US3756390A - Two-compartment aspirating disposable hypodermic syringe package - Google Patents

Two-compartment aspirating disposable hypodermic syringe package Download PDF

Info

Publication number
US3756390A
US3756390A US00232440A US3756390DA US3756390A US 3756390 A US3756390 A US 3756390A US 00232440 A US00232440 A US 00232440A US 3756390D A US3756390D A US 3756390DA US 3756390 A US3756390 A US 3756390A
Authority
US
United States
Prior art keywords
diaphragm
barrel
compartment
liquid
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00232440A
Inventor
A Abbey
R Clayton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Application granted granted Critical
Publication of US3756390A publication Critical patent/US3756390A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
    • A61M5/284Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle comprising means for injection of two or more media, e.g. by mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/32Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging two or more different materials which must be maintained separate prior to use in admixture
    • B65D81/3255Containers provided with a piston or a movable bottom, and permitting admixture within the container
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3103Leak prevention means for distal end of syringes, i.e. syringe end for mounting a needle
    • A61M2005/3104Caps for syringes without needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
    • A61M5/285Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle with sealing means to be broken or opened
    • A61M5/286Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle with sealing means to be broken or opened upon internal pressure increase, e.g. pierced or burst

Definitions

  • ABSTRACT A two compartment aspirating disposable hypodermic syringe package consists of a rupturable partically preslit diaphragm having a fluorohalocarbon polymer film as a primary moisture-proof barrier across and dividing the syringe barrel into a compartment containing a dry component and a compartment containing a liquid [52] US. Cl. 206/47 A, 128/218 M, 128/272, component which components are to be mixed at time 206/632 R, 206/43, 222/80 of use. A slidable piston in the barrel, on application of [51] Int.
  • the liquid component contains only water, other times it is water with therapeutic components, synergistic components, solubilizing components, pH control components, or other elements.
  • the shelf life be at least 1 and preferably 5 years at ambient room conditions of temperature and humidity. Shorter storage-life packages are only acceptable where the longer storage time cannot be economically attained.
  • the package is a single use device, making but one trip from the manufacturer to the point of use, after which the container is discarded, it is desirable that the package have a maximum of product security, a maximum of convenience in use, and a minimum of cost.
  • two compartments may be formed by dividing a hypodermic syringe barrel by a diaphragm of a pressure rupturable plastic having at least one layer of a film of a fluorohalocarbon plastic which has an extremely high resistance to water and water vapor and which diaphragm is effectively sealed in moisture proof configuration with the walls of the barrel.
  • the barrel is formed in two parts which are in telescoping relationship with the diaphragm being sealed across the end of one of the telescoping sections.
  • the barrels may be formed of glass or plastic but most conveniently and economically are formed from a translucent or transparent plastic such as linear polyethylene or isotactic polypropylene which is strong, inert to nearly all types of medication, liquid or solid, and is economically worked and formed.
  • a translucent or transparent plastic such as linear polyethylene or isotactic polypropylene which is strong, inert to nearly all types of medication, liquid or solid, and is economically worked and formed.
  • Polystyrene, polymethylstyrene, polycarbonates or different plastics or plastic and glass may be used for the different elements. But from the standpoint of cost of raw materials and the cost of manufacture, the polyethylenes and polypropylenes are presently particularly economically advantageous.
  • the front part of the barrel is conveniently formed with a transverse wall means closing the front end of the barrel with either an integral needle or needle attaching means, and very slightly tapered walls, for a solid compartment; and an offset and larger coaxial section for the fitting of the inner telescoping portion of the barrel containing the liquid.
  • a puncturable member may be incorporated at the needle attaching end in order to seal the front end of the front compartment during storage.
  • a needle attaching hub is used with a cap over th needle attaching hub giving a moisture proof seal.
  • a filter is conveniently installed in the front of the barrel adjacent to the liquid discharge tip bore to filter out any-solid particles or portions of the diaphragm which may be broken loose.
  • the compartment adapted to contain the liquid.
  • the diaphragm is conveniently sealed across the front end of the rear compartment and with the telescoping relationship, essentially no stress or strain is placed on the diaphragm to barrel wall assembly and hence compromise during shipment and storage is minimized.
  • a conventional flexible piston having sealing rings is incorporated in the end of the barrel adjacent the liquid and conveniently seals the liquid compartment without air space.
  • the plunger assembly to drive the piston may be of any convenient cross section but conveniently is either a X crosssection for mechanical strength or hollow and adapted to contain the hypodermic needle.
  • the hypodermic needle may be in a sterile package so that it may be removed and attached to the front end of the package without compromising sterility. This method of attachment and the techniques involved are conventional.
  • the entire barrel assembly has a slight taper and is larger at the rear than at the front.
  • a taper of a few thousands of an inch on the diameter permits a draft in the molding operation so that the molded assemblies may be more easily removed from the mandrel.
  • a taper of about 0.005 inch per inch and, molding manufacturing tolerances are with in the sealing characteristics of the flexible sealing rings on the piston and permit economical manufacture.
  • the characteristics of the diaphragm are such as to insure the permeation of a minimum of water.
  • Many plastics pass water or water vapor when in thin sheets.
  • Plastics of th fluorohalocarbon series such as ACLAR, sold by Allied Chemical Company, have a comparatively slow water vapor transmission rate.
  • the water transmission rate is commercially specified as 0.025 grams per mil per square inch per 24 hours.
  • a Mylar polyester film has a water transmission rate of from 200 to 400 times as great.
  • Low density polyethylene has a water transmission rate approximately 30 times as great as the fluorohalocarbon film.
  • the polyvinyls, polystyrenes and cellulosic films are also comparatively high in their water vapor transmission.
  • the fluorohalocarbon film has a tensile strength of one-third to one-half of that of Mylar a Mullen Burst strength of around one-third of that of Mylar and a much lower impact strength. These characteristics permit forming a highly water resistant but readily mechanically repturable seal.
  • Sealing of the diaphragm to the front of the rear portion of the barrel is accomplished in conventional ways.
  • an ultrasonic seal in which either an annular mandrel is used, or a point energy source, which is rotated with respect to the seal, so that ultrasonic energy is concentrated along the area of contact between the diaphragm and the end of the barrel.
  • the diaphragms are cut to size, placed in contact with the rear barrel portion, and as ultrasonic energy is concentrated on the seal area, the discontinuity of an unsealed portion causes the reflection and refraction of energy resulting in intense local heating which fuses the two portions together. Once fused the energy can pass through and heating is reduced. This inherently gives a particularly effective type of seal. Ordinary heat sealing systems may be used with the heating elements shaped to fit the seal area.
  • the diaphragm may be adhesively united to the barrel.
  • An alternative configuration is to form a cap of the laminate film so that the side walls of the cap slide over the end of the barrel which gives a larger area for sealing of the laminate to the barrel.
  • any stresses and strains are transferred from barrel portion to barrel portion and do not pass through the diaphragm itself.
  • the telescope portions can be held to each other with a clip or clamp or may be adhesively united or heat or ultrasonically sealed to each other.
  • the barrel portions can be sealed to each other and also the diaphragm, to give a unitary seal so that in effect the two barrel portions and the diaphragm are a single monolithic piece.
  • Sterility against contaminants is mandatory in hypodermically injected medications.
  • the solid component may be filled into its compartment under non-sterile conditions and sterilized by the use of heat, radiation or a sterilizing gas such as ethylene oxide, sufficiently diluted with carbon dioxide or other inert gas as to avoid an explosion hazard.
  • the two portions of the barrel can then be assembled to each other under sterile conditions and the liquid compartment filled and the piston implaced using sterile techniques and sterile components.
  • the assembly may be made under non-sterile conditions and sterility achieved by the use of radiation as for example by cobalt 60 beta rays.
  • the effect of radiation, such as the beta rays or X-rays, on the packaging materials must be considered.
  • Another method of assembly is to assemble the diaphragm into the barrels and the barrels to each other and sterilize the assembly with the solid component being fed as a powder subsequently through the hole in the needle hub after which the hole is capped, with sterility being attained by ethylene oxide, or other procedures, and the complete assembly being inverted and the liquid compartment sterilely filled with liquid and the piston emplaced.
  • Such methods of assembly are within the contemplation of utilization of the present invention.
  • the filling and sterilizing cycles must be chosen with due respect to the characteristics of the medication and the materials of construction of the container.
  • FIG. 1 is a cross section of a flat diaphragm with a fully telescoped liquid compartment.
  • FIG. 2 is a cross section of a cap diaphragm with a short telescope.
  • FIG. 3 is a diagrammatically exploded view showing the various components in section for assembly into the package of FIG. 2.
  • FIG. 4 is an embodiment in which the diaphragm cap fits in the valve walls with a protective sleeve over the joint between the barrel sections.
  • FIG. 5 is a view showing the partially slit cap diaphragm.
  • FIG. 6 is a partially broken away view showing a flat diaphragm.
  • FIG. 7 is a cross section of a diaphragm showing the partial scoring of a three layer laminated diaphragm.
  • a cylindrical barrel 11 of polyethylene has a transverse end wall 12 which wall has a needle tip formed integrally therewith and adapted to fit a standard hypodermic needle hub.
  • a protective tip shield 14 Over the needle tip 13 is fitted a protective tip shield 14 having a bore pin 15 which fits into the tip bore 16.
  • a filter 17 which may be woven or felted or paper stock with a thin reinforcing rim is placed against the transverse wall to filter out and prevent the injection of any fine solid particles which may find there way into the assembly.
  • the rear of the cylindrical barrel is enlarged to form a concentric coaxial external telescoping barrel 18.
  • a finger flange 19 is formed integrally with the rear of the external telescoping barrel.
  • Inside of and cooperating with the external telescopic barrel 18 is the internal telescoping barrel 20 which fits snuggly into and is held by the external telescoping barrel 18.
  • a retaining flange 21 on the rear of the internal telescopic barrel fits adjacent to the finger flange l9 and is held thereto by an annular clip 22.
  • a diaphragm 23 Across the front of the internal telescopic barrel 20 is a diaphragm 23.
  • FIGS. 6 and 7 An enlarged view of the diaphragm 23 is shown in FIGS. 6 and 7.
  • One configuration as shown in FIGS. 6 and 7 consists of a poly(chlorotrifluoroethylene) film 24 laminated on each side to polyethylene layers 25.
  • the polyethylene layers have score marks 26 over the major portion of their surface.
  • the diaphragm is such size as to fit against and close to the end of the internal telescoping barrel. It is sealed thereto using an ultrasonic generator and a mandrel which is of such size and shape as to give annular seal around the entire external periphery of the diaphragm as it contacts the end of the internal telescoping barrel 20.
  • the score marks do not extend to the sealed portion or if they do extend to the seal areas, are obliterated during the sealing operation thereby giving a reliably liquid tight seal.
  • the thickness of the diaphragm is such that it may be readily ruptured by liquid pressure during mixing prior to use.
  • One convenient size is to have an internal diameter of about one-half inch with the poly(chlorotrifluoro-ethylene) layer about 0.001 inch thick, and each of the polyethylene layers about 0.003 inch thick.
  • Th poly( chlorotrifluoroethylene) may range in thickness from about rt thousandth inch to about 11/2 thousandths inch in thickness. For larger syringes a thicker layer and for smaller syringes a thinner layer is convenient. As the polyethylene layers are scored their thickness does not markedly affect the pressure required to rupture.
  • the complete diaphragm though needs to be thin enough so that when ruptured it will lie against the walls of the barrel without interfering with free passage of the piston 27.
  • a piston 27 having sealing rings 28 thereon, attached to a stem 29.
  • the piston and stem are conventional in the hypodermic package art.
  • the piston is conveniently formed with a recess into which the end of the operating stem is inserted although detachable screw connections or integral connections may be used.
  • the piston is conveniently of rubber either natural or synthetic and the sealing rings give a higher bearing pressure over a small area for low friction seal to the barrel walls.
  • the entire barrel assembly tapers slightly so that the front of the barrel is a few thousandths of an inch smaller in diameter than the rear of the barrel which permits a draft in the mandrel on which the plastic barrel parts are molded.
  • the flexibility of the sealing rings compensates for any minor irregularities from either designed or accidental size variations in the barrels and also permits the piston sealing rings to pass over the residues of the ruptured diaphragm in the barrel.
  • the container While not part of the container assembly, as a package, the container has therein a solid medicament 30 in the compartment formed by the transverse wall, the cylinder barrel 1] and the diaphragm 23 and has a liquid component 31 in the compartment formed by the diaphragm, the internal telescoping barrel, and the piston. It is not necessary that either compartment be full.
  • the solid medicament is a finely powdered material such as powdered chlortetracycline or a powdered vitamin mixture and the diluent is either water or a saline solution of a liquid mixture of vitamins.
  • the medicament is in such finely divided form that if moisture leaks in through either the tip shield or past the diaphragm or around and between the internal and external telescoping barrels, the medica-ment is discolored, and gives warning to the user. If care is used in assembly, such leakers should be few or non-existant.
  • the internal and external barrel assemblies in the telescoping section may be adhesively united to each other by placing a liquid adhesive composition between them at the time of assembly.
  • the diaphragm and the two barrel sections can be sealed together by a suitably shaped mandrel in contact with an ultrasonic generator and against which the assembly is placed. As the ultrasonic energy is primarily released at points of discontinuity, up until a seal is accomplished between the elements, energy is absorbed and heat generated. Once the plastic unites and becomes essentially homogeneous, energy is passed through and hence the joint is not over heated even if the more ultrasonic energy than is required is fed into the system.
  • One suitable diaphragm is commercially available from Allied Chemical Co. under the trademark ACLAR, either 22A for an amorphous film, or better 33C for a crystalline film. These are apparently either a chlorotrifluoroethylene polymer with a small percentage of vinylidene fluoride, or a small percentage of tetrafluoroethylene. Other related types of very moisture resistant films may be used. Laminates with polyethylene are readily handled and fabricated. The moisture resistance is preferably better than about 0.025 grams of water per mil thickness per square inches per day at room temperature. Alternatively, a laminate consisting of aluminum foil sandwiched between two layers of polyethylene film can be utilized as the diaphragm.
  • the cylinder barrel 32 is formed with a shorter external telescoping section 33 and a separate assembly rim 34 is formed on both the internal and the external telescopic section forward of the finger flange 35.
  • a diaphragm cap 36 there is sufficient clearance between the internal and external barrel for a diaphragm cap 36.
  • the diaphragm is formed as a cap which can be conveniently molded from sheet stock by a deep drawing operation or by casting, and such cap has the advantage of being integral with the diaphragm portion which stretches across the barrel and has a larger area for adhesive or heat or ultrasonic sealing with the barrel.
  • seal may be forme using an internal mandrel inside of the barrel and an external concentric anvil with pressure being used to transmit heat or ultrasonic energy and press softened materials into sealing relationship with each other.
  • Such construction requires somewhat more specialized equipment and is hence advantageous on the larger production runs.
  • FIG. 3 The parts before assembly are shown in FIG. 3. Other parts are the same as in FIG. 1, and have the same numbers.
  • the cap type diaphragm as shown in FIG. 5 has walls extended back parallel to the axis to give the additional sealing area with the internal and external barrel portions. 7
  • FIG. 4 is shown a configuration in which the internal and external telescopic sections of the barrels are essentially concentric and coaxial with uniform external walls and without flanges.
  • an ultrasonic seal can be used to seal the cap against and between the internal and the external telescopic portions and a sealing band 37 is used to cover and reinforce the joint between the two sections.
  • the needle hub may be shaped as a mastitis point, or other configuration for appropriate uses.
  • the temperature or amount of ultrasonic energy or the type of adhe sive composition for sealing can vary widely within the skill in the art.
  • An adhesive which is adapted to unite the materials to be joined or an amount of heat or ultrasonic energy which is adapted in accordance with conventional procedures to secure a substantially perfect union and not over energize and unduly soften the joint is preferred.
  • the assembly techniques can be varied depending upon the characteristics of the medicaments in the two compartments. If the solid and liquid components are both labile and unable to stand sterilizing temperatures, the portions of the barrel are assembled under conventional clean but not sterile conditions and then these portions are sterilized by heat or sterilizing gas such as ethylene oxide with the portions being filled and assembled using sterile techniques for the filling and assembly operations. Such filling and assembly operations are conventional in the industry and are herewith incorporated by reference rather than by further extending the specification.
  • the stem and the needle hub are illustrated as one conventional configuration. It is to be understood that the needle may be attached in any of the many variations of needles and needle hubs assembly methods which are known to those skilled in the art.
  • the needle tip or for the construction of the stem, which may be hollowed to contain a hypodermic needle in sterile condition preparatory to assembly for use, are also conventional.
  • a combination aspirating hypodermic syringe and two compartment package adapted for storage of separate liquid and solid components of medicaments with internal mixing of the two components to form a single injectable liquid at the time of use, with effective protection of the solid component from the effects of moisture or other components in the liquid compartment during storage, and which maintains sterility during mixing comprising:
  • a pressure rupturable plastic dividing diaphragm consisting of at least one film of a material having a high resistance to the permeation of moisture with weakening slits cut into the diaphragm to form cut zones of weakness, which are readily ruptured by liquid operating pressure at the time of use, and which are geometrically small so that the moisture permeation through the slits is over a small area and the predominant area of the diaphragm is much thicker with a correspondingly high moisture impermeability, whereby during storage the thicker film retards the diffusion of moisture over the major area of the diaphragm, and the thin slits form a readily rupturable zone of weakness,
  • a flexible piston in the barrel, in a part of the barrel on the opposite side of the diaphragm from the transverse wall means, and in cooperation therewith forming a liquid compartment, flexible sealing rings on the piston to contact the walls of the barrel, which rings are sufficiently flexible to slide readily over and past the diaphragm after rupture, while maintaining a liquid tight seal with the walls of said barrel,

Abstract

A two compartment aspirating disposable hypodermic syringe package consists of a rupturable partically pre-slit diaphragm having a fluorohalocarbon polymer film as a primary moistureproof barrier across and dividing the syringe barrel into a compartment containing a dry component and a compartment containing a liquid component which components are to be mixed at time of use. A slidable piston in the barrel, on application of pressure, ruptures the diaphragm, permits mixing of the two components, clearing of air, aspiration and injection of the contents as the piston passes over the ruptured remains of the diaphragm.

Description

United States Patent [1 1 [111 3,756,390 Abbey et al. Sept. 4, 1973 [54] TWO-COMPARTMENT ASPIRATING 3,684,136 8/1972 Baumann 128/218 M DISPOSABLE HYPODERMIC SYRINGE 1,943,120 1/1934 Kabnick 128/218 M PACKAGE Assignee: American Cyanamid Company,
Stamford, Conn.
Filed: Mar. 7, 1972 Appl. No; 232,440
Primary Examiner-William T. Dixson, Jr. Attorney-Samuel Branch Walker [57] ABSTRACT A two compartment aspirating disposable hypodermic syringe package consists of a rupturable partically preslit diaphragm having a fluorohalocarbon polymer film as a primary moisture-proof barrier across and dividing the syringe barrel into a compartment containing a dry component and a compartment containing a liquid [52] US. Cl. 206/47 A, 128/218 M, 128/272, component which components are to be mixed at time 206/632 R, 206/43, 222/80 of use. A slidable piston in the barrel, on application of [51] Int. Cl B6511 25/08, B65d 81/32 pressure, ruptures the diaphragm, permits mixing of the [58] Field of Search 206/47 A, 63.2 R, two components, clearing of air, aspiration and injec- 206/43; 220/205; 128/218 M, 272; 222/80 tion of the contents as the piston passes over the ruptured remains of the diaphragm. [56] References cued 4 Claims, 7 Drawing Figures UNITED STATES PATENTS 3,595,439 7/1971 Newby 206/47 A 1l'|| T1Tll TWO-COMPARTMENT ASPIRATING DISPOSABLE HYPODERMIC SYRINGE PACKAGE BACKGROUND OF THE INVENTION In the treatment of humans and animals there are many medicaments to be injected hypodermically which are not storage stable in the form in which they are to be injected. In many cases, the medication to be injected can be prepared at the time of use by mixing a storage stable dry component and a storage stable liquid component. Sometimes the liquid component contains only water, other times it is water with therapeutic components, synergistic components, solubilizing components, pH control components, or other elements. For the storage of such medication it is desirable that the shelf life be at least 1 and preferably 5 years at ambient room conditions of temperature and humidity. Shorter storage-life packages are only acceptable where the longer storage time cannot be economically attained.
As the package is a single use device, making but one trip from the manufacturer to the point of use, after which the container is discarded, it is desirable that the package have a maximum of product security, a maximum of convenience in use, and a minimum of cost.
These requirements are in part inconsistent and as a result there are many patents and commercial products representing compromises between the various requirements. One such U.S. Pat., of common assignment, is No. 3,161,195, Taylor and Sandhage, TWO- COMPARTMENT ASPlRATlNG HYPODERMIC SYRlNGE, Dec. 15, 1964. This patent describes some of the prior art, some of the problems and some of the expedients which are used. Reference thereto and incorporating by reference is hereby made. U.S. Pat. No. 3,161,195 shows various methods of attaching a needle to the front of the package and various methods of packaging the needle assembly in the operating plunger. Such expedience may be used with the present package and such combinations are within the concepts of the present invention.
Other conventional needle attaching and puncturing mechanisms maybe used, as may various carrier assemblies for temporarily or permanently storing the hypodermic needles with the package.
It has now been found that two compartments may be formed by dividing a hypodermic syringe barrel by a diaphragm of a pressure rupturable plastic having at least one layer of a film of a fluorohalocarbon plastic which has an extremely high resistance to water and water vapor and which diaphragm is effectively sealed in moisture proof configuration with the walls of the barrel. Conveniently the barrel is formed in two parts which are in telescoping relationship with the diaphragm being sealed across the end of one of the telescoping sections.
The barrels may be formed of glass or plastic but most conveniently and economically are formed from a translucent or transparent plastic such as linear polyethylene or isotactic polypropylene which is strong, inert to nearly all types of medication, liquid or solid, and is economically worked and formed. Polystyrene, polymethylstyrene, polycarbonates or different plastics or plastic and glass may be used for the different elements. But from the standpoint of cost of raw materials and the cost of manufacture, the polyethylenes and polypropylenes are presently particularly economically advantageous.
In forming, the front part of the barrel is conveniently formed with a transverse wall means closing the front end of the barrel with either an integral needle or needle attaching means, and very slightly tapered walls, for a solid compartment; and an offset and larger coaxial section for the fitting of the inner telescoping portion of the barrel containing the liquid. A puncturable member may be incorporated at the needle attaching end in order to seal the front end of the front compartment during storage. Conveniently a needle attaching hub is used with a cap over th needle attaching hub giving a moisture proof seal. A filter is conveniently installed in the front of the barrel adjacent to the liquid discharge tip bore to filter out any-solid particles or portions of the diaphragm which may be broken loose.
Telescoping part way or all the way into the enlarged rear portion of the front chamber is the compartment adapted to contain the liquid. The diaphragm is conveniently sealed across the front end of the rear compartment and with the telescoping relationship, essentially no stress or strain is placed on the diaphragm to barrel wall assembly and hence compromise during shipment and storage is minimized. A conventional flexible piston having sealing rings is incorporated in the end of the barrel adjacent the liquid and conveniently seals the liquid compartment without air space. The plunger assembly to drive the piston may be of any convenient cross section but conveniently is either a X crosssection for mechanical strength or hollow and adapted to contain the hypodermic needle. The hypodermic needle may be in a sterile package so that it may be removed and attached to the front end of the package without compromising sterility. This method of attachment and the techniques involved are conventional.
Conveniently, but not essentially, the entire barrel assembly has a slight taper and is larger at the rear than at the front. A taper of a few thousands of an inch on the diameter permits a draft in the molding operation so that the molded assemblies may be more easily removed from the mandrel. A taper of about 0.005 inch per inch and, molding manufacturing tolerances are with in the sealing characteristics of the flexible sealing rings on the piston and permit economical manufacture.
The characteristics of the diaphragm are such as to insure the permeation of a minimum of water. Many plastics pass water or water vapor when in thin sheets. Plastics of th fluorohalocarbon series such as ACLAR, sold by Allied Chemical Company, have a comparatively slow water vapor transmission rate. The water transmission rate is commercially specified as 0.025 grams per mil per square inch per 24 hours. A Mylar polyester film has a water transmission rate of from 200 to 400 times as great. Low density polyethylene has a water transmission rate approximately 30 times as great as the fluorohalocarbon film. The polyvinyls, polystyrenes and cellulosic films are also comparatively high in their water vapor transmission. Additionally the fluorohalocarbon film has a tensile strength of one-third to one-half of that of Mylar a Mullen Burst strength of around one-third of that of Mylar and a much lower impact strength. These characteristics permit forming a highly water resistant but readily mechanically repturable seal.
Sealing of the diaphragm to the front of the rear portion of the barrel is accomplished in conventional ways. Among the more rapid and convenient methods is the use of an ultrasonic seal in which either an annular mandrel is used, or a point energy source, which is rotated with respect to the seal, so that ultrasonic energy is concentrated along the area of contact between the diaphragm and the end of the barrel. The diaphragms are cut to size, placed in contact with the rear barrel portion, and as ultrasonic energy is concentrated on the seal area, the discontinuity of an unsealed portion causes the reflection and refraction of energy resulting in intense local heating which fuses the two portions together. Once fused the energy can pass through and heating is reduced. This inherently gives a particularly effective type of seal. Ordinary heat sealing systems may be used with the heating elements shaped to fit the seal area. The diaphragm may be adhesively united to the barrel.
Because of the nature of the usage it is essential that highly reliable seals be formed.
An alternative configuration is to form a cap of the laminate film so that the side walls of the cap slide over the end of the barrel which gives a larger area for sealing of the laminate to the barrel.
In use, as the barrel portions telescope with respect to each other, any stresses and strains are transferred from barrel portion to barrel portion and do not pass through the diaphragm itself. The telescope portions can be held to each other with a clip or clamp or may be adhesively united or heat or ultrasonically sealed to each other. Alternatively, after assembly, by using heat or ultrasonic techniques, the barrel portions can be sealed to each other and also the diaphragm, to give a unitary seal so that in effect the two barrel portions and the diaphragm are a single monolithic piece.
The choice of methods of assembly and techniques to be practiced vary in part with the size of the run, the equipment that is available, and the characteristics of the two components.
Sterility against contaminants is mandatory in hypodermically injected medications.
If the solid component can stand the cycle, the solid component may be filled into its compartment under non-sterile conditions and sterilized by the use of heat, radiation or a sterilizing gas such as ethylene oxide, sufficiently diluted with carbon dioxide or other inert gas as to avoid an explosion hazard. The two portions of the barrel can then be assembled to each other under sterile conditions and the liquid compartment filled and the piston implaced using sterile techniques and sterile components. Alternatively at times, the assembly may be made under non-sterile conditions and sterility achieved by the use of radiation as for example by cobalt 60 beta rays. The effect of radiation, such as the beta rays or X-rays, on the packaging materials must be considered. With some materials even intense radiation during the sterilizing cycle can be used to aid in sealing components together as for example, sealing the diaphragm in to the barrels. With particularly rugged materials, heat sterilization is acceptable. Often with medications which require separate solid and liquid components, the medication may be adversely affected by a heat sterilizing cycle.
Another method of assembly is to assemble the diaphragm into the barrels and the barrels to each other and sterilize the assembly with the solid component being fed as a powder subsequently through the hole in the needle hub after which the hole is capped, with sterility being attained by ethylene oxide, or other procedures, and the complete assembly being inverted and the liquid compartment sterilely filled with liquid and the piston emplaced. Such methods of assembly are within the contemplation of utilization of the present invention. The filling and sterilizing cycles must be chosen with due respect to the characteristics of the medication and the materials of construction of the container.
Without being restricted thereto the present invention is exemplified and shown in the following examples and the accompanying drawings in which:
FIG. 1 is a cross section of a flat diaphragm with a fully telescoped liquid compartment.
FIG. 2 is a cross section of a cap diaphragm with a short telescope.
FIG. 3 is a diagrammatically exploded view showing the various components in section for assembly into the package of FIG. 2.
FIG. 4 is an embodiment in which the diaphragm cap fits in the valve walls with a protective sleeve over the joint between the barrel sections.
FIG. 5 is a view showing the partially slit cap diaphragm.
FIG. 6 is a partially broken away view showing a flat diaphragm.
FIG. 7 is a cross section of a diaphragm showing the partial scoring of a three layer laminated diaphragm.
In the embodiment shown in FIG. 1, a cylindrical barrel 11 of polyethylene has a transverse end wall 12 which wall has a needle tip formed integrally therewith and adapted to fit a standard hypodermic needle hub. Over the needle tip 13 is fitted a protective tip shield 14 having a bore pin 15 which fits into the tip bore 16. A filter 17 which may be woven or felted or paper stock with a thin reinforcing rim is placed against the transverse wall to filter out and prevent the injection of any fine solid particles which may find there way into the assembly.
The rear of the cylindrical barrel is enlarged to form a concentric coaxial external telescoping barrel 18. A finger flange 19 is formed integrally with the rear of the external telescoping barrel. Inside of and cooperating with the external telescopic barrel 18 is the internal telescoping barrel 20 which fits snuggly into and is held by the external telescoping barrel 18. A retaining flange 21 on the rear of the internal telescopic barrel fits adjacent to the finger flange l9 and is held thereto by an annular clip 22.
Across the front of the internal telescopic barrel 20 is a diaphragm 23.
An enlarged view of the diaphragm 23 is shown in FIGS. 6 and 7. One configuration as shown in FIGS. 6 and 7 consists of a poly(chlorotrifluoroethylene) film 24 laminated on each side to polyethylene layers 25. The polyethylene layers have score marks 26 over the major portion of their surface. The diaphragm is such size as to fit against and close to the end of the internal telescoping barrel. It is sealed thereto using an ultrasonic generator and a mandrel which is of such size and shape as to give annular seal around the entire external periphery of the diaphragm as it contacts the end of the internal telescoping barrel 20. Preferably the score marks do not extend to the sealed portion or if they do extend to the seal areas, are obliterated during the sealing operation thereby giving a reliably liquid tight seal.
The thickness of the diaphragm is such that it may be readily ruptured by liquid pressure during mixing prior to use. One convenient size is to have an internal diameter of about one-half inch with the poly(chlorotrifluoro-ethylene) layer about 0.001 inch thick, and each of the polyethylene layers about 0.003 inch thick.
Th poly( chlorotrifluoroethylene) may range in thickness from about rt thousandth inch to about 11/2 thousandths inch in thickness. For larger syringes a thicker layer and for smaller syringes a thinner layer is convenient. As the polyethylene layers are scored their thickness does not markedly affect the pressure required to rupture.
The complete diaphragm though needs to be thin enough so that when ruptured it will lie against the walls of the barrel without interfering with free passage of the piston 27.
In the barrel is a piston 27 having sealing rings 28 thereon, attached to a stem 29. The piston and stem are conventional in the hypodermic package art. The piston is conveniently formed with a recess into which the end of the operating stem is inserted although detachable screw connections or integral connections may be used. The piston is conveniently of rubber either natural or synthetic and the sealing rings give a higher bearing pressure over a small area for low friction seal to the barrel walls. Conveniently but not necessarily the entire barrel assembly tapers slightly so that the front of the barrel is a few thousandths of an inch smaller in diameter than the rear of the barrel which permits a draft in the mandrel on which the plastic barrel parts are molded. The flexibility of the sealing rings compensates for any minor irregularities from either designed or accidental size variations in the barrels and also permits the piston sealing rings to pass over the residues of the ruptured diaphragm in the barrel.
While not part of the container assembly, as a package, the container has therein a solid medicament 30 in the compartment formed by the transverse wall, the cylinder barrel 1] and the diaphragm 23 and has a liquid component 31 in the compartment formed by the diaphragm, the internal telescoping barrel, and the piston. It is not necessary that either compartment be full. Conveniently the solid medicament is a finely powdered material such as powdered chlortetracycline or a powdered vitamin mixture and the diluent is either water or a saline solution of a liquid mixture of vitamins. Preferably the medicament is in such finely divided form that if moisture leaks in through either the tip shield or past the diaphragm or around and between the internal and external telescoping barrels, the medica-ment is discolored, and gives warning to the user. If care is used in assembly, such leakers should be few or non-existant.
Alternatively, the internal and external barrel assemblies in the telescoping section may be adhesively united to each other by placing a liquid adhesive composition between them at the time of assembly. Alternatively, the diaphragm and the two barrel sections can be sealed together by a suitably shaped mandrel in contact with an ultrasonic generator and against which the assembly is placed. As the ultrasonic energy is primarily released at points of discontinuity, up until a seal is accomplished between the elements, energy is absorbed and heat generated. Once the plastic unites and becomes essentially homogeneous, energy is passed through and hence the joint is not over heated even if the more ultrasonic energy than is required is fed into the system.
One suitable diaphragm is commercially available from Allied Chemical Co. under the trademark ACLAR, either 22A for an amorphous film, or better 33C for a crystalline film. These are apparently either a chlorotrifluoroethylene polymer with a small percentage of vinylidene fluoride, or a small percentage of tetrafluoroethylene. Other related types of very moisture resistant films may be used. Laminates with polyethylene are readily handled and fabricated. The moisture resistance is preferably better than about 0.025 grams of water per mil thickness per square inches per day at room temperature. Alternatively, a laminate consisting of aluminum foil sandwiched between two layers of polyethylene film can be utilized as the diaphragm.
In the embodiment shown in FIG. 2, the cylinder barrel 32 is formed with a shorter external telescoping section 33 and a separate assembly rim 34 is formed on both the internal and the external telescopic section forward of the finger flange 35. In this modification, there is sufficient clearance between the internal and external barrel for a diaphragm cap 36. The diaphragm is formed as a cap which can be conveniently molded from sheet stock by a deep drawing operation or by casting, and such cap has the advantage of being integral with the diaphragm portion which stretches across the barrel and has a larger area for adhesive or heat or ultrasonic sealing with the barrel.
By having a cap with a discrete axial length, seal may be forme using an internal mandrel inside of the barrel and an external concentric anvil with pressure being used to transmit heat or ultrasonic energy and press softened materials into sealing relationship with each other. Such construction requires somewhat more specialized equipment and is hence advantageous on the larger production runs.
The parts before assembly are shown in FIG. 3. Other parts are the same as in FIG. 1, and have the same numbers.
The cap type diaphragm as shown in FIG. 5 has walls extended back parallel to the axis to give the additional sealing area with the internal and external barrel portions. 7
In FIG. 4 is shown a configuration in which the internal and external telescopic sections of the barrels are essentially concentric and coaxial with uniform external walls and without flanges. In this configuration an ultrasonic seal can be used to seal the cap against and between the internal and the external telescopic portions and a sealing band 37 is used to cover and reinforce the joint between the two sections.
The needle hub may be shaped as a mastitis point, or other configuration for appropriate uses.
As the materials of construction vary, the temperature or amount of ultrasonic energy or the type of adhe sive composition for sealing can vary widely within the skill in the art. An adhesive which is adapted to unite the materials to be joined or an amount of heat or ultrasonic energy which is adapted in accordance with conventional procedures to secure a substantially perfect union and not over energize and unduly soften the joint is preferred.
As above mentioned in assembly, the assembly techniques can be varied depending upon the characteristics of the medicaments in the two compartments. If the solid and liquid components are both labile and unable to stand sterilizing temperatures, the portions of the barrel are assembled under conventional clean but not sterile conditions and then these portions are sterilized by heat or sterilizing gas such as ethylene oxide with the portions being filled and assembled using sterile techniques for the filling and assembly operations. Such filling and assembly operations are conventional in the industry and are herewith incorporated by reference rather than by further extending the specification.
The stem and the needle hub are illustrated as one conventional configuration. It is to be understood that the needle may be attached in any of the many variations of needles and needle hubs assembly methods which are known to those skilled in the art. The needle tip or for the construction of the stem, which may be hollowed to contain a hypodermic needle in sterile condition preparatory to assembly for use, are also conventional.
Such variations are within the scope of the present invention which is defined by the following claims.
We claim:
1. A combination aspirating hypodermic syringe and two compartment package adapted for storage of separate liquid and solid components of medicaments with internal mixing of the two components to form a single injectable liquid at the time of use, with effective protection of the solid component from the effects of moisture or other components in the liquid compartment during storage, and which maintains sterility during mixing comprising:
a generally cylindrical barrel having a holding flange and at the front end a transverse wall means and transversely of the barrel and in liquid tight relationship therewith, a pressure rupturable plastic dividing diaphragm consisting of at least one film of a material having a high resistance to the permeation of moisture with weakening slits cut into the diaphragm to form cut zones of weakness, which are readily ruptured by liquid operating pressure at the time of use, and which are geometrically small so that the moisture permeation through the slits is over a small area and the predominant area of the diaphragm is much thicker with a correspondingly high moisture impermeability, whereby during storage the thicker film retards the diffusion of moisture over the major area of the diaphragm, and the thin slits form a readily rupturable zone of weakness,
a flexible piston in the barrel, in a part of the barrel on the opposite side of the diaphragm from the transverse wall means, and in cooperation therewith forming a liquid compartment, flexible sealing rings on the piston to contact the walls of the barrel, which rings are sufficiently flexible to slide readily over and past the diaphragm after rupture, while maintaining a liquid tight seal with the walls of said barrel,
a filter adjacent said transverse wall to filter out and prevent the injection of fine solid particles,
a solid medicament in soluble form in the front compartment for solids formed by the barrel between the diaphragm and the transverse wall means and,
a liquid component in the liquid compartment formed by the barrel between the diaphragm and the flexible piston,
whereby at time of use pressure on the piston transmitted to the liquid behind the diaphragm ruptures the diaphragm and displaces liquid from the rear of the diaphgram into the solid containing chamber in front of the diaphragm whereby the liquid and the solid can be mixed, the solid dissolved in the liquid by shaking, air expelled by pointing the needle end upwards and expressing any air and foam until a clear liquid is ob-tained, and which assembly permits aspiration on insertion into the subject.
2. The package of claim 1 in which the barrel comprises two telescoping pieces, and the diaphragm is sealed across one end of one of the pieces, to provide a liquid tight seal of the diaphragm to the one such piece, and in telescoping, mechanical stress on the barrel is transferred without stress or strain on the diaphragm.
3. The package of claim 2 in which the front compartment barrel has a shoulder and enlarged rear portion to concentrically receive and retain the liquid compartment in hermetically sealed relationship.
4. The package of claim 3 in which the diaphragm is sealed liquid-tight to both the front and rear compartments.

Claims (3)

  1. 2. The package of claim 1 in which the barrel comprises two telescoping pieces, and the diaphragm is sealed across one end of one of the pieces, to provide a liquid tight seal of the diaphragm to the one such piece, and in telescoping, mechanical stress on the barrel is transferred without stress or strain on the diaphragm.
  2. 3. The package of claim 2 in which the front compartment barrel has a shoulder and enlarged rear portion to concentrically receive and retain the liquid compartment in hermetically sealed relationship.
  3. 4. The package of claim 3 in which the diaphragm is sealed liquid-tight to both the front and rear compartments.
US00232440A 1972-03-07 1972-03-07 Two-compartment aspirating disposable hypodermic syringe package Expired - Lifetime US3756390A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23244072A 1972-03-07 1972-03-07

Publications (1)

Publication Number Publication Date
US3756390A true US3756390A (en) 1973-09-04

Family

ID=22873119

Family Applications (1)

Application Number Title Priority Date Filing Date
US00232440A Expired - Lifetime US3756390A (en) 1972-03-07 1972-03-07 Two-compartment aspirating disposable hypodermic syringe package

Country Status (1)

Country Link
US (1) US3756390A (en)

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054138A (en) * 1974-12-30 1977-10-18 Louis Bucalo Implants for acting on living beings
DE2800587A1 (en) * 1978-01-07 1979-07-12 Korte Jungermann Ges Fuer Fass Compartmented spraying cartridge - contg. reactive material in each section pref. made of polyethylene, with aluminium foil as easily rupturable partitions
US4208133A (en) * 1978-01-07 1980-06-17 Korte-Jungermann Gesellschaft fur Fassadenbau und Befesstigungstechnik mit beschrankter Haftung Injection cartridge
US4254768A (en) * 1979-09-14 1981-03-10 Ty Perla J Hypodermic syringe
DE2939953A1 (en) * 1979-10-02 1981-04-09 Siemens AG, 1000 Berlin und 8000 München MIXING CARTRIDGE FOR MULTI-COMPONENT CASTING RESINS
US4291695A (en) * 1976-04-05 1981-09-29 Duphar International Research B.V. Disposable injection syringe
EP0059694A1 (en) * 1981-02-26 1982-09-08 Aktiebolaget Hässle Drug administration device
US4412836A (en) * 1979-04-27 1983-11-01 The West Company, Incorporated Syringe assembly
US4511351A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US4511352A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system with in-line container
US4552556A (en) * 1981-11-27 1985-11-12 Alza Corporation Parenteral controlled therapy
US4579553A (en) * 1981-11-27 1986-04-01 Alza Corporation Parenteral controlled therapy
US4583981A (en) * 1981-11-27 1986-04-22 Alza Corporation Parenteral controlled therapy, using a porous matrix with parenteral agent
US4586922A (en) * 1981-10-09 1986-05-06 Alza Corporation Intravenous system for delivering a beneficial agent
US4596555A (en) * 1984-05-14 1986-06-24 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US4605129A (en) * 1983-12-17 1986-08-12 Internationale Octrooi Maatschapij "Octropa" B.V. Cylindrical container
US4637934A (en) * 1984-04-12 1987-01-20 Baxter Travenol Laboratories, Inc. Liquid container with integral opening apparatus
US4638809A (en) * 1984-03-22 1987-01-27 Kuperus John H Method of preparing radionuclide doses
US4657134A (en) * 1985-12-26 1987-04-14 Kidde, Inc. Compartmented package
US4657534A (en) * 1985-11-04 1987-04-14 Alcon Laboratories, Inc. Dual compartment, disposable, mixing and dispensing container
FR2604363A1 (en) * 1986-09-30 1988-04-01 Merieux Inst DEVICE FOR INJECTING SUBSTANCES, ESPECIALLY MEDICINAL PRODUCTS
US4740103A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740197A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent via polymer delivery
US4740198A (en) * 1981-10-09 1988-04-26 Alza Corporation Method of administering intravenous drug using rate-controlled dosage form
US4740199A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4741734A (en) * 1981-10-09 1988-05-03 Alza Corporation Releasing means for adding agent using releasing means to IV fluid
DE3708442A1 (en) * 1987-03-16 1988-09-29 Patrik Dr Med Gruendler Method and devices for preparing and dispensing a mixture of two components
US4790820A (en) * 1981-07-13 1988-12-13 Alza Corporation Parenteral agent dispensing equipment with drug releasing member
US4857052A (en) * 1981-07-13 1989-08-15 Alza Corporation Intravenous system for delivering a beneficial agent
EP0331152A1 (en) * 1988-03-01 1989-09-06 Alpha Therapeutic Gmbh Two-component syringe with a filling of sensitive human protein as the active ingredient
FR2629057A1 (en) * 1988-03-25 1989-09-29 Migonney Nicolas Tube contg. water and aspirin - separated by plate broken to dissolve the aspirin
US4871360A (en) * 1981-07-31 1989-10-03 Alza Corporation System for intravenous delivery of a beneficial drug at a regulated rates
US4908019A (en) * 1982-05-24 1990-03-13 Alza Corporation Apparatus comprising dual reservoirs for parenteral infusion of fluid containing beneficial agent
US4973307A (en) * 1981-07-13 1990-11-27 Alza Corporation Method for administering drugs to a patient
US4985017A (en) * 1981-07-13 1991-01-15 Alza Corporation Parenteral therapeutical system comprising drug cell
US4994031A (en) * 1981-07-13 1991-02-19 Alza Corporation Intravenous system for delivering a beneficial agent
WO1991003224A1 (en) * 1989-08-30 1991-03-21 Polak Robert B Medicament container/dispenser assembly
US5069671A (en) * 1981-07-13 1991-12-03 Alza Corporation Intravenous medication
US5127548A (en) * 1990-02-21 1992-07-07 Valois Medicinal spray device with two substance compartments separated by puncturable membrane
US5143211A (en) * 1988-04-22 1992-09-01 Rathor Ag Multi-chambered container
US5171219A (en) * 1989-06-08 1992-12-15 Sumitomo Pharmaceuticals Co., Ltd. Pharmaceutical preparation administrator
US5195966A (en) * 1987-12-24 1993-03-23 Diversey Limited Treatment of mastitis and applicator therefor
USRE34365E (en) * 1981-07-13 1993-08-31 Intravenous system for delivering a beneficial agent
US5246670A (en) * 1992-09-23 1993-09-21 Habley Medical Technology Corporation Pharmaceutical mixing container with buoyant mixing element
US5320845A (en) * 1993-01-06 1994-06-14 Py Daniel C Apparatus for delivering multiple medicaments to an eye without premixing in the apparatus
EP0645123A1 (en) * 1993-09-23 1995-03-29 Heraeus Kulzer Gmbh Syringe for dosing viscous substances, in particular for dental substances
GB2291356A (en) * 1994-07-18 1996-01-24 Braun Medical Ag Disposable mixing syringe set with a filter and a container
US5613957A (en) * 1991-12-02 1997-03-25 Daniel Py Apparatus for applying medicament to an eye
WO1997013470A1 (en) * 1995-10-10 1997-04-17 Johnson Jimmie L Constituent delivery system
US5722955A (en) * 1994-08-04 1998-03-03 Epimed International, Inc. Pressure sensing syringe
WO1998020921A1 (en) * 1996-11-13 1998-05-22 Astra Aktiebolag Membrane and a chamber of a drug delivery device
WO1999024171A2 (en) * 1997-11-08 1999-05-20 Ing. Erich Pfeiffer Gmbh Application method for at least two different media and dispenser therefor
US6007689A (en) * 1994-11-01 1999-12-28 Visible Genetics Inc. Apparatus for preparing gels for use in electrophoretic separations and similar applications
US6149866A (en) * 1996-06-19 2000-11-21 Orion-Yhtyma Oyj Stopper having a cavity for reagents and an assay method using said stopper
USRE37047E1 (en) 1992-04-06 2001-02-06 Daniel Py Cartridge for applying medicament to an eye from a dispenser
US6343718B1 (en) 1998-10-15 2002-02-05 Loctite Corporation Unit dose dispense package
US20020042592A1 (en) * 2000-10-10 2002-04-11 Wilmot John G. Wet/dry automatic injector assembly
US6372270B1 (en) * 1999-05-26 2002-04-16 Sean P. Denny Drink mix apparatus for making personal quantities of beverage
US6679248B2 (en) * 2000-07-27 2004-01-20 Ing. Erich Pfeiffer Gmbh Discharge apparatus for media
US6682347B2 (en) * 2000-05-31 2004-01-27 Gc Corporation Capsule for dental restoration material
US20040020796A1 (en) * 2002-08-01 2004-02-05 Cheetham Jeffery James Dental material container
US20040079363A1 (en) * 2001-01-12 2004-04-29 Casper Robert A. Medicament respiratory delivery device and method
US20040221864A1 (en) * 2004-03-24 2004-11-11 Michael Capristo Hair coloring apparatus, kit and associated methods
US20040234450A1 (en) * 2001-01-22 2004-11-25 Howes Randolph M. Compositions, methods, apparatuses, and systems for singlet oxygen delivery
US20050000514A1 (en) * 2001-01-12 2005-01-06 Becton, Dickinson And Company Medicament microdevice delivery system, cartridge and method of use
EP1577227A1 (en) * 2004-03-11 2005-09-21 3M Espe Ag Capsule for storage, mixing and dispensing materials
WO2005123538A1 (en) * 2004-06-15 2005-12-29 Czech, Christian Bottle fixture set
DE10151104B4 (en) * 2001-10-16 2006-01-19 E. Braun Gmbh Device for mixing two components
US20060116657A1 (en) * 2003-03-21 2006-06-01 Daniel Schmid Mixing capsule
US20070183986A1 (en) * 2006-02-06 2007-08-09 Ultradent Products, Inc. Methods and systems for mixing a multi-part fluoride varnish composition
US20080149502A1 (en) * 2005-02-15 2008-06-26 Mtf Meditech Franken Gmbh Mixing Device
US20080312588A1 (en) * 2005-05-20 2008-12-18 Giovanni Faccioli Cartridge For Storage and Delivery of a Two-Phase Compound
US20100307935A1 (en) * 2006-05-01 2010-12-09 Ultradent Products, Inc. Syringe-in-syringe hollow inner barrel/plunger with integral seal and rupturable membrane and related kits, systems, and methods
US20100323322A1 (en) * 2007-02-09 2010-12-23 Ultradent Products, Inc Syringe-in-Syringe Hollow Inner Barrel/Plunger With Integral Seal and Rupturable Membrane and Related Kits, Systems and Methods
US20110056853A1 (en) * 2009-09-08 2011-03-10 Sdi (North America), Inc. Container for mixing of components
US20120026823A1 (en) * 2009-04-28 2012-02-02 Medmix Systems Ag Apparatus for mixing and discharging a fluid product and related system
US20140034670A1 (en) * 2012-08-01 2014-02-06 Joshua James Cheetham Mixing and dispensing container
US20140046380A1 (en) * 2012-08-09 2014-02-13 Wilson Theophilo Asfora Joint fusion
US8833606B2 (en) 2012-01-03 2014-09-16 Howmedica Osteonics Corporation Device and method for mixing and applying biomaterials
CN104306155A (en) * 2014-11-07 2015-01-28 广州德米医用设备有限公司 Method for fixing air filter membrane and air inlet of disposable medicine feeder
WO2015104694A1 (en) * 2014-01-13 2015-07-16 Hubert De Backer Nv Injection syringe with child-resistant cap
US20160045283A1 (en) * 2013-03-26 2016-02-18 3M Innovative Properties Company A plunger assembly and a capsule for dispensing a dental material
USD807502S1 (en) 2015-03-02 2018-01-09 Neomed, Inc. Enteral syringe
USD831203S1 (en) 2015-03-02 2018-10-16 Neomed, Inc. Enteral syringe
USD831204S1 (en) 2015-03-02 2018-10-16 Neomed, Inc. Enteral syringe
CN109475694A (en) * 2016-07-19 2019-03-15 奥罗菲诺制药集团责任有限公司 With syringe, the prefilled injection devices with multiple chambers
US10307337B2 (en) 2015-03-24 2019-06-04 Neomed, Inc. Oral administration coupler for back-of-mouth delivery
US10369294B2 (en) * 2010-07-22 2019-08-06 Kevin Abbott Fluid dose dispensing apparatus
US10420709B2 (en) 2015-07-14 2019-09-24 Neomed, Inc. Dosing control coupling for enteral fluid transfer
US10682287B2 (en) 2015-07-14 2020-06-16 Neomed, Inc. Dosing control coupling for enteral fluid transfer and enteral couplings and syringes
CN112638446A (en) * 2018-07-09 2021-04-09 V·K·沙玛 Multi-volume drug delivery system with vacuum assisted mixing and/or delivery
US10981713B2 (en) 2009-01-12 2021-04-20 Aktivax, Inc. Packaged products, inserts and compartments for aseptic mixing of substances, along with methods for use therewith
US10987147B2 (en) * 2017-05-17 2021-04-27 Heraeus Medical Gmbh Bone cement applicator with hollow cylinder on delivery plunger
US11077021B2 (en) * 2016-02-09 2021-08-03 Sanofi-Aventis Deutschland Gmbh Two-chamber carpule
US11154343B2 (en) * 2016-11-11 2021-10-26 Heraeus Medical Gmbh Device and method for storing and mixing bone cement
US11260177B1 (en) * 2014-03-18 2022-03-01 Yasser Sadek Dental anesthetic buffer system
WO2022072361A1 (en) * 2020-09-30 2022-04-07 Nspire Medical Technologies, Llc For integrated injectable drug packaging and delivery system and methods of use
US11344739B2 (en) 2019-02-07 2022-05-31 Asha Medical, Inc. System and methods for treating cancer cells with alternating polarity magnetic fields

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1943120A (en) * 1930-05-21 1934-01-09 Kabnick Stuart Hypodermic syringe
US3595439A (en) * 1969-09-09 1971-07-27 Minnesota Mining & Mfg Combination mixing capsule and dispenser
US3684136A (en) * 1971-02-22 1972-08-15 Erwin H Baumann Receptacle having a dividing wall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1943120A (en) * 1930-05-21 1934-01-09 Kabnick Stuart Hypodermic syringe
US3595439A (en) * 1969-09-09 1971-07-27 Minnesota Mining & Mfg Combination mixing capsule and dispenser
US3684136A (en) * 1971-02-22 1972-08-15 Erwin H Baumann Receptacle having a dividing wall

Cited By (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054138A (en) * 1974-12-30 1977-10-18 Louis Bucalo Implants for acting on living beings
US4291695A (en) * 1976-04-05 1981-09-29 Duphar International Research B.V. Disposable injection syringe
DE2800587A1 (en) * 1978-01-07 1979-07-12 Korte Jungermann Ges Fuer Fass Compartmented spraying cartridge - contg. reactive material in each section pref. made of polyethylene, with aluminium foil as easily rupturable partitions
US4208133A (en) * 1978-01-07 1980-06-17 Korte-Jungermann Gesellschaft fur Fassadenbau und Befesstigungstechnik mit beschrankter Haftung Injection cartridge
US4412836A (en) * 1979-04-27 1983-11-01 The West Company, Incorporated Syringe assembly
US4254768A (en) * 1979-09-14 1981-03-10 Ty Perla J Hypodermic syringe
DE2939953A1 (en) * 1979-10-02 1981-04-09 Siemens AG, 1000 Berlin und 8000 München MIXING CARTRIDGE FOR MULTI-COMPONENT CASTING RESINS
EP0059694A1 (en) * 1981-02-26 1982-09-08 Aktiebolaget Hässle Drug administration device
US4857052A (en) * 1981-07-13 1989-08-15 Alza Corporation Intravenous system for delivering a beneficial agent
US4985017A (en) * 1981-07-13 1991-01-15 Alza Corporation Parenteral therapeutical system comprising drug cell
US4994031A (en) * 1981-07-13 1991-02-19 Alza Corporation Intravenous system for delivering a beneficial agent
US5069671A (en) * 1981-07-13 1991-12-03 Alza Corporation Intravenous medication
US4973307A (en) * 1981-07-13 1990-11-27 Alza Corporation Method for administering drugs to a patient
US4790820A (en) * 1981-07-13 1988-12-13 Alza Corporation Parenteral agent dispensing equipment with drug releasing member
USRE34365E (en) * 1981-07-13 1993-08-31 Intravenous system for delivering a beneficial agent
US4871360A (en) * 1981-07-31 1989-10-03 Alza Corporation System for intravenous delivery of a beneficial drug at a regulated rates
US4586922A (en) * 1981-10-09 1986-05-06 Alza Corporation Intravenous system for delivering a beneficial agent
US4740103A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740197A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent via polymer delivery
US4740198A (en) * 1981-10-09 1988-04-26 Alza Corporation Method of administering intravenous drug using rate-controlled dosage form
US4740199A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4741734A (en) * 1981-10-09 1988-05-03 Alza Corporation Releasing means for adding agent using releasing means to IV fluid
US4583981A (en) * 1981-11-27 1986-04-22 Alza Corporation Parenteral controlled therapy, using a porous matrix with parenteral agent
US4579553A (en) * 1981-11-27 1986-04-01 Alza Corporation Parenteral controlled therapy
US4552556A (en) * 1981-11-27 1985-11-12 Alza Corporation Parenteral controlled therapy
US4908019A (en) * 1982-05-24 1990-03-13 Alza Corporation Apparatus comprising dual reservoirs for parenteral infusion of fluid containing beneficial agent
US4605129A (en) * 1983-12-17 1986-08-12 Internationale Octrooi Maatschapij "Octropa" B.V. Cylindrical container
US4638809A (en) * 1984-03-22 1987-01-27 Kuperus John H Method of preparing radionuclide doses
US4637934A (en) * 1984-04-12 1987-01-20 Baxter Travenol Laboratories, Inc. Liquid container with integral opening apparatus
US4596555A (en) * 1984-05-14 1986-06-24 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US4511352A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system with in-line container
US4511351A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US4657534A (en) * 1985-11-04 1987-04-14 Alcon Laboratories, Inc. Dual compartment, disposable, mixing and dispensing container
US4657134A (en) * 1985-12-26 1987-04-14 Kidde, Inc. Compartmented package
WO1988002265A1 (en) * 1986-09-30 1988-04-07 Institut Merieux Device for injecting substances, particularly medicinal substances
FR2604363A1 (en) * 1986-09-30 1988-04-01 Merieux Inst DEVICE FOR INJECTING SUBSTANCES, ESPECIALLY MEDICINAL PRODUCTS
DE3708442A1 (en) * 1987-03-16 1988-09-29 Patrik Dr Med Gruendler Method and devices for preparing and dispensing a mixture of two components
US5195966A (en) * 1987-12-24 1993-03-23 Diversey Limited Treatment of mastitis and applicator therefor
US5364350A (en) * 1988-03-01 1994-11-15 Alpha-Terapeutic Gmbh Twin-chamber syringe filled with a charge of activity-sensitive human protein
EP0331152A1 (en) * 1988-03-01 1989-09-06 Alpha Therapeutic Gmbh Two-component syringe with a filling of sensitive human protein as the active ingredient
US5176635A (en) * 1988-03-01 1993-01-05 Alpha-Therapeutic Gmbh Twin-chamber syringe filled with a charge of activity-sensitive human protein as active substance
WO1989007934A1 (en) * 1988-03-01 1989-09-08 Alpha Therapeutic Gmbh Twin-chamber syringe filled with a charge of activity-sensitive human protein as active substance
JP2818898B2 (en) 1988-03-01 1998-10-30 アルフア テラポイチク ゲゼルシヤフト ミト ベシユレンクテル ハフツング Dual-chamber syringe with active substance sensitive drug consisting of human protein
FR2629057A1 (en) * 1988-03-25 1989-09-29 Migonney Nicolas Tube contg. water and aspirin - separated by plate broken to dissolve the aspirin
US5143211A (en) * 1988-04-22 1992-09-01 Rathor Ag Multi-chambered container
US5171219A (en) * 1989-06-08 1992-12-15 Sumitomo Pharmaceuticals Co., Ltd. Pharmaceutical preparation administrator
WO1991003224A1 (en) * 1989-08-30 1991-03-21 Polak Robert B Medicament container/dispenser assembly
US5127548A (en) * 1990-02-21 1992-07-07 Valois Medicinal spray device with two substance compartments separated by puncturable membrane
US5685869A (en) * 1991-12-02 1997-11-11 Daniel Py Apparatus for applying medicament to an eye
US5613957A (en) * 1991-12-02 1997-03-25 Daniel Py Apparatus for applying medicament to an eye
US5944702A (en) * 1991-12-02 1999-08-31 Instill & Co. Method for instilling a predetermined volume of medicament into an eye
USRE37047E1 (en) 1992-04-06 2001-02-06 Daniel Py Cartridge for applying medicament to an eye from a dispenser
US5246670A (en) * 1992-09-23 1993-09-21 Habley Medical Technology Corporation Pharmaceutical mixing container with buoyant mixing element
US5320845A (en) * 1993-01-06 1994-06-14 Py Daniel C Apparatus for delivering multiple medicaments to an eye without premixing in the apparatus
EP0645123A1 (en) * 1993-09-23 1995-03-29 Heraeus Kulzer Gmbh Syringe for dosing viscous substances, in particular for dental substances
GB2291356A (en) * 1994-07-18 1996-01-24 Braun Medical Ag Disposable mixing syringe set with a filter and a container
US5722955A (en) * 1994-08-04 1998-03-03 Epimed International, Inc. Pressure sensing syringe
US6007689A (en) * 1994-11-01 1999-12-28 Visible Genetics Inc. Apparatus for preparing gels for use in electrophoretic separations and similar applications
WO1997013470A1 (en) * 1995-10-10 1997-04-17 Johnson Jimmie L Constituent delivery system
US20050070873A1 (en) * 1995-10-10 2005-03-31 The Compak Companies, Llc Constituent delivery system
US6149866A (en) * 1996-06-19 2000-11-21 Orion-Yhtyma Oyj Stopper having a cavity for reagents and an assay method using said stopper
AU717325B2 (en) * 1996-11-13 2000-03-23 Astra Aktiebolag Membrane and a chamber of a drug delivery device
GB2319184B (en) * 1996-11-13 2000-10-25 Astra Ab Drug delivery device
WO1998020921A1 (en) * 1996-11-13 1998-05-22 Astra Aktiebolag Membrane and a chamber of a drug delivery device
US6387074B1 (en) * 1996-11-13 2002-05-14 Astra Aktiebolag Two-chamber drug delivery device comprising a separating membrane
WO1999024171A3 (en) * 1997-11-08 1999-07-15 Pfeiffer Erich Gmbh & Co Kg Application method for at least two different media and dispenser therefor
WO1999024171A2 (en) * 1997-11-08 1999-05-20 Ing. Erich Pfeiffer Gmbh Application method for at least two different media and dispenser therefor
US6626379B1 (en) 1997-11-08 2003-09-30 Ing. Erich Pfeiffer Gmbh Application method for at least two different media and dispenser therefor
US6343718B1 (en) 1998-10-15 2002-02-05 Loctite Corporation Unit dose dispense package
US6372270B1 (en) * 1999-05-26 2002-04-16 Sean P. Denny Drink mix apparatus for making personal quantities of beverage
US20020090426A1 (en) * 1999-05-26 2002-07-11 Denny Sean P. Methods and apparatus for making personal quantities of beverage
US20040104133A1 (en) * 2000-05-31 2004-06-03 Gc Corporation Capsule for dental restoration material
US6682347B2 (en) * 2000-05-31 2004-01-27 Gc Corporation Capsule for dental restoration material
US6869284B2 (en) 2000-05-31 2005-03-22 Gc Corporation Capsule for dental restoration material
US6679248B2 (en) * 2000-07-27 2004-01-20 Ing. Erich Pfeiffer Gmbh Discharge apparatus for media
US20020042592A1 (en) * 2000-10-10 2002-04-11 Wilmot John G. Wet/dry automatic injector assembly
US6953445B2 (en) * 2000-10-10 2005-10-11 Meridian Medical Technologies, Inc. Wet/dry automatic injector assembly
US7051734B2 (en) 2001-01-12 2006-05-30 Becton Dickinson And Company Medicament respiratory delivery device and method
US20040079363A1 (en) * 2001-01-12 2004-04-29 Casper Robert A. Medicament respiratory delivery device and method
US20050000514A1 (en) * 2001-01-12 2005-01-06 Becton, Dickinson And Company Medicament microdevice delivery system, cartridge and method of use
US8251958B2 (en) 2001-01-12 2012-08-28 Becton, Dickinson And Company Medicament microdevice delivery system, cartridge and method of use
US7850663B2 (en) 2001-01-12 2010-12-14 Becton, Dickinson And Company Medicament microdevice delivery system, cartridge and method of use
US20040234450A1 (en) * 2001-01-22 2004-11-25 Howes Randolph M. Compositions, methods, apparatuses, and systems for singlet oxygen delivery
US20050186135A1 (en) * 2001-01-22 2005-08-25 Howes Randolph M. Compositions, methods, apparatuses, and systems for singlet oxygen delivery
DE10151104B4 (en) * 2001-10-16 2006-01-19 E. Braun Gmbh Device for mixing two components
US20040020796A1 (en) * 2002-08-01 2004-02-05 Cheetham Jeffery James Dental material container
US20060116657A1 (en) * 2003-03-21 2006-06-01 Daniel Schmid Mixing capsule
US20070221514A1 (en) * 2004-03-11 2007-09-27 3M Espe Ag Capsule for storage, mixing and dispensing materials
EP1577227A1 (en) * 2004-03-11 2005-09-21 3M Espe Ag Capsule for storage, mixing and dispensing materials
US20050252795A1 (en) * 2004-03-11 2005-11-17 Marc Peuker Capsule for storage, mixing and dispensing materials
US7243660B2 (en) * 2004-03-24 2007-07-17 Michael Capristo Hair coloring apparatus, kit and associated methods
US20040221864A1 (en) * 2004-03-24 2004-11-11 Michael Capristo Hair coloring apparatus, kit and associated methods
WO2005123538A1 (en) * 2004-06-15 2005-12-29 Czech, Christian Bottle fixture set
US7748526B2 (en) * 2005-02-15 2010-07-06 Mtf Meditech Franken Gmbh Mixing device
US20080149502A1 (en) * 2005-02-15 2008-06-26 Mtf Meditech Franken Gmbh Mixing Device
AU2006215866B2 (en) * 2005-02-15 2011-06-09 Mtf Meditech Franken Gmbh Mixing device
US20080312588A1 (en) * 2005-05-20 2008-12-18 Giovanni Faccioli Cartridge For Storage and Delivery of a Two-Phase Compound
US8690419B2 (en) * 2005-05-20 2014-04-08 Tecres S.P.A. Cartridge for storage and delivery of a two-phase compound
US20070183986A1 (en) * 2006-02-06 2007-08-09 Ultradent Products, Inc. Methods and systems for mixing a multi-part fluoride varnish composition
US20100307935A1 (en) * 2006-05-01 2010-12-09 Ultradent Products, Inc. Syringe-in-syringe hollow inner barrel/plunger with integral seal and rupturable membrane and related kits, systems, and methods
US8394052B2 (en) * 2006-05-01 2013-03-12 Ultradent Products, Inc. Syringe-in-syringe hollow inner barrel/plunger with integral seal and rupturable membrane and related kits, systems, and methods
US8454558B2 (en) * 2007-02-09 2013-06-04 Ultradent Products, Inc. Syringe-in-syringe hollow inner barrel/plunger with integral seal and rupturable membrane and related kits, systems and methods
US20100323322A1 (en) * 2007-02-09 2010-12-23 Ultradent Products, Inc Syringe-in-Syringe Hollow Inner Barrel/Plunger With Integral Seal and Rupturable Membrane and Related Kits, Systems and Methods
US9220577B2 (en) 2007-02-09 2015-12-29 Ultradent Products, Inc. Syringe-to-syringe mixing systems and related apparatus and methods
US10981713B2 (en) 2009-01-12 2021-04-20 Aktivax, Inc. Packaged products, inserts and compartments for aseptic mixing of substances, along with methods for use therewith
US20120026823A1 (en) * 2009-04-28 2012-02-02 Medmix Systems Ag Apparatus for mixing and discharging a fluid product and related system
US9061257B2 (en) * 2009-04-28 2015-06-23 Medmix Systems Ag Apparatus for mixing and discharging a fluid product and related system
US20110056853A1 (en) * 2009-09-08 2011-03-10 Sdi (North America), Inc. Container for mixing of components
US8584838B2 (en) * 2009-09-08 2013-11-19 Sdi (North America), Inc. Container for mixing of components
US10369294B2 (en) * 2010-07-22 2019-08-06 Kevin Abbott Fluid dose dispensing apparatus
US8833606B2 (en) 2012-01-03 2014-09-16 Howmedica Osteonics Corporation Device and method for mixing and applying biomaterials
US11351013B2 (en) * 2012-08-01 2022-06-07 SDI North America, Inc. Mixing and dispensing container
US20140034670A1 (en) * 2012-08-01 2014-02-06 Joshua James Cheetham Mixing and dispensing container
US9775690B2 (en) * 2012-08-01 2017-10-03 Sdi North America Inc. Mixing and dispensing container
US20180021111A1 (en) * 2012-08-01 2018-01-25 SDI North America, Inc. Mixing and dispensing container
US10251688B2 (en) 2012-08-09 2019-04-09 Asfora Ip, Llc Screw for joint fusion
US10987144B2 (en) * 2012-08-09 2021-04-27 Asfora Ip, Llc Screw for joint fusion
US9295488B2 (en) * 2012-08-09 2016-03-29 Wilson T. Asfora Joint fusion
US9526548B2 (en) 2012-08-09 2016-12-27 Asfora Ip, Llc System for joint fusion
US9566100B2 (en) 2012-08-09 2017-02-14 Asfora Ip, Llc Screw for joint fusion
US20140046380A1 (en) * 2012-08-09 2014-02-13 Wilson Theophilo Asfora Joint fusion
US10117726B2 (en) * 2013-03-26 2018-11-06 3M Innovative Properties Company Plunger assembly and a capsule for dispensing a dental material
US20160045283A1 (en) * 2013-03-26 2016-02-18 3M Innovative Properties Company A plunger assembly and a capsule for dispensing a dental material
WO2015104694A1 (en) * 2014-01-13 2015-07-16 Hubert De Backer Nv Injection syringe with child-resistant cap
BE1021222B1 (en) * 2014-01-13 2015-08-18 Hubert De Backer Nv INJECTION SYRINGE WITH CHILD SAFE CAP
US11260177B1 (en) * 2014-03-18 2022-03-01 Yasser Sadek Dental anesthetic buffer system
CN104306155A (en) * 2014-11-07 2015-01-28 广州德米医用设备有限公司 Method for fixing air filter membrane and air inlet of disposable medicine feeder
USD807502S1 (en) 2015-03-02 2018-01-09 Neomed, Inc. Enteral syringe
USD831204S1 (en) 2015-03-02 2018-10-16 Neomed, Inc. Enteral syringe
USD831203S1 (en) 2015-03-02 2018-10-16 Neomed, Inc. Enteral syringe
US10307337B2 (en) 2015-03-24 2019-06-04 Neomed, Inc. Oral administration coupler for back-of-mouth delivery
US10624817B2 (en) 2015-03-24 2020-04-21 Neomed, Inc. Oral administration coupler for back-of-mouth delivery
US10682287B2 (en) 2015-07-14 2020-06-16 Neomed, Inc. Dosing control coupling for enteral fluid transfer and enteral couplings and syringes
US10420709B2 (en) 2015-07-14 2019-09-24 Neomed, Inc. Dosing control coupling for enteral fluid transfer
US11077021B2 (en) * 2016-02-09 2021-08-03 Sanofi-Aventis Deutschland Gmbh Two-chamber carpule
CN109475694A (en) * 2016-07-19 2019-03-15 奥罗菲诺制药集团责任有限公司 With syringe, the prefilled injection devices with multiple chambers
US11154343B2 (en) * 2016-11-11 2021-10-26 Heraeus Medical Gmbh Device and method for storing and mixing bone cement
US10987147B2 (en) * 2017-05-17 2021-04-27 Heraeus Medical Gmbh Bone cement applicator with hollow cylinder on delivery plunger
CN112638446A (en) * 2018-07-09 2021-04-09 V·K·沙玛 Multi-volume drug delivery system with vacuum assisted mixing and/or delivery
US11344739B2 (en) 2019-02-07 2022-05-31 Asha Medical, Inc. System and methods for treating cancer cells with alternating polarity magnetic fields
US11577089B2 (en) 2019-02-07 2023-02-14 Asha Medical, Inc. System and methods for treating cancer cells with alternating polarity magnetic fields
US11931593B2 (en) 2019-02-07 2024-03-19 Asha Medical, Inc. System and methods for treating cancer cells with alternating polarity magnetic fields
WO2022072361A1 (en) * 2020-09-30 2022-04-07 Nspire Medical Technologies, Llc For integrated injectable drug packaging and delivery system and methods of use
US11583473B2 (en) 2020-09-30 2023-02-21 Nspire Medical Technologies, Llc Integrated injectable drug packaging and delivery system and methods of use

Similar Documents

Publication Publication Date Title
US3756390A (en) Two-compartment aspirating disposable hypodermic syringe package
US9925327B2 (en) Medical device package
US3759259A (en) Medicator with frangible seal
US20230293819A1 (en) Aseptic cartridge and dispenser arrangement
US4602910A (en) Compartmented flexible solution container
JP4112851B2 (en) Two-chamber prefilled syringe
US5114421A (en) Medicament container/dispenser assembly
US5743312A (en) Component mixing apparatus and system including a movable cannula
US6126640A (en) Protective sealing barrier for a syringe
US3406686A (en) Prefilled syringe
US5860961A (en) Hypodermic injector system and method for maintaining the sterility thereof prior to use
JPH05509025A (en) Flexible container and method for forming the same
US6162205A (en) Container for therapeutic use
US2388323A (en) Hypodermic syringe unit
JP4316718B2 (en) Infusion container
JP2000107257A (en) Transfusion bag
JP2002177388A (en) Pharmaceutical and medical pre-filled syringe
US2300066A (en) Liquid dispensing apparatus
JP2000107255A (en) Drug-mixing transfusion container
US3378007A (en) Disposable hypodermic syringe
WO2003024511A1 (en) Single-use disposable syringe
KR20190001532U (en) Integrated Closure for Medical Use
WO2012043512A1 (en) Pre-filled syringe and individual pre-filled syringe packaging unit
KR900007570Y1 (en) A device for a cap of intravacular drug container
JPH08238314A (en) Injection syringe