US3754868A - Device for preparation of sample for biological agent detector - Google Patents

Device for preparation of sample for biological agent detector Download PDF

Info

Publication number
US3754868A
US3754868A US00210050A US3754868DA US3754868A US 3754868 A US3754868 A US 3754868A US 00210050 A US00210050 A US 00210050A US 3754868D A US3754868D A US 3754868DA US 3754868 A US3754868 A US 3754868A
Authority
US
United States
Prior art keywords
filter
chemiluminescence
plate
fluid
organisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00210050A
Inventor
S Witz
L Carleton
H Neufeld
H Anderson
R Moyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerojet Rocketdyne Inc
US Department of Army
Original Assignee
US Department of Army
Aerojet General Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army, Aerojet General Corp filed Critical US Department of Army
Application granted granted Critical
Publication of US3754868A publication Critical patent/US3754868A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices

Definitions

  • ABSTRACT Filter means for removing microscopic particles from a fluid stream and delivering said particle to equipment for detecting biological agents such as vegetative bacteria, spores and viruses. capable of operating satisfactorily when supplied with minute samples of material to be tested, even when present in a continuous background of matter similar in nature.
  • the equipment utilizes the phenomenon of chemiluminescence and, more particularly, provides the proper conditions for chemiluminescence of luminol by hydrogen peroxide, operating in an intermittent flow system supplied with the agents by an aerosol particle collector, and in which detection of the chemiluminescence is by a photomultiplier tube the output of which is monitored. Photomultiplier output could be recorded on a chart, magnetic tape or merely designed to set off an alarm when values exceed a prescribed threshold.
  • Hematin when activated by hydrogen peroxide, in a reaction catalyzed by the substance hematin, a substance which is almost universally found in living organisms. Hematin catalyzes the chemiluminescence of luminol by peroxide either in its (hematins) free state or in combination with protein-forming hemoproteins such as catalase or hemoglobin.
  • the equipment monitors the light produced when hydrogen peroxide is injected into a reactor cell containing a mixture of luminol and a hematin source (i.e., in the form of bacteria) to thereby provide a measure of the latter in a test sample.
  • a hematin source i.e., in the form of bacteria
  • the apparatus provides for reaction of a premix of luminol and hydrogen peroxide as a single reagent with the hematin source in a reactor and, in still another mode, the apparatus provides for chemiluminescence testing of a biological agent prestained with hemin chloride or hematin so that even vegetative bacteria or spores or virus which may not initiate chemiluminescence (since they may contain little or no hematin), may be detected.
  • the apparatus includes integral equipment capable of filtering and concentrating the sample bacterial stream operative automatically and under hygienic conditions after being set for desired intervals of effectiveness of its operations.
  • FIG. 1 shows the automatic chemiluminescent biological agent detector comprising the present invention with certain structural parts broken away to provide some indication of its operation;
  • FIG. 2 is a side view of the filter-concentrator of the detector as viewed along lines 2--2 of FIG. 1;
  • FIG. 3 is an exploded view of the filter-concentrator of FIG. 2.
  • FIG. 1 shows the preferred embodiment of the detector of the present invention, a device capable of monitoring and measuring the increase in chemiluminescence produced by catalysis by metal porphyrin, occurring in organisms, of an aqueous solution of alkaline luminol and hydrogen peroxide.
  • This reaction is virtually instantaneous and entails in one mode of operation, mixing a stream of alkaline luminol containing hydrogen peroxide with incoming collector fluid containing the porphyrin-carrying agents.
  • the emitted light which is linearly dependent upon the number of organisms present, is registered by a photomultiplier tube, amplified and recorded.
  • a filtering and concentrating unit provides accumulation and intermittent release of pulses of organisms in the collector fluid, thereby increasing sensitivity and reliability.
  • blower 10 provides air flow in the direction indicated by the arrows through collector 12, aspirator l4 and chamber 16 from the outside atmosphere to be checked for organisms.
  • Air containing the biological particulates enters port 18 in chamber 16 and strikes preimpactor 20.
  • the latter consisting of a glass disc coated with an appropriate adhesive film serves to retain particles of size exceeding that of the organisms of interest.
  • the desired airborne particles impinge in apsirator 14 on droplets of collector fluid (which may be water, aqueous sodium borohydride or other salt solution) introduced as a fine mist through tube 22.
  • the collector fluid is pumped from a reservoir (not shown) within the housing of the apparatus by means of pump 24.
  • the mist containing the bacteria then coalesces into a liquid stream and is separated from the air stream in the small cyclone of the collector 12, which can be caused by arranging the conduit carrying the mist to enter the collector tangentially.
  • the organism-carrying stream is then pumped from the collector through tube 26 into filter-concentrator 28.
  • filter-concentrator 28 It is the function of filter-concentrator 28, also shown in closeup in FIG. 2, to concentrate and wash the organisms before the reagents are permitted .to affect them.
  • indexing mechanism 30 In the first position of its indexing mechanism 30, it accumulates the organisms entering via tube 26 on the surface of a filter through which the stream is passed for a predetennined time interval; in its second position, it provides a wash for the organisms by a fluid such as water, entering through tube 32; in its third position, it releases the organisms to reactor cell 36 in a coherent pulse through tube 40 by backwashing the filter with fluid such as urea, entering through tube 34; and, in its fourth position, its filter is cleaned in preparation for the next organism pulse by fluid such as water containing detergent, entering through tube 38.
  • the organism-containing fluid in reactor cell 36 is then mixed with reagent entering via tube 42 (connecting to tube 40) and the resulting illumination captured by photomultiplier 44 and converted to an electrical signal which is amplified. in amplifier 48 and recorded by recorder 46.
  • tubes 50, 52, 54 and 56 are for the waste and wash fluids drained off after the various operations at the corresponding positions of filterconcentrator 26 are completed, as follows: tube 50 for collection fluid after deposit of organism (first position); tube 52 for organism wash fluid (second position); tube 54 for organism sample after test (third position); and, tube 56 for filter cleaning fluid (fourth position) in preparation for succeeding tests.
  • FIG. 3 provides a disassembled view of filterconcentrator 28 which shows its component parts to better advantage.
  • the preferred structure comprises a single filter 60, which may be an appropriate membrane sandwiched between a pair of cavity discs 62, 64 of an inert material such as teflon, and separated from the latter by a pair of screens '66, 68 of, preferably, stainless steel, which contributes support for filter 60.
  • Cavity discs 62, 64 serve as gaskets and face seals against metal pressure plates 70, 72, to define the port area (8 ports shown) at each position of indexing mechanism (FIG.
  • Port plates 74, 76 are preferably of teflon and provide for ingrees and egrees of fluids and, of course, are ported correspondingly to pressure plates 70, 72.
  • port plate 74 Mounted about port plate 74 are the following: key plate 78, to insure proper orientation of port plate 74 when filter-concentrator 28 is assembled; disc spring 80, to maintain unifonn rotary seal pressure regardless of temperature fluctuations; collar 82, to space and take up the thrust of spring 80; and, hand-operated nut 84, which tightens on the threaded end of spindle plate 08, the plate end of which is secured to the chassis andit is noted that indexing causes rotation of only filter 60, discs 62, 64- screens 66, 68 and plates 70, 72; the other components are stationary.
  • Depressions 100 and B of the respective discs 62 and 64 are in the form of dished areas juxtaposed to each other and located in pairs at the surfaces of the respective discs, the upper depression 100 of a pair being dished upwardly and the lower depression of the pair being dished downwardly so that together they form a cavity containing the filter 60 and which can rethat they line up with the respective eight ports 102 of the cavity discs.
  • the lower port plate 76 is provided with four of these similarly dimensioned ports 105 through it which registers with four of the ports 104 of pressure plate 72.
  • the conduits 26, 32, 42 and 56 are connected to the under side of corresponding ports extending through the stationary spindle plate 88, which also register with the respective four ports 105 of stationary port plate 76.
  • the conduits 50, 52, 34 and 38 fixed to the upper port plate connect with four adjacent ones of its ports which register with four adjacent ports 103 of the pressure plate 70, corresponding in position with the above-mentioned four ports 1'05 of lower port plate 76.
  • the member 64, 68, 60, 66 and 62 will be squeezed between the pressure plates and 72 by passing hollow bolt 92 through the central openings of these members and tightening this group between the pressure plates by tightening nut 86 down on plate 70 with bolt head 107 against the bottom side of plate 72.
  • the lower port plate 76 is provided with a cylindrical well 106 entering the plate from its upper surface but not passing entirely through the plate.
  • the bottom of this well 106 is provided with an opening 108 through which there can extend the hollow spindle 88a fixed to and passing through spindle plate 88.
  • the bolt head 107 is rested in the well 106 of port plate 76 and the spindle 88a is passed through the internal hollow of the bolt 92 and up through port plate 74, through the collar 82 to the nut 06 which is threaded on the upper end of the spindle 88a to hold this entire assembly between the spindle plate 88 and the nut 84.
  • the tube 54 is inserted into the hollow of the spindle 88a at its upper end.
  • the bolt head 1107 is free to rotate in well 106 so that the elements 60, 62, 64, 66, 68, 72, 86 and 92 rotate on indexing.
  • Plate 76 is fixed to spindle plate 88 by a pin in plate 00 which enters a matching hole in plate 76.
  • the upper port plate 74 is held in its position on the spindle 88a by suitable means (not shown) such as a pin or key in key plate 78 which enters a groove in the side of spindle 88a and a registering groove at the central hole of plate 74.
  • the reactor cell 36 is shaped to fit within a recess in the under side of the spindle plate 88 and at least its lower wall should be of a transparent material such as glass so that the photomultiplier 44 placed in close proximity thereto, will receive light from the cell when it becomes luminescent.
  • the cell 36 may be made by attaching a sheet of transparent material to coincide with the plane of the lower face of the spindle plate, while the walls of the recess of the spindle plate may serve as part of the walls of the reactor cell.
  • the port 109 formed by the hollow of the spindle and its extension through the spindle plate communicates with the reactor cell, and likewise the conduit 62 also communicates with the reactor cell by way of a port through the spindle plate from the conduit 42.
  • the elements 70, 62, 66, 60, 68, 6 3, and 72, which are rotatable in unison; are each provided with registration holes 110, 111, R12, 113, and 114 respectively such that a registration pin (not shown) fitted through
  • the key plate 78 with its key means prevents relative all these holes maintains the proper alignment of the ports and cavities of this rotary portion of the device, while the remaining elements being stationary are held in their proper aligned positions by the bolt 92.
  • the timing device (which can be any suitable type of timer) can, for example, conveniently be a cam operated timer, such that cams attached to a timing motor shaft or the like will operate the index mechanism 30 intermittently and at prescribed times established by the timer and its cams.
  • the timer allows the cavity plates to remain in each position for the prescribed time,'for example, about half a minute, and then moves them to the next position for its prescribed time.
  • the timer will operate on the rachet wheel of plate 72 to move the rotary mechanism to its first position, for example, where the particular cavity 101a is in communication with the particular port 105a of the port plate 76, at which time material containing the organisms under test, which is continuously under pressure as by a pump, is sent through conduit 26 into cavity 101a and onto the underside of the filter, after which the timer will move the rachet wheel of plate 72 to put the same cavity into its second position 101b for its allotted time, which will cause flow of the washing fluid through conduit 32 to wash the organisms on the filter for a period of time also determined by the timer.
  • the timer will move the rachet wheel so that the same cavity will occupy the position 1016, at which time, the backwash fluid will be pumped through conduit 34 to the upper surface of the filter and through it, to send the organisms down to the reactor cell 26.
  • the next movement of the timer will then move the same cavity to the position 101d at which position the filter cleaning fluid will be pumped through conduit 38, through the filter, and out of conduit 56.
  • conduit 42 is in communication with the reactor cell so that the pressurized reagent, for example, a mixture of luminol and hydrogen peroxide, is pumped or sent through conduit 42 and into the reactor cell, which at this time already contains the organisms, so that a flash of light occurs in the cell which will be detected by .the photomultiplier and indicated or recorded on the indicator.
  • Suitable housing will be provided for the reactor cell and photomultiplier to prevent the photomultiplier from receiving light except from the cell.
  • the remaining four ports of the eight port system can be connected to conduits and to the timing system and pumped to operate in the same way as the firstmentioned four ports.
  • results are dependent upon whether or not the reagents are separately added to the organism-containing fluid or pre-mixed and added to it 'asconglomerate.
  • the detector of the present invention provides for such different modes of operation, i.e., it is not limited to any reagent or mixture or, as a matter of fact, to any prescribed type of unknown organism.
  • operation has been successful in the following modes: testing for bacteria by adding luminol and hydrogen peroxide separately to the sample fluid in reactor cell 36 or by backwashing (third position of filterconcentrator 28) with a mixture of urea and luminol and then adding the peroxide; testing for bacteria by adding a premix of luminol and hydrogen peroxide to the sample fluid; testing for spores (low in hematin) after adding hemin, in the form of the chloride, to the incoming collector fluid, since the hemin chloride, which is an effective catalyst for initiation of luminol chemiluminescence, is readily adsorbed on the surface of biological agents. Excess hemin chloride may be removed from the stained agents in filter-concentrator 28 during the concentration and wash cycles.
  • the equipment may also be used in the analysis of fluid suspensions of organisms which, of course, do not require the use of a collector as do aerosols. These may be introduced into the system by way of tube 26 for direct feed into filter-concentrator 28.
  • the detector of the present invention utilizes porphyronialyzed luminescence for detection and assay of a number of biological agents (vegetative bacteria and spores, virus and virus carrier) from the hemin moiety which may be present in the organism or attached to it by staining with hemin chloride or hematin. It thereby comprises an instrument admirably able to accomplish the objects herein stated as desirable in a laboratory analytical tool.
  • biological agents vegetable bacteria and spores, virus and virus carrier
  • a device for preparation of a sample for a biological agent detector comprising:
  • a filter for removing microscopic particles from a fluid stream
  • a device in accordance with claim 1 wherein said streams with said filter.

Abstract

Filter means for removing microscopic particles from a fluid stream and delivering said particle to equipment for detecting biological agents such as vegetative bacteria, spores and viruses, capable of operating satisfactorily when supplied with minute samples of material to be tested, even when present in a continuous background of matter similar in nature. The equipment utilizes the phenomenon of chemiluminescence and, more particularly, provides the proper conditions for chemiluminescence of luminol by hydrogen peroxide, operating in an intermittent flow system supplied with the agents by an aerosol particle collector, and in which detection of the chemiluminescence is by a photomultiplier tube the output of which is monitored. Photomultiplier output could be recorded on a chart, magnetic tape or merely designed to set off an alarm when values exceed a prescribed threshold.

Description

United States Patent [191 Witz et al. v 1
[ DEVICE FOR PREPARATION OF SAMPLE FOR BIOLOGICAL AGENT DETECTOR [75] Inventors: Samuel Witz, Los Angeles, Calif.; Lee T. Carleton, Northport, N.Y.; Howard H. Anderson, Covina; Rudolph H. Moyer, West Covina, both of Calif.; Harold A. Neufeld, Frederick, Md.
[73] Assignes: Aerojet-General Corporation, El
Monte, Calif. by said Witz, Carleton, Anderson and Mayor; The United States of America as represented by the Secretary of the Army, Washington, D.C. by said Neufeld, part interest to each [22] Filed: Dec. 20, 1971 [21] Appl. No.: 210,050
Related US. Application Data [62] Division of Ser. No. 52,606, July 6, 1970, Pat. No.
[52] US. Cl. 23/254 R, 23/253 R, 73/421.5 R, 73/425.4 R, 210/82, 210/198, 210/216 [51] Int. Cl. G0ln l/l4, GOln 1/22 [58] Field of Search 23/259, 232, 253,
23/254, 230; 210/82, 275, 198, 216, 387; 195/1035, 127; 73/42l.5 R, 425.4 R
[451 Aug. 28, 1973 [56] References Cited UNITED STATES PATENTS 3,451,777 6/1969 Di Giulio 23/230 B 3,692,178 9/1972 Reece 210/82 Primary Examiner-Morris O. Wolk Assistant Examiner-R. E. Serwin Att0rneyEdward O. Ansell et al.
[5 7] ABSTRACT Filter means for removing microscopic particles from a fluid stream and delivering said particle to equipment for detecting biological agents such as vegetative bacteria, spores and viruses. capable of operating satisfactorily when supplied with minute samples of material to be tested, even when present in a continuous background of matter similar in nature. The equipment utilizes the phenomenon of chemiluminescence and, more particularly, provides the proper conditions for chemiluminescence of luminol by hydrogen peroxide, operating in an intermittent flow system supplied with the agents by an aerosol particle collector, and in which detection of the chemiluminescence is by a photomultiplier tube the output of which is monitored. Photomultiplier output could be recorded on a chart, magnetic tape or merely designed to set off an alarm when values exceed a prescribed threshold.
3 Claims, 3 Drawing Figures lo lll L II I 1 1 iii! lu' ii 151' \68 PATENTED MIB 2 8 I973 SHEU 1 0F 2 PATENIEUMJGZB nan 3.754.868
SHEET 2 0F 2 DEVICE FOR PREPARATION OF SAMPLE FOR BIOLOGICAL AGENT DETECTOR This application is a divisional application of copending application Ser. No. 52,606, filed July 6, 1970, now U.S. Pat. No. 3,690,837, filed Sept. 12, 1972.
BACKGROUND OF THE INVENTION The detection and quantitation of specific biological organisms, especially of small amounts existing in a continuous background of similar matter, has been the subject of considerable attention in recent years by those concerned with air and water pollution, biological warfare, food purification, the efficiency of sterilization methods, etc. From these efforts, there has evolved a technique for such detection which is quite advantageous in several respcts since it is versatile, rapid, inexpensive, easily managed and accurate. This technique involved the phenomenon of chemiluminescence, i.e., the emission of light as a result of a chemical reaction with little or no concurrent production of heat. However, the usual chemiluminescent detectors of micro-organisms which are available are not capable of providing rapid and continuous detection and quantitation of extremely small numbers of organisms against normal background interferences.
BRIEF SUMMARY OF THE INVENTION The equipment to be described in this specification is free of the above deficiencies to a great extent. It involves the use of luminol (-amino-2,3-dihydro-l,4- phthalizinedione) a substance which has the unusual property of luminescing, under proper conditions,
when activated by hydrogen peroxide, in a reaction catalyzed by the substance hematin, a substance which is almost universally found in living organisms. Hematin catalyzes the chemiluminescence of luminol by peroxide either in its (hematins) free state or in combination with protein-forming hemoproteins such as catalase or hemoglobin.
Specifically, in one mode of its operation, the equipment monitors the light produced when hydrogen peroxide is injected into a reactor cell containing a mixture of luminol and a hematin source (i.e., in the form of bacteria) to thereby provide a measure of the latter in a test sample. In another of its modes, the apparatus provides for reaction of a premix of luminol and hydrogen peroxide as a single reagent with the hematin source in a reactor and, in still another mode, the apparatus provides for chemiluminescence testing of a biological agent prestained with hemin chloride or hematin so that even vegetative bacteria or spores or virus which may not initiate chemiluminescence (since they may contain little or no hematin), may be detected. In addition to the above, the apparatus includes integral equipment capable of filtering and concentrating the sample bacterial stream operative automatically and under hygienic conditions after being set for desired intervals of effectiveness of its operations.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the automatic chemiluminescent biological agent detector comprising the present invention with certain structural parts broken away to provide some indication of its operation;
FIG. 2 is a side view of the filter-concentrator of the detector as viewed along lines 2--2 of FIG. 1; and
FIG. 3 is an exploded view of the filter-concentrator of FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows the preferred embodiment of the detector of the present invention, a device capable of monitoring and measuring the increase in chemiluminescence produced by catalysis by metal porphyrin, occurring in organisms, of an aqueous solution of alkaline luminol and hydrogen peroxide. This reaction is virtually instantaneous and entails in one mode of operation, mixing a stream of alkaline luminol containing hydrogen peroxide with incoming collector fluid containing the porphyrin-carrying agents. The emitted light, which is linearly dependent upon the number of organisms present, is registered by a photomultiplier tube, amplified and recorded. A filtering and concentrating unit provides accumulation and intermittent release of pulses of organisms in the collector fluid, thereby increasing sensitivity and reliability.
Specifically, in FIG. 1, blower 10 provides air flow in the direction indicated by the arrows through collector 12, aspirator l4 and chamber 16 from the outside atmosphere to be checked for organisms. Air containing the biological particulates enters port 18 in chamber 16 and strikes preimpactor 20. The latter, consisting of a glass disc coated with an appropriate adhesive film serves to retain particles of size exceeding that of the organisms of interest. The desired airborne particles impinge in apsirator 14 on droplets of collector fluid (which may be water, aqueous sodium borohydride or other salt solution) introduced as a fine mist through tube 22. The collector fluid is pumped from a reservoir (not shown) within the housing of the apparatus by means of pump 24. The mist containing the bacteria then coalesces into a liquid stream and is separated from the air stream in the small cyclone of the collector 12, which can be caused by arranging the conduit carrying the mist to enter the collector tangentially. The organism-carrying stream is then pumped from the collector through tube 26 into filter-concentrator 28.
It is the function of filter-concentrator 28, also shown in closeup in FIG. 2, to concentrate and wash the organisms before the reagents are permitted .to affect them. In the first position of its indexing mechanism 30, it accumulates the organisms entering via tube 26 on the surface of a filter through which the stream is passed for a predetennined time interval; in its second position, it provides a wash for the organisms by a fluid such as water, entering through tube 32; in its third position, it releases the organisms to reactor cell 36 in a coherent pulse through tube 40 by backwashing the filter with fluid such as urea, entering through tube 34; and, in its fourth position, its filter is cleaned in preparation for the next organism pulse by fluid such as water containing detergent, entering through tube 38.
The organism-containing fluid in reactor cell 36 is then mixed with reagent entering via tube 42 (connecting to tube 40) and the resulting illumination captured by photomultiplier 44 and converted to an electrical signal which is amplified. in amplifier 48 and recorded by recorder 46.
It is, of course, clear that fluid flows in the apparatus are accomplished by pumps (not shown) connected to reservoirs and receptacles in its housing, which are energized in proper sequence by, for instance, the cams of a timing device (also not shown). These devices and their operation and the electronic circuitry which records either the intensity of the light flash or the integrated light output or sets off an alarm when values exceed a prescribed threshold are considered sufficiently well known to experimenters in this and associated arts to require no further elaboration here.
It is further apparent that tubes 50, 52, 54 and 56 are for the waste and wash fluids drained off after the various operations at the corresponding positions of filterconcentrator 26 are completed, as follows: tube 50 for collection fluid after deposit of organism (first position); tube 52 for organism wash fluid (second position); tube 54 for organism sample after test (third position); and, tube 56 for filter cleaning fluid (fourth position) in preparation for succeeding tests.
FIG. 3 provides a disassembled view of filterconcentrator 28 which shows its component parts to better advantage. The preferred structure comprises a single filter 60, which may be an appropriate membrane sandwiched between a pair of cavity discs 62, 64 of an inert material such as teflon, and separated from the latter by a pair of screens '66, 68 of, preferably, stainless steel, which contributes support for filter 60. Cavity discs 62, 64 serve as gaskets and face seals against metal pressure plates 70, 72, to define the port area (8 ports shown) at each position of indexing mechanism (FIG. 1) and also to minimize the liquid volume into which the organisms are backwashed in the third position of filter-concentrator 28 (the sensitivity of the test is directly proportional to the concentration of organisms in the backwashed volume of fluid). Components 60, 62, 64, 66, 68, 70 and 72 are squeezed tightly together into a leakproof assembly by hollow hub bolt 92 and nut 86. Port plates 74, 76 are preferably of teflon and provide for ingrees and egrees of fluids and, of course, are ported correspondingly to pressure plates 70, 72. Mounted about port plate 74 are the following: key plate 78, to insure proper orientation of port plate 74 when filter-concentrator 28 is assembled; disc spring 80, to maintain unifonn rotary seal pressure regardless of temperature fluctuations; collar 82, to space and take up the thrust of spring 80; and, hand-operated nut 84, which tightens on the threaded end of spindle plate 08, the plate end of which is secured to the chassis andit is noted that indexing causes rotation of only filter 60, discs 62, 64- screens 66, 68 and plates 70, 72; the other components are stationary.
Operation of the equipment will be clearly understood from the following more detailed description and explanation. Depressions 100 and B of the respective discs 62 and 64 are in the form of dished areas juxtaposed to each other and located in pairs at the surfaces of the respective discs, the upper depression 100 of a pair being dished upwardly and the lower depression of the pair being dished downwardly so that together they form a cavity containing the filter 60 and which can rethat they line up with the respective eight ports 102 of the cavity discs. The lower port plate 76 is provided with four of these similarly dimensioned ports 105 through it which registers with four of the ports 104 of pressure plate 72. The conduits 26, 32, 42 and 56 are connected to the under side of corresponding ports extending through the stationary spindle plate 88, which also register with the respective four ports 105 of stationary port plate 76. The conduits 50, 52, 34 and 38 fixed to the upper port plate connect with four adjacent ones of its ports which register with four adjacent ports 103 of the pressure plate 70, corresponding in position with the above-mentioned four ports 1'05 of lower port plate 76.
Before completing the final assembly of the stack, the member 64, 68, 60, 66 and 62 will be squeezed between the pressure plates and 72 by passing hollow bolt 92 through the central openings of these members and tightening this group between the pressure plates by tightening nut 86 down on plate 70 with bolt head 107 against the bottom side of plate 72.
The lower port plate 76 is provided with a cylindrical well 106 entering the plate from its upper surface but not passing entirely through the plate. The bottom of this well 106 is provided with an opening 108 through which there can extend the hollow spindle 88a fixed to and passing through spindle plate 88. The bolt head 107 is rested in the well 106 of port plate 76 and the spindle 88a is passed through the internal hollow of the bolt 92 and up through port plate 74, through the collar 82 to the nut 06 which is threaded on the upper end of the spindle 88a to hold this entire assembly between the spindle plate 88 and the nut 84. The tube 54 is inserted into the hollow of the spindle 88a at its upper end. The bolt head 1107 is free to rotate in well 106 so that the elements 60, 62, 64, 66, 68, 72, 86 and 92 rotate on indexing. Plate 76 is fixed to spindle plate 88 by a pin in plate 00 which enters a matching hole in plate 76. The upper port plate 74 is held in its position on the spindle 88a by suitable means (not shown) such as a pin or key in key plate 78 which enters a groove in the side of spindle 88a and a registering groove at the central hole of plate 74.
The reactor cell 36 is shaped to fit within a recess in the under side of the spindle plate 88 and at least its lower wall should be of a transparent material such as glass so that the photomultiplier 44 placed in close proximity thereto, will receive light from the cell when it becomes luminescent. The cell 36 may be made by attaching a sheet of transparent material to coincide with the plane of the lower face of the spindle plate, while the walls of the recess of the spindle plate may serve as part of the walls of the reactor cell. The port 109 formed by the hollow of the spindle and its extension through the spindle plate communicates with the reactor cell, and likewise the conduit 62 also communicates with the reactor cell by way of a port through the spindle plate from the conduit 42.
rotation between it and the port plate 74, thereby maintaining the angular position of port plate 74 so that its ports are positioned to correspond with the positions of the corresponding ports of port plate 76.
The elements 70, 62, 66, 60, 68, 6 3, and 72, which are rotatable in unison; are each provided with registration holes 110, 111, R12, 113, and 114 respectively such that a registration pin (not shown) fitted through The key plate 78 with its key means prevents relative all these holes maintains the proper alignment of the ports and cavities of this rotary portion of the device, while the remaining elements being stationary are held in their proper aligned positions by the bolt 92.
In the operation of the system, the timing device (which can be any suitable type of timer) can, for example, conveniently be a cam operated timer, such that cams attached to a timing motor shaft or the like will operate the index mechanism 30 intermittently and at prescribed times established by the timer and its cams. The timer allows the cavity plates to remain in each position for the prescribed time,'for example, about half a minute, and then moves them to the next position for its prescribed time. Thus, the timer will operate on the rachet wheel of plate 72 to move the rotary mechanism to its first position, for example, where the particular cavity 101a is in communication with the particular port 105a of the port plate 76, at which time material containing the organisms under test, which is continuously under pressure as by a pump, is sent through conduit 26 into cavity 101a and onto the underside of the filter, after which the timer will move the rachet wheel of plate 72 to put the same cavity into its second position 101b for its allotted time, which will cause flow of the washing fluid through conduit 32 to wash the organisms on the filter for a period of time also determined by the timer. Then, the timer will move the rachet wheel so that the same cavity will occupy the position 1016, at which time, the backwash fluid will be pumped through conduit 34 to the upper surface of the filter and through it, to send the organisms down to the reactor cell 26. The next movement of the timer will then move the same cavity to the position 101d at which position the filter cleaning fluid will be pumped through conduit 38, through the filter, and out of conduit 56. In this same position and concurrently with this filter cleaning operation the conduit 42 is in communication with the reactor cell so that the pressurized reagent, for example, a mixture of luminol and hydrogen peroxide, is pumped or sent through conduit 42 and into the reactor cell, which at this time already contains the organisms, so that a flash of light occurs in the cell which will be detected by .the photomultiplier and indicated or recorded on the indicator. Suitable housing will be provided for the reactor cell and photomultiplier to prevent the photomultiplier from receiving light except from the cell.
The remaining four ports of the eight port system can be connected to conduits and to the timing system and pumped to operate in the same way as the firstmentioned four ports. l
It will be observed that, althoughonly four positions of filter-concentrator 28 are required for a test, eight positions are provided; as a result, tests may be repeated or fun in tandem from different input sources or test conditions may be varied.
Thus, with respect to the last-mentioned alternative, if has been discovered that results, particularly test sensitivity, are dependent upon whether or not the reagents are separately added to the organism-containing fluid or pre-mixed and added to it 'asconglomerate.
The detector of the present invention provides for such different modes of operation, i.e., it is not limited to any reagent or mixture or, as a matter of fact, to any prescribed type of unknown organism. For instance, operation has been successful in the following modes: testing for bacteria by adding luminol and hydrogen peroxide separately to the sample fluid in reactor cell 36 or by backwashing (third position of filterconcentrator 28) with a mixture of urea and luminol and then adding the peroxide; testing for bacteria by adding a premix of luminol and hydrogen peroxide to the sample fluid; testing for spores (low in hematin) after adding hemin, in the form of the chloride, to the incoming collector fluid, since the hemin chloride, which is an effective catalyst for initiation of luminol chemiluminescence, is readily adsorbed on the surface of biological agents. Excess hemin chloride may be removed from the stained agents in filter-concentrator 28 during the concentration and wash cycles.
It is additionally to be observed that the equipment may also be used in the analysis of fluid suspensions of organisms which, of course, do not require the use of a collector as do aerosols. These may be introduced into the system by way of tube 26 for direct feed into filter-concentrator 28.
From the above description, it is apparent that the detector of the present invention utilizes porphyrincatalyzed luminescence for detection and assay of a number of biological agents (vegetative bacteria and spores, virus and virus carrier) from the hemin moiety which may be present in the organism or attached to it by staining with hemin chloride or hematin. It thereby comprises an instrument admirably able to accomplish the objects herein stated as desirable in a laboratory analytical tool.
We claim:
1. In a device for preparation of a sample for a biological agent detector, the combination comprising:
a filter for removing microscopic particles from a fluid stream;
means for directing a first fluid stream against one side of said filter at a first station to remove micro scopic particles therefrom;
means for directing a second stream of washing fluid against said one side of :the filter at a second station to wash the microscopic particles thereon;
means for directing a third stream of backwash fluid against the opposite side of the filter at a third station to effect removal of the microscopic particles therefrom to a collection point; and
means for sequentially placing the filter at the three stations directing the first, second and third fluid streams thereagainst.
2. A device in accordance with claim 1 wherein said filter comprises a membrane.
3. A device in accordance with claim 1 wherein said streams with said filter.
# t It i Q

Claims (2)

  1. 2. A device in accordance with claim 1 wherein said filter comprises a membrane.
  2. 3. A device in accordance with claim 1 wherein said sequential means may be controlled to provide varying intervals of contact of the first, second and third fluid streams with said filter.
US00210050A 1970-07-06 1971-12-20 Device for preparation of sample for biological agent detector Expired - Lifetime US3754868A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5260670A 1970-07-06 1970-07-06
US21005071A 1971-12-20 1971-12-20

Publications (1)

Publication Number Publication Date
US3754868A true US3754868A (en) 1973-08-28

Family

ID=26730857

Family Applications (1)

Application Number Title Priority Date Filing Date
US00210050A Expired - Lifetime US3754868A (en) 1970-07-06 1971-12-20 Device for preparation of sample for biological agent detector

Country Status (1)

Country Link
US (1) US3754868A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0064828A1 (en) * 1981-04-27 1982-11-17 Merck & Co. Inc. Radial flow cell
FR2603698A1 (en) * 1986-09-05 1988-03-11 Commissariat Energie Atomique Method and device for measuring the concentration of aerosols in a gas
US5317930A (en) * 1991-09-18 1994-06-07 Wedding & Associates, Inc. Constant flowrate controller for an aerosol sampler using a filter
US5416002A (en) * 1992-12-03 1995-05-16 United Technologies Corporation Near-real-time microbial monitor
EP0812920A1 (en) * 1996-06-14 1997-12-17 Packard Instrument B.V. Use of porphyrins in instrumental detection methods
EP0952211A1 (en) * 1998-04-24 1999-10-27 Millipore S.A. Method for detecting micro-organisms and cartridge suitable for implementing it
US6001573A (en) * 1996-06-14 1999-12-14 Packard Bioscience B.V. Use of porphyrins as a universal label
US6010554A (en) * 1997-06-23 2000-01-04 Battelle Memorial Institute Micro-machined virtual impactor and method of operation
US6062392A (en) * 1998-11-13 2000-05-16 Mesosystems Technology, Inc. Micromachined virtual impactor
US6103534A (en) * 1999-09-28 2000-08-15 The United States Of America As Represented By The Secretary Of The Navy Cyclone aerosol sampler and biological aerosol chemiluminescent detection system employing the same
US6110247A (en) * 1998-11-13 2000-08-29 Mesosystems Technology, Inc. Micromachined impactor pillars
US6120573A (en) * 1998-11-13 2000-09-19 Mesosystems Technology, Inc. Micromachined teardrop-shaped virtual impactor
WO2004001388A1 (en) * 2002-06-24 2003-12-31 Sarnoff Corporation Method and apparatus for concentrated airborne particle collection
US6698592B2 (en) 1998-11-13 2004-03-02 Mesosystems Technology, Inc. Virtual impactor
EP1615015A1 (en) 2004-07-09 2006-01-11 Hamilton Sundstrand Corporation Biological agent detector
US7173257B1 (en) 2005-02-18 2007-02-06 Hach Ultra Analytics, Inc. Integrated assembly for delivery of air stream for optical analysis
US20080282815A1 (en) * 2007-05-18 2008-11-20 Jessal Murarji Gas Sampler for Vapour Detectors
US20100255560A1 (en) * 2009-04-03 2010-10-07 Mesosystems Technology, Inc. Method and apparatus for capturing viable biological particles over an extended period of time
US20110183371A1 (en) * 2008-06-27 2011-07-28 Hideyuki Noda Microbe-collecting carrier cartridge, carrier treating apparatus, and method of measuring microbes
US8047053B2 (en) 2007-05-09 2011-11-01 Icx Technologies, Inc. Mail parcel screening using multiple detection technologies
US8173431B1 (en) 1998-11-13 2012-05-08 Flir Systems, Inc. Mail screening to detect mail contaminated with biological harmful substances
US8243274B2 (en) 2009-03-09 2012-08-14 Flir Systems, Inc. Portable diesel particulate monitor
US10130902B2 (en) 2013-12-04 2018-11-20 Pocared Diagnostics Ltd. Method and apparatus for processing and analyzing filtered particles
US10191036B1 (en) 2018-03-22 2019-01-29 NUB4U, Inc. System for detecting and removing biological analytes in fluids
WO2019026026A1 (en) * 2017-08-02 2019-02-07 Pocared Diagnostics Ltd. Processor filter arrangement that includes method and apparatus to remove waste fluid through a filter
US10401264B2 (en) * 2017-08-08 2019-09-03 National Chiao Tung University Efficient electrostatic particle-into-liquid sampler which prevents sampling artifacts

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0064828A1 (en) * 1981-04-27 1982-11-17 Merck & Co. Inc. Radial flow cell
FR2603698A1 (en) * 1986-09-05 1988-03-11 Commissariat Energie Atomique Method and device for measuring the concentration of aerosols in a gas
US5317930A (en) * 1991-09-18 1994-06-07 Wedding & Associates, Inc. Constant flowrate controller for an aerosol sampler using a filter
US5416002A (en) * 1992-12-03 1995-05-16 United Technologies Corporation Near-real-time microbial monitor
EP0812920A1 (en) * 1996-06-14 1997-12-17 Packard Instrument B.V. Use of porphyrins in instrumental detection methods
US5998128A (en) * 1996-06-14 1999-12-07 Packard Instrument B.V. Use of porphyrins in instrumental detection methods
US6001573A (en) * 1996-06-14 1999-12-14 Packard Bioscience B.V. Use of porphyrins as a universal label
US6010554A (en) * 1997-06-23 2000-01-04 Battelle Memorial Institute Micro-machined virtual impactor and method of operation
EP0952211A1 (en) * 1998-04-24 1999-10-27 Millipore S.A. Method for detecting micro-organisms and cartridge suitable for implementing it
FR2777903A1 (en) * 1998-04-24 1999-10-29 Millipore Sa METHOD FOR DETECTION OF MICROORGANISMS AND CASSETTE SUITABLE FOR IMPLEMENTING IT
US6043049A (en) * 1998-04-24 2000-03-28 Millipore S.A. Method for detecting micro-organisms and cartridge suitable for implementing it
US8173431B1 (en) 1998-11-13 2012-05-08 Flir Systems, Inc. Mail screening to detect mail contaminated with biological harmful substances
US6110247A (en) * 1998-11-13 2000-08-29 Mesosystems Technology, Inc. Micromachined impactor pillars
US6120573A (en) * 1998-11-13 2000-09-19 Mesosystems Technology, Inc. Micromachined teardrop-shaped virtual impactor
US6698592B2 (en) 1998-11-13 2004-03-02 Mesosystems Technology, Inc. Virtual impactor
US6062392A (en) * 1998-11-13 2000-05-16 Mesosystems Technology, Inc. Micromachined virtual impactor
US6103534A (en) * 1999-09-28 2000-08-15 The United States Of America As Represented By The Secretary Of The Navy Cyclone aerosol sampler and biological aerosol chemiluminescent detection system employing the same
WO2004001388A1 (en) * 2002-06-24 2003-12-31 Sarnoff Corporation Method and apparatus for concentrated airborne particle collection
US20040069047A1 (en) * 2002-06-24 2004-04-15 Sarnoff Corporation Method and apparatus for concentrated airborne particle collection
US7062982B2 (en) 2002-06-24 2006-06-20 Sarnoff Corporation Method and apparatus for concentrated airborne particle collection
US20110061447A1 (en) * 2004-07-09 2011-03-17 Donaldson William S Biological agent detector
US20070189929A1 (en) * 2004-07-09 2007-08-16 Donaldson William S Biological agent detector
US7837937B2 (en) 2004-07-09 2010-11-23 Hamilton Sundstrand Corporation Biological agent detector
US7977113B2 (en) 2004-07-09 2011-07-12 Hamilton Sundstrand Corporation Biological agent detector method
EP1615015A1 (en) 2004-07-09 2006-01-11 Hamilton Sundstrand Corporation Biological agent detector
US7659523B1 (en) 2005-02-18 2010-02-09 Hach Ultra Analytics, Inc. Integrated assembly for delivery of air stream for optical analysis
US7173257B1 (en) 2005-02-18 2007-02-06 Hach Ultra Analytics, Inc. Integrated assembly for delivery of air stream for optical analysis
US8047053B2 (en) 2007-05-09 2011-11-01 Icx Technologies, Inc. Mail parcel screening using multiple detection technologies
US20080282815A1 (en) * 2007-05-18 2008-11-20 Jessal Murarji Gas Sampler for Vapour Detectors
US9834806B2 (en) * 2008-06-27 2017-12-05 Hitachi Plant Services Co., Ltd. Microbe-collecting carrier cartridge, carrier treating apparatus, and method of measuring microbes
US20110183371A1 (en) * 2008-06-27 2011-07-28 Hideyuki Noda Microbe-collecting carrier cartridge, carrier treating apparatus, and method of measuring microbes
US8243274B2 (en) 2009-03-09 2012-08-14 Flir Systems, Inc. Portable diesel particulate monitor
US20100255560A1 (en) * 2009-04-03 2010-10-07 Mesosystems Technology, Inc. Method and apparatus for capturing viable biological particles over an extended period of time
US10130902B2 (en) 2013-12-04 2018-11-20 Pocared Diagnostics Ltd. Method and apparatus for processing and analyzing filtered particles
US10188967B2 (en) 2013-12-04 2019-01-29 Pocared Diagnostics Ltd. Filter arrangement with slider valve and method for using the same
US10905978B2 (en) 2013-12-04 2021-02-02 Pocared Diagnostics Ltd. Method and apparatus for processing and analyzing filtered particles
CN113634124A (en) * 2013-12-04 2021-11-12 普凯尔德诊断技术有限公司 Method and device for processing and analyzing particles extracted by tangential filtration
CN113634124B (en) * 2013-12-04 2022-11-18 普凯尔德诊断技术有限公司 Method and device for processing and analyzing particles extracted by tangential filtration
WO2019026026A1 (en) * 2017-08-02 2019-02-07 Pocared Diagnostics Ltd. Processor filter arrangement that includes method and apparatus to remove waste fluid through a filter
US10739237B2 (en) 2017-08-02 2020-08-11 Pocared Diagnostics Ltd. Processor filter arrangement that includes method and apparatus to remove waste fluid through a filter
US10401264B2 (en) * 2017-08-08 2019-09-03 National Chiao Tung University Efficient electrostatic particle-into-liquid sampler which prevents sampling artifacts
US10191036B1 (en) 2018-03-22 2019-01-29 NUB4U, Inc. System for detecting and removing biological analytes in fluids

Similar Documents

Publication Publication Date Title
US3754868A (en) Device for preparation of sample for biological agent detector
US3690837A (en) Automatic biological agent detector
EP1255980B1 (en) Portable sensor array system
EP1906186B1 (en) Assay system
US5736351A (en) Method for detection of contaminants
US6103534A (en) Cyclone aerosol sampler and biological aerosol chemiluminescent detection system employing the same
US6551834B2 (en) Detection of contaminants using self-contained devices employing target material binding dyes
US20010029793A1 (en) Biological individual sampler
US4961432A (en) Modular fluid sample preparation assembly
JP2824152B2 (en) Fluid medium analyzer
US7858366B2 (en) Integrated airborne substance collection and detection system
CA2087033A1 (en) Fibrinogen assays using dry chemical reagents containing magnetic particles
US3846075A (en) Apparatus for simultaneous analysis of fluid
US9068976B2 (en) Integrated filtration bioanalyzer
US3679312A (en) Method and apparatus for measuring bioluminescence or chemiluminescence for quantitative analysis of samples
KR960016840A (en) Automated Immunoassay Systems and Incubation Chambers Used Therein
CN101203617A (en) Device for rapid detection and identification of single microorganisms without preliminary growth
US5686046A (en) Luminometer
GB1445397A (en) Cartridge of unitary construction for use in analytical apparatus
US20180202902A1 (en) Method for sampling and extracting pollutants in a fluid, sampling cartridge, sampling and extracting devices using said method
US3657073A (en) Apparatus for detecting viable organisms
ATE281238T1 (en) COMBINED REAGENT COLLECTION AND TEST ARRANGEMENT
EP0419168A3 (en) Fluid specimen collecting and testing apparatus
US4436822A (en) Reagent mixing system and method
WO2021068912A1 (en) Magnetic particle luminescence micro-fluidic chip for multi-marker detection, and detection device