formation of larger spheres 17 of the same mass as the total mass of the agglomerated smaller particles of layer 13 but with a smaller surface area than the total of the surface areas of the agglomerated smaller particles.
Since it is thought that the agglomeration hereof is typically accompanied by at least some softening of both layers 12 and 13 to allow the particles to drift together, wet each other, and permit the reduction of surface area of the material comprising layer 13, there are several process variations of imaging. Typical combinations are:
a. layer 12 may comprise a relatively thin photohardenable material touching the particles over another material which need not be softenable or imagewise hardenable; and
b. the particles of layer 13 themselves may be photohardenable rather than the material of layer 12.
When radiation heat softening is used, the agglomerating effect may result from radiation absorption by substrate 11, layer 12, layer 13 or combinations thereof. For example, substrate 11 may be exposed with conduction and convection transferring the heat to layers 12 and 13 to cause the agglomerating efiect hereof.
Uniform infra red irradiation greater than about 0.2 watts/square mm. have been found to produce acceptable quality images.
FIG. 4 shows a liquid in the form of a spray 30 being uniformly applied to contact and soften layers 12 and 13 as an alternative method of softening layers 12 and 13. Heating layers 12 and 13 to soften them is another alternative method of softening or the heating step may be used in conjunction with vapor or liquid treatment. The following Examples further specifically define the present invention with respect to the imaging system of this invention. The parts and percentages are by weight unless otherwise indicated. The Examples below are intended to illustrate various preferred embodiments of the imagewise hardening and uniform softening imaging system of this invention.
EXAMPLE I An imaging member such as that illustrated in FIG. I is prepared by first dissolving about parts of Staybelite Ester in about parts of cyclohexanone and about 75 parts toluene. Using a gravure roller the solution is then roll coated onto about a 3 mil Mylar polyester film having a thin semi-transparent aluminum overcoating, the aluminum coating about 50 percent visible light transmissive. The coating is applied so that when air dried for about 2 hours to allow for evaporation of the cyclohexanone and toluene solvent, about a 2 micron thick layer of Staybelite Ester is formed on the aluminized Mylar. A thin layer of particulate amorphous selenium approximately 0.5 microns in thickness and comprising spheres about 0.5 microns in diameter is then deposited contiguous on the Staybelite surface by vacuum deposition utilizing the process set forth in copending application, Ser. No. 423,167, filed Jan. 4, 1967 incorporated herein by reference.
The imaging member is photohardened by laying an imagewise optical mask on layer 13 and then exposing the member from the layer 13 side to ultraviolet radiation from a high pressure quartz mercury vapor arc lamp manufactured by the Hanovia Lamp Div. of Englehard Industries, Newark, New Jersey at a power input of about watts, and about 1.2 amps, the lamp held about 10 inches from the surface of the member, the exposure duration being for about 10 seconds. The lamp transmits the complete UV spectrum from about 1,800 to about 4,000 angstrom units.
The imaging member is then uniformly exposed to the vapors of l,l,l-trichloroethane emanating from a small mouth gallon jug with the bottom covered with solvent, for about 10 seconds. The member is then placed on a hotplate with the hotplate contacting the substrate and heated at about 100C for about three seconds to cause agglomeration and relative transparentization of the imaging member in those areas of the member which where not exposed to UV radiation.
The imaged member exhibits a resolution of about 20 line pairs/millimeter with a contrast density of about 1.5. The imaged member is then inserted into a slide projector and an image focused on a viewing screen to give a dark image in a lighter background, the dark image corresponding to the cut out portion of the optical mask used in the ultraviolet exposure step.
EXAMPLE I] The procedure of Example I is repeated except that the Staybelite Ester is replaced by a styrene-vinyl toluene copolymer available from the Pennsylvania Industral Chemical Co. as Piccotex 100. An image of comparable quality to that obtained in Example 1 is produced.
Although specific components and proportions have been stated in the above description of preferred embodiments of the imaging system of this invention, other suitable materials as listed herein may be used with similar results. In addition, other materials which presently exist or may be discovered may be added to the materials used herein and variations may be made in the various processing steps to synergize, enhence or otherwise modify the properties of this invention. For example, particles of the agglomeration layer 13 may consist of more than one particle, for example, coloring material such as dyes or pigments in a resin binder. Also, although the material. of layer 13 is opaque in many embodiments, it need not be opaque. Clear or colorless material may still show a substantially reduced projection light scattering effect in agglomerated areas to produce satisfactory transparencies according to the invention. Also, although agglomeration has been spoken of as producing its most prominent transparentizing effect, the imagewise agglomeration hereof may produce a variety of color changes in a member which can then be directly observed or used as a projection transparency; and transparentizing and the variant forms thereof used herein is specifically intended to include these color changes.
Temporary softening as opposed to irreversible softening is sufficient to cause agglomerization hereof and is usually preferred to provide a self-fixing mechanism.
Hard overcoatings and other fixing techniques will occur to those skilled in the art.
It will be appreciated that when a substrate 11 is used, it may be a substantial absorber of heating radiation and cause indirect heating of layer 13 and softenable material by convection and conduction from the substrate.
It will be understood that various other changes in the details, materials, steps and arrangements of parts which have been herein described and illustrated in order to explain the nature of the invention will occur to and may be made by those skilled in the art upon a reading of this disclosure and such changes are intended to be included within the principle and scope of this invention.
What is claimed is:
1. An imaging method comprising the steps of:
a. providing an imaging member comprising an agglomerable layer in contact with a hardenablesoftenable layer capable of being imagewise hardened and capable of being softened more readily in the unhardened areas than in the imagewise hardened areas;
b. imagewise hardening said member; and
c. softening said member whereby the unhardened areas become more softened than the hardened areas to cause agglomeration of said agglomerable layer in said unhardened areas to cause relative transparentizing of said member in the unhardened areas.
2. An imaging method according to claim 1 wherein said imagewise hardening is at least partially accomplished by imagewise exposing the member to hardening radiation.
3. An imaging method according to claim 2 wherein said hardening radiation is ultraviolet radiation.
4. An imaging method according to claim 2 wherein the member is softened by substantially uniform exposure to a softening agent.
5. An imaging method according to claim 1 wherein said agglomerable layer is between about 0.05 and about 5 microns thick.
6. An imaging method according to claim 5 wherein said agglomerable layer is between about 0.1 and about 1 micron thick.
7. An imaging method according to claim 5 wherein said agglomerable layer is a microscopically discontinuous layer.
8. An imaging method according to claim 7 wherein said microscopically discontinuous agglomerable layer is composed of closely packed particles.
9. An imaging method according to claim 5 wherein said agglomerable layer comprises predominantly amorphous selenium.
10. An imaging method according to claim 8 wherein said agglomerable layer comprises predominantly amorphous selenium.
11. An imaging method according to claim 10 wherein the average diameter of said particles is between about 0.1 and about 0.5 microns.
12. An imaging method according to claim 1 wherein said member comprises agglomerable particles dispersed in a binder.
13. An imaging method according to claim 12 wherein the weight ratio of particles to binder is between about III and one-third.
14. An imaging method according to claim 13 wherein the binder layer is less than about 5 microns thick.
15. An imaging method according to claim 1 wherein said agglomerable layer comprises selenium.
16. An imaging method according to claim 15 wherein said agglomerable layer comprises amorphous selenium.
17. An imaging method according to claim 16 wherein said agglomerable layer comprises predominantly amorphous selenium.
18. An imaging method according to claim 4 wherein said softening is at least partially accomplished by exposing said member to softening vapors.
19. An imaging method according to claim 4 wherein softening is at least partially accomplished by exposing said member to a softening liquid.
20. An imaging method according to claim 18 wherein said agglomerable layer is not separated from said vapors by more than about 1 micron of hardenable softenable layer.
21. An imaging method according to claim 19 wherein said agglomerable layer is not separated from said liquid by more than about 1 micron of hardenable softenable layer.
22. An imaging method according to claim 2 wherein said agglomerable layer is between about 0.05 and about 5 microns thick, is microscopically discontinuous and comprises predominantly amorphous selenium.
23. An imaging method according to claim 4 wherein said agglomerable layer is between about 0.05 and about 5 microns thick, is microscopically discontinuous and comprises predominantly amorphous selenium.
24. An imaging method according to claim 1 wherein said hardenable softenable layer overlies a substrate and said hardenable agglomerable layer is at least embedded in said softenable layer.
25. An imaging method according to claim 24 wherein said agglomerable layer is spaced apart from said substrate.
26. An imaging method according to claim 22 wherein said hardenable softenable layer overlies a substrate and said agglomerable layer is at least embedded in said hardenable softenable layer.
27. An imaging method according to claim 26 wherein said substrate is at least partially transparent to said hardening radiation and said member is imagewise hardening radiation exposed from the substrate side.
28. An imaging method according to claim 24 wherein said agglomerable layer is completely embedded in said hardenable-softehable layer.
29. An imaging method according to. claim .28 wherein said agglomerable layer comprises predominantly amorphous selenium and is composed of closely packed particles and is between about 0.05 and about 5 microns thick.
30. An imaging method according to claim 1 wherein said agglomerable layer comprises a photohardenable material.
31. An imaging method according to claim 4 wherein said hardenable-softenable layer overlies a substrate which is at least partially transparent to softening radiation for said hardenable-softenable layer and said softening is at least partially accomplished by exposing said member from the substrate side to softening radiation.
32. An imaging method according to claim 1 wherein said agglomerable layer in contact with an imagewise 34. An imaging method according to claim 33 wherein the thickness of said hardenable-softenable layer is less than about 5 microns.
35. An imaging method according to claim 31 wherein said softening radiation is infrared radiation at an exposure greater than about 0.2 watts/square mm.

Claims (34)

  1. 2. An imaging method according to claim 1 wherein said imagewise hardening is at least partially accomplished by imagewise exposing the member to hardening radiation.
  2. 3. An imaging method according to claim 2 wherein said hardening radiation is ultraviolet radiation.
  3. 4. An imaging method according to claim 2 wherein the member is softened by substantially uniform exposure to a softening agent.
  4. 5. An imaging method according to claim 1 wherein said agglomerable layer is between about 0.05 and about 5 microns thick.
  5. 6. An imaging method according to claim 5 wherein said agglomerable layer is between about 0.1 and about 1 micron thick.
  6. 7. An imaging method according to claim 5 wherein said agglomerable layer is a microscopically discontinuous layer.
  7. 8. An imaging method according to claim 7 wherein said microscopically discontinuous agglomerable layer is composed of closely packed particles.
  8. 9. An imaging method according to claim 5 wherein said agglomerable layer comprises predominantly amorphous selenium.
  9. 10. An imaging method according to claim 8 wherein said agglomerable layer comprises predominantly amorphous selenium.
  10. 11. An imaging method according to claim 10 wherein the average diameter of said particles is between about 0.1 and about 0.5 microns.
  11. 12. An imaging method according to claim 1 wherein said member comprises agglomerable particles dispersed in a binder.
  12. 13. An imaging method according to claim 12 wherein the weight ratio of particles to binder is between about 1/1 and one-third.
  13. 14. An imaging method according to claim 13 wherein the binder layer is less than about 5 microns thick.
  14. 15. An imaging method according to claim 1 wherein said agglomerable layer comprises selenium.
  15. 16. An imaging method according to claim 15 wherein said agglomerable layer comprises amorphous selenium.
  16. 17. An imaging method according to claim 16 wherein said agglomerable layer comprises predominantly amorphous selenium.
  17. 18. An imaging method according to claim 4 wherein said softening is at least partially accomplished by exposing said member to softening vapors.
  18. 19. An imaging method according to claim 4 whereIn softening is at least partially accomplished by exposing said member to a softening liquid.
  19. 20. An imaging method according to claim 18 wherein said agglomerable layer is not separated from said vapors by more than about 1 micron of hardenable softenable layer.
  20. 21. An imaging method according to claim 19 wherein said agglomerable layer is not separated from said liquid by more than about 1 micron of hardenable softenable layer.
  21. 22. An imaging method according to claim 2 wherein said agglomerable layer is between about 0.05 and about 5 microns thick, is microscopically discontinuous and comprises predominantly amorphous selenium.
  22. 23. An imaging method according to claim 4 wherein said agglomerable layer is between about 0.05 and about 5 microns thick, is microscopically discontinuous and comprises predominantly amorphous selenium.
  23. 24. An imaging method according to claim 1 wherein said hardenable softenable layer overlies a substrate and said hardenable agglomerable layer is at least embedded in said softenable layer.
  24. 25. An imaging method according to claim 24 wherein said agglomerable layer is spaced apart from said substrate.
  25. 26. An imaging method according to claim 22 wherein said hardenable softenable layer overlies a substrate and said agglomerable layer is at least embedded in said hardenable softenable layer.
  26. 27. An imaging method according to claim 26 wherein said substrate is at least partially transparent to said hardening radiation and said member is imagewise hardening radiation exposed from the substrate side.
  27. 28. An imaging method according to claim 24 wherein said agglomerable layer is completely embedded in said hardenable-softenable layer.
  28. 29. An imaging method according to claim 28 wherein said agglomerable layer comprises predominantly amorphous selenium and is composed of closely packed particles and is between about 0.05 and about 5 microns thick.
  29. 30. An imaging method according to claim 1 wherein said agglomerable layer comprises a photohardenable material.
  30. 31. An imaging method according to claim 4 wherein said hardenable-softenable layer overlies a substrate which is at least partially transparent to softening radiation for said hardenable-softenable layer and said softening is at least partially accomplished by exposing said member from the substrate side to softening radiation.
  31. 32. An imaging method according to claim 1 wherein said agglomerable layer in contact with an imagewise hardenable-softenable layer is a binder structure composed of agglomerable particles dispersed in said hardenable-softenable layer.
  32. 33. An imaging method according to claim 32 wherein said agglomerable particles are substantially uniformly dispersed in said hardenable-softenable layer in a particle/binder weight ratio of from about 1/1 to about one-third.
  33. 34. An imaging method according to claim 33 wherein the thickness of said hardenable-softenable layer is less than about 5 microns.
  34. 35. An imaging method according to claim 31 wherein said softening radiation is infrared radiation at an exposure greater than about 0.2 watts/square mm.
US00862907A 1969-10-01 1969-10-01 Agglomeration imaging process using hardenable material Expired - Lifetime US3753705A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86290769A 1969-10-01 1969-10-01

Publications (1)

Publication Number Publication Date
US3753705A true US3753705A (en) 1973-08-21

Family

ID=25339707

Family Applications (2)

Application Number Title Priority Date Filing Date
US00862907A Expired - Lifetime US3753705A (en) 1969-10-01 1969-10-01 Agglomeration imaging process using hardenable material
US05/337,614 Expired - Lifetime US4065307A (en) 1969-10-01 1973-03-02 Imaged agglomerable element and process of imaging

Family Applications After (1)

Application Number Title Priority Date Filing Date
US05/337,614 Expired - Lifetime US4065307A (en) 1969-10-01 1973-03-02 Imaged agglomerable element and process of imaging

Country Status (5)

Country Link
US (2) US3753705A (en)
JP (1) JPS5036570B1 (en)
CA (1) CA929350A (en)
DE (1) DE2048379A1 (en)
GB (1) GB1330518A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975195A (en) * 1964-10-12 1976-08-17 Xerox Corporation Migration imaging system
US4000334A (en) * 1971-07-15 1976-12-28 Energy Conversion Devices, Inc. Thermal imaging involving imagewise melting to form spaced apart globules
US4133683A (en) * 1973-01-29 1979-01-09 Xerox Corporation Agglomeration imaging method
US4137078A (en) * 1976-09-23 1979-01-30 Energy Conversion Devices, Inc. Method of continuous tone imaging using dispersion imaging material
US4267261A (en) * 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
EP0047121A1 (en) * 1980-08-25 1982-03-10 Xerox Corporation Imaging process
US4536457A (en) * 1984-01-03 1985-08-20 Xerox Corporation Migration imaging process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810617A (en) * 1985-11-25 1989-03-07 General Electric Company Treatment of planarizing layer in multilayer electron beam resist
US5563014A (en) * 1995-05-15 1996-10-08 Xerox Corporation Migration imaging members
US5514505A (en) * 1995-05-15 1996-05-07 Xerox Corporation Method for obtaining improved image contrast in migration imaging members
JP5433419B2 (en) * 2006-10-03 2014-03-05 アグファ−ゲバルト Non-transparent microvoided axially stretched film, method for producing the same, and watermark pattern forming method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3236647A (en) * 1961-01-05 1966-02-22 Eastman Kodak Co Photographic reproduction process using photopolymerizable resins and new images obtained
US3484238A (en) * 1965-07-02 1969-12-16 Horizons Research Inc Photographic element and diffusion process
US3556781A (en) * 1967-10-27 1971-01-19 Xerox Corp Migration imaging process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2739909A (en) * 1950-06-29 1956-03-27 Nashua Corp Coated paper suitable for stylus inscription and method of making the same
US2949361A (en) * 1956-08-13 1960-08-16 Gen Electric Photosensitive compositions
BE637784A (en) * 1962-09-26
DE1569274A1 (en) * 1963-07-18 1969-06-26 Parker Pen Co Transparent plastic mass
US3515570A (en) * 1965-12-20 1970-06-02 Matsushita Electric Ind Co Ltd Heat-sensitive sheet and method of thermographic reproduction using the same
US3484318A (en) * 1966-06-23 1969-12-16 Ibm Method of concurrently producing visible and magnetizable indicia
US3627619A (en) * 1968-03-26 1971-12-14 Eastman Kodak Co Method and product for impeding duplication of microfilm images

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3236647A (en) * 1961-01-05 1966-02-22 Eastman Kodak Co Photographic reproduction process using photopolymerizable resins and new images obtained
US3484238A (en) * 1965-07-02 1969-12-16 Horizons Research Inc Photographic element and diffusion process
US3556781A (en) * 1967-10-27 1971-01-19 Xerox Corp Migration imaging process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975195A (en) * 1964-10-12 1976-08-17 Xerox Corporation Migration imaging system
US4000334A (en) * 1971-07-15 1976-12-28 Energy Conversion Devices, Inc. Thermal imaging involving imagewise melting to form spaced apart globules
US4267261A (en) * 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
US4133683A (en) * 1973-01-29 1979-01-09 Xerox Corporation Agglomeration imaging method
US4137078A (en) * 1976-09-23 1979-01-30 Energy Conversion Devices, Inc. Method of continuous tone imaging using dispersion imaging material
EP0047121A1 (en) * 1980-08-25 1982-03-10 Xerox Corporation Imaging process
US4536457A (en) * 1984-01-03 1985-08-20 Xerox Corporation Migration imaging process

Also Published As

Publication number Publication date
JPS5036570B1 (en) 1975-11-26
CA929350A (en) 1973-07-03
US4065307A (en) 1977-12-27
DE2048379A1 (en) 1971-04-08
GB1330518A (en) 1973-09-19

Similar Documents

Publication Publication Date Title
US4252890A (en) Imaging system which agglomerates particulate material
US3772013A (en) Photoelectrophoretic imaging process employing electrically photosensitive particles and inert particles
US4084966A (en) Imaging system using agglomerable migration marking material
US4883731A (en) Imaging system
US5202206A (en) Process for simultaneous printing of fixed data and variable data
US3753705A (en) Agglomeration imaging process using hardenable material
US3909262A (en) Imaging migration member employing a gelatin overcoating
CA2077294C (en) Infrared or red light sensitive migration imaging member
US3291600A (en) Electrophotographic recording element and method of making
US3801314A (en) Imaging system
US3975195A (en) Migration imaging system
US3316088A (en) Process of electrophotography based on electrophotolytic reactions and element therefor
US3723113A (en) Polychromatic electrosolographic imaging process
US4013462A (en) Migration imaging system
US3736133A (en) Transparent ink absorbent lacquers
US3648607A (en) Imaging system
US4880715A (en) Imaging system
US3458309A (en) Color transparencies produced by electrophotographic techniques
US3820984A (en) Method of migration imaging using fusible particles
US4101321A (en) Imaging system
US3967959A (en) Migration imaging system
US3836364A (en) Method of making multiple images from a migration imaged member
JPH03264978A (en) Zero-printing method
US3912505A (en) Color imaging method employing a monolayer of beads
US4241156A (en) Imaging system of discontinuous layer of migration material