US3759328A - Laterally expanding oil shale permeabilization - Google Patents

Laterally expanding oil shale permeabilization Download PDF

Info

Publication number
US3759328A
US3759328A US00252448A US3759328DA US3759328A US 3759328 A US3759328 A US 3759328A US 00252448 A US00252448 A US 00252448A US 3759328D A US3759328D A US 3759328DA US 3759328 A US3759328 A US 3759328A
Authority
US
United States
Prior art keywords
oil shale
fluid
cavern
heat sensitive
relatively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00252448A
Inventor
J Brew
R Ueber
Meurs P Van
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Application granted granted Critical
Publication of US3759328A publication Critical patent/US3759328A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • E21B43/281Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent using heat

Definitions

  • ABSTRACT An improved process of permeabilizing and recovering water soluble and/or heat sensitive minerals and hydrocarbons from an oil shale formation containing said minerals by forming a cavern and vertically expanding it by contacting the cavern roof with a hot aqueous fluid while also causing horizontal expansion of the cavern by contacting the oil shale therein with the same or different hot aqueous fluid at a relatively shallow depth and flowing down along a vertical section while dissolving said minerals and rubbling the oil' shale and producing from a relatively deep location in the cavern an aqueous liquid containing dissolved minerals therein and subsequently or simultaneously injecting a pyrolyzing fluid into the rubbled oil shale cavern to effect pyrolysis of the oil shale and recovery of hydrocarbons therefrom.
  • the present invention relates to production of hydrocarbons and/or water soluble and/or heat sensitive minerals from underground oil shale formations by controlled circulation of a hot aqueous fluid through said oil shale formation so as to vertically and horizontally expand a permeable zone of rubbled oil shale within said formation by leaching and recovering said miner als from a relatively deep location within the treated area of the formation and thereafter injecting a pyrolyzing fluid into the rubbled oil shale to effect pyrolysis and recovery of hydrocarbons therefrom.
  • the present invention is directed to an improved method of recovering hydrocarbons and water-soluble carbonates and/or heat sensitive materials from underground oil shale formations containing substantial amounts of said carbonate and/or minerals by forming a cavern therein by leaching with an aqueous fluid said carbonates and/or minerals and imparting permeability while effecting rubbling of the oil shale in said treated area by contacting and flowing a hot aqueous fluid downward from a relatively shallow depth along a vertical interval of said treated oil shale to cause horizontal expansion and-recovering from a relatively deep depth an aqueous liquid containing dissolved therein watersoluble'carbonates and/or heat sensitive minerals and subsequently injecting a pyrolyzing fluid or solvent to effect recovery of hydrocarbons from the rubbled oil shale.
  • FIG. 1 is a vertical section showing a subterranean oil shale and downhole equipment for practicing the present invention.
  • FIG. 2 is a schematic illustration of a flow path for circulating fluid in accordance with the present invention.
  • FIG. 3 is a vertical section showing an alternative arrangement of downhole equipment of the type shown in FIG. 1.
  • the present invention is in part premised on a discovery that, in a cavern in an oil shale that contains a significant amount of heat sensitive minerals and/or water soluble carbonates a hot aqueous fluid can be caused to flow along a path that causes a horizontal expansion of the cavern.
  • the rate at which a hot aqueous fluid is segregated into layers having increasing densities has been found to be related to the rate at which heat can be transferred into the walls of the cavern in a manner conducive to the establishing and maintaining of the flow path described above, and the resultant heating and leaching along substantially vertical portions of the walls of such a cavern has been found to cause a horizontal expansionof the cavern.
  • cavern is used to refer to any relatively solids free opening, such asa cave, void, tunnel, borehole, or interconnected fractures, etc., in which the rate of gravity segregation of fluids is not significantly impeded by a lack of permeability.
  • the fluid circulation and cavern expansion operations can be initiated by opening at least a single well into an interval of oil shale that contains heat sensitive minerals and/or water soluble carbonates, inflowing hot fluid into contact with an upper portion of the borehole wall, flowing the hot fluid down along the borehole wall, and removing liquid containing dissolved minerals and/or water-soluble carbonates from a lower portion of the borehole.
  • a plurality of wells can be used to provide flow paths into a horizontally extensive cavern in or adjacent to oil shale that contains heat sensitive minerals and/or water-soluble carbonates and the wells and the cavern can be utilized to cause a concurrent horizontal and vertical expansion of a permeable zone by inflowing hot aqueous fluid into contact with a upper portion of such oil shale, flowing fluid downward along a vertical interval of such oil shale, flowing fluid horizontally along the roof of the cavern, and removing liquid containing dissolved minerals and/or water-soluble carbonates from within the cavern.
  • heat sensitive and/or water-soluble carbonate refers to materials that decompose relatively rapidly at a relatively low temperature, such as one between about 250 F to about 700 F to yield carbon dioxide and water.
  • heat sensitive carbonate minerals include nahcolite, dawsonite, trona, and the like minerals, which are usually inclusive of saline carbonate and/or bicarbonate molecular structures or moities.
  • a borehole is drilled into a relatively low-lying portion of oil shale which contains or is adjacent to a layer or region that is relatively rich in water soluble mineral.
  • Such water soluble minerals are frequently encountered in oil shale formations in the United States, such as the Green River formation in Colorado, in the form of beds, lenses, nodules, nodes, veins or the like.
  • Examples of such water soluble minerals include the alkali metal chloride salts such as halite minerals and/or water soluble heat sensitive carbonate minerals such as nahcolite, trona, or the like.
  • geological investigation procedures are utilized to locate a portion of oil shale that contains heat sensitive carbonate mineral and is underlain by a portion or layer that contains water soluble mineral.
  • the water soluble mineral is solution mined or leached for example, by means of a process of the type described in copending patent application Ser. No. 770,964; filed Oct. 28, 1968, now abandoned, and Ser. No. 860,349; filed Sept. 23, 1969, now abandoned.
  • FIG. 1 shows a portion of a well borehole 1 which has been drilled through an overburden 2, comprising successively shallower earth formations, and opened into an oil shale formation 3 that contains a heat sensitive carbonate mineral.
  • the oil shale formation that is placed in fluid communication with a portion of the borehole to be used in practicing the present invention, should be a formation containing a significant proportion, e.g., greater than 5 percent by weight, of heat sensitive carbonate mineral.
  • Borehole 1 is equipped with a string of casing 4, which is bonded to the surrounding earth formations by cement 5.
  • conduits for conveying fluids between a surface location and, respectively, relatively shallow and relatively deep depths within the oil shale are provided by tubing strings 7 and 8.
  • such conduits may comprise two or more parallel strings of tubing and may be located in two or more well boreholes that intersect or extend into a common cavern within the oilshale.
  • Such conduits can be installed and equipped by means of known procedures and devices and heat insulation (not shown) is preferably installed around at least those of such conduits that are used for the inflowing of hot fluid.
  • the vertically extensive cavern or opening that is expanded by the present process can comprise the borehole of a well that extends into an interval of oil shale that contains heat sensitive carbonatematerial.
  • Such an interval preferably has a vertical thickness of at least about 100 feet.
  • a borehole may have a generally cylindrical form, such as indicated by the dotted line 1a, and may comprise a relatively slender, generally vertical cavern within the oil shale.
  • a hot aqueous fluid is flowed into contact with the wall of the cavern by inflowing hot aqueous gas and/or liquid through the annulus within pipe 8 (i.e., the space between pipes 7 and 8) and through adjacent perforations 6 at a relatively shallow depth within the carbonate mineralcontaining portion of the oil shale.
  • the inflowing fluid such as hot water and/or steam flows downward along the face of the vertical interval of oil shale (along the wall of the borehole) and decomposes and dissolves the heat sensitive carbonate mineral material.
  • the dissolving of water soluble material forms a liquid solution 9.
  • This solution which is usually mixed with at least some gas, such as carbon dioxide and gaseous hydrocarbon,
  • the inflowing of hot aqueous fluid can advantageously be preceded by a circulation of aqueous liquid at a relatively low temperature, such as the wellhead temperature, the temperature of the source of the liquid or the like.
  • the circulating liquid may leach out significant portions of distributed layers or particles of the soluble mineral. This increases the surface area of exposed oil shale and/or weakens the support for layers or chunks of the oil shale.
  • a pretreatment circulation can advantageously be continued while the rate of dissolution is high, e.g., as indicated by the proportion of solute in the outflowing liquid.
  • the so-circulated aqueous liquid can then be gradually or rapidly heated to the temperature selected for the inflowing hot aqueous liquid used to decompose heat sensitive carbonate material, with or without an interruption of the flow through the cavern.
  • the vertical expansion of the cavern can be inhibited by spotting and maintaining a relatively light and cool fluid 13 along the roof of the cavern.
  • a fluid is preferably a gas and can in inflowed, or maintained substantially stationary, in and around the annulus within casing 4 (i.e., the space between pipe 8 and casing 4) and the upper portion of borehole 1 (below cement 5) to extend along the roof of the horizontally expanding cavern as the walls of the cavern more radially outward to and beyond the location shown at 1b.
  • the hot aqueous fluid used in the present cavernenlarging procedure is preferably steam, hot aqueous liquid (hot water) or a mixture of such fluids.
  • the hot fluid is preferably inflowed at a temperature, e.g., at least about 250 F, that is significantly higher than the normal temperature of the subterranean oil shale formation.
  • the heat transported by such a hot fluid converts the heat sensitive carbonate material to carbon dioxide and water vapor within portions of the normally impermeable oil shale matrix. Such a generation of gas causes localized fracturing and/or spalling of the oil shale.
  • the aqueous liquid component of the inflowing hot fluid dissolves water soluble mineral material and creates additional solid-free void space. This occurs along most, if not all, of the vertical extent of the flow path used in the present process. The spalling and dissolution causes a horizontal expansion of a rubblecontaining cavern.
  • the inflowing hot aqueous fluid can comprise super heated, dry, or wet steam, or a mixture of such a steam with substantially any gas vapor or liquid, such as carbon dioxide, phenols, hydrocarbons, alcohols, halogenated hydrocarbons, acids, or the like, or with substantially any aqueous solution, such as an aqueous acid or base or solution or neutral salt. Where the inflowing fluid is substantially completely gaseous it should contain sufficient steam to provide a significant amount of aqueous liquid as it condenses within.
  • the inflowing hot aqueous fluid can be heated by means of surface located and/or downhole located, steam generators, water heaters, or the like. Alternatively, or additionally, such heating can be effected or supplemented in an insitu combustion within the oil shale formation.
  • the temperature of the inflowing hot aqueous fluid can range from about 250? F to one sufficient to cause a relatively rapid oil shale pyrolysis, e.g., a temperature of from about 600 to 1000F.
  • the inflowing aqueous liquid phase of the hot aqueous fluid dissolves naturally water soluble minerals such as nahcolite, trona, halite, or the like, and/or water soluble decomposition products from a heat sensitive carbonate material, such as nahcolite, etc., to create solid-free space within the oil shale.
  • Various water soluble minerals such as nahocolite (NaI-ICO may dissolve prior to any thermal decomposition, if the pressure is sufficiently high at the temperature of the inflowing fluid.
  • such minerals may be partially or wholly decomposed to gaseous fluids and sodium carbonate before dissolution.
  • the portion of oil shale formation which is treated in accordance with the present invention must contain a significant amount of heat sensitive carbonate material, it may contain sections, or vertical intervals of as much as several tens of feet thick, which are substantially devoid of heat sensitive and/or water soluble minerals. In such heterogeneous regions, the heat sensitive or soluble minerals are converted or dissolved and removed. Portions of the so-converted oil shale materials become incompetent and break into pieces under the existing local stress field. Such pieces, or chunks, of oil shale mineral materials tend to accumulate on top of ledges of oil shale that contains little or no heat sensitive or soluble material.
  • the application of the present process causes a generally vertical cavernous zone to grow in a horizontal direction.
  • the rate of growth will vary depending upon the heat sensitive and water soluble mineral content of the particular zone.
  • the outer boundary of the zone will generally be very irregular with portions extending several tens of feet further than others.
  • the injected hot aqueous fluid is steam, it is generally preferably to keep much of the rubble-containing kerogen filled with steam and/or gas.
  • FIG. 2 A particularly suitable arrangement of flow paths to be used in the present process is shown in FIG. 2.
  • At least two horizontally separated wells are opened into a region of oil shale that contains heat sensitive carbonate mineral and is located immediately above a layer or zone of oil shale or other earth formation material that is rich in water soluble mineral and/or heat sensitive carbonate mineral.
  • Such wells are used to form an inflow path 14 and an outflow path 15 that are interconnected by a path extending through an areally extensive cavern 6.
  • hot aqueous fluid is inflowed into contact with oil shale containing heat sensitive carbonate material at a relatively shallow depth, flowed down along a vertical section of such oil shale, flowed along the roof of a horizontally extensive cavern within such oil shale, and, liquid containing dissolved mineral material is removed from within the horizontally extensive cavern.
  • a horizontally extensive cavern can advantageously be formed by means of mechanical fracturing, and/or solution mining techniques, for example, by one or more of such techniques described in the above mentioned copending patent applications.
  • a principle advantage of a flow path of the type shown in FIG. 2 is the heat economy and the fact that much larger volumes of oil shale can be rubbled per unit time than could be achieved by either a horizontal or vertical rubbling by itself. Relative to horizontal rubbling from a single well, the concurrent vertical and horizontal rubbling is capable of providing much higher oil production rates, particularly in the early stages of the process.
  • Such a flow path can be utilized to produce a relatively cool fluid with much of the produced hydrocarbon and injected fluid being outflowed in the liquid phase.
  • a flow path of the type shown in FIG. 2 can be initiated between one or more pairs of wells.
  • Initial communication is preferably achieved by fracturing or dissolving within the layer of water soluble material until fluid injected in one well can be produced from another.
  • Hot aqueous fluid is then injected at the top of an injected well and fluid is produced from within a generally horizontal cavern or flow path through a production well.
  • the upper portion of the injection well will enlarge laterally and the lower portion or rubble-containing cavern will enlarge vertically so that the permeable zone is expanded both laterally and vertically. It is in the lower region of the rubble-containing cavern that heat improvements are made.
  • the inflowing fluid preferably has a temperature below one at which the pyrolysis of kerogen is rapid. Where it is desired to rubble large volumes of oil shale while removing solid materials and preheating the shale for later pyrolysis, such a use of a relatively low temperature results in significant heat economy. If communication between different patterns of injection and production wells is desired the depth of the location from which liquid is produced can be kept relatively deep within the soluble layer so that the circulating fluid will containue to enlarge the areal extent of the dissolved zone.
  • the production point and production rate can be adjusted to leave a substantially saturated liquid solution in the soluble layer in order to prevent its further growth.
  • Such a versatility with respect to the size and shape of the cavernous zones that are formed before and/or during a recovery of shale oil is a unique advantage of the present process.
  • the oil shale is thick, large amounts of shale oil can be recovered from a series of zones that are vertically extensive but are horizontally spaced so that problems due to subsidence are avoided.
  • wells in a plurality of horizontally separated patterns that each contain one or more wells opening into a layer rich in water soluble minerals can be operated as described in connection with FIG. 2 to form horizontally expanding permeable zones and produce shale oil.
  • the sizes of the permeable zones can be monitored by means of acoustic, electromagnetic the like measurements of the extents of the substantially void space and/or measurements of the volume of fluids that are contained into caverns.
  • the horizontal expansion of the caverns can be controlled to provide an efficient recovery of oil from nonintersecting, generally vertically extensive zones that are spaced so that undisturbed columns capable of supporting the overburden are left between the depleted zones.
  • the pressure within the cavern cannot be kept high enough to prevent such a decomposition during an oil recovering stage.
  • the retorting and hydrocarbon recovery is preferably conducted at a temperature above about 500 F, and at the depths at which oil shale is usually encountered, the pressure in the cavern cannot be high enough to prevent decomposition of heat sensitive carbonate material at such a temperature, without a danger of creating large scale fractures which are extended into locations in which fractures are undesirable.
  • the circulation of fluid within throne zones or caverns is preferably adjusted to minimize the rate of horizontal growth and/or maximize the rate of oil recovery.
  • Such an adjustment can be effected by increasing the temperature and/or decreasing the aqueous liquid content of the fluid within the cavern. A higher temperature tends to increase the rate of oil recovery (particularly with respect to the gaseous components of shale oil). Altematively, a decrease in the aqueous liquid content tends to reduce the rate of dissolution of soluble mineral.
  • the volume of the depleted oil shale tends to be sufficient, relative to the volume of solids that are removed, to terminate the growth of the permeable zone (unless the oil shale is one that contains an exceptionally large proportion of heat sensitive carbonate mineral).
  • the aqueous liquid content of the fluid within the cavern can be reduced by, for example, circulating substantially dry steam, or a mixture of a dry steam and e. g., carbon dioxide, at a rate and temperature at which the outflowing fluid is predominately gaseous and the aqueous liquid lift within the cavern contains a relatively high proportion of inert inorganic solute.
  • FIG. 3 shows downhole equipment of the type shown in FIG. 1 arranged to effect a downhole separation of the gaseous and liquid phases of the fluid being produced.
  • concentration of heat sensitive carbonate material is relatively high, and/or the temperature of the inflowing hot aqueous fluid is relatively high, a significant amount of gaseous carbon dioxide and water will be formed.
  • borehole 20 is equipped with pipe strings 21, 22 and 23. Some or all of such pipes are preferably thermally insulated, as indicated by coatings 24 on pipes 21 and 22.
  • Pipe 21 through which the hot aqueous fluid is inflowed, opens into the borehole at a relatively shallow depth.
  • Pipe 22 extends to an intermediate depth and is used to outflow fluid that is relatively cool but is predominately gaseous.
  • Pipe 23 extends to a relatively deep depth, is preferably equipped with downhole pumping means (not shown), and is used to outflow fluid that is predominately liquid.
  • the vertical section of borehole between the ends of pipes 22 and 23 serves as a downhole gravity of separation chamber.
  • a relatively light and cool gas such as methane, hydrogen, etc.
  • a relatively light and cool gas can be maintained substantially static, or slowly injected, through and around the upper portion of the borehole and cavern.
  • the hydrocarbons (oil) can be recovered by suitable means such as by contacting the rubbled oil shale within the cavern with a pyrolyzing fluid to effect decomposition of the kerogens to hydrocarbon which is removed from the formation.
  • the pyrolyzing fluid can be injected (FIG. 1) via 7 and recovered via tubing 8 visa versa and in a dual sytem as shown in FIG. 3 the pyrolyzing fluid such as steam can be injected via tubing string 21 and the hydrocarbons recovered via 22 or the process can be reversed.
  • I claim as my invention: 7 1. In a process for expanding a zone of permeability within a subterranean oil shale by forming a permeable zone within a portion that contains heat sensitive carbonate mineral and circulating hot aqueous fluid within the permeable zone, the improvement which comprises:
  • a process of expanding a fluid permeable opening within a subterranean oil shale formation comprising:
  • said solids-free opening and at least one of said paths of fluid communication is extended into an areally extensive opening within an adjacent underlying zone that is rich in water soluble mineral; and said fluid circulation is adjusted to cause a generally vertical expansion of said underlying opening concurrent with said generally horizontal expansion.

Abstract

An improved process of permeabilizing and recovering water soluble and/or heat sensitive minerals and hydrocarbons from an oil shale formation containing said minerals by forming a cavern and vertically expanding it by contacting the cavern roof with a hot aqueous fluid while also causing horizontal expansion of the cavern by contacting the oil shale therein with the same or different hot aqueous fluid at a relatively shallow depth and flowing down along a vertical section while dissolving said minerals and rubbling the oil shale and producing from a relatively deep location in the cavern an aqueous liquid containing dissolved minerals therein and subsequently or simultaneously injecting a pyrolyzing fluid into the rubbled oil shale cavern to effect pyrolysis of the oil shale and recovery of hydrocarbons therefrom.

Description

United States Patent [1 1 Ueber et al.
[111 3,759,328 [4 1 Sept. 18, 1973 LATERALLY EXPANDING OIL SHALE PERMEABILIZATION [75] Inventors: Russell C. Ueber; Peter Van Meurs;
. Jerke R. Brew, all of Houston, Tex.
[73] Assignee: Shell Oil Company, Houston, Tex.
[22] Filed: May 11, 1972 [21] Appl. No.: 252,448
Related US. Application Data [63] Continuatiomin-part of Ser. No. 57,209, July 22,
1970, abandoned.
Primary Examiner-Stephen J. Novosad Attorney-H. L. Denkler et al.
[5 7] ABSTRACT An improved process of permeabilizing and recovering water soluble and/or heat sensitive minerals and hydrocarbons from an oil shale formation containing said minerals by forming a cavern and vertically expanding it by contacting the cavern roof with a hot aqueous fluid while also causing horizontal expansion of the cavern by contacting the oil shale therein with the same or different hot aqueous fluid at a relatively shallow depth and flowing down along a vertical section while dissolving said minerals and rubbling the oil' shale and producing from a relatively deep location in the cavern an aqueous liquid containing dissolved minerals therein and subsequently or simultaneously injecting a pyrolyzing fluid into the rubbled oil shale cavern to effect pyrolysis of the oil shale and recovery of hydrocarbons therefrom.
6 Claims, 3 Drawing Figures INFLOWING HOT '4 FLUID HORIZONTAL EXPANSION VERTICAL FLUID Patented Sept. 18, 1973 3,759,328
OUTFLOWING INFLOWING HOT COOL FLUID I INFLOWING I INERT LIGHT FLUID FLU'D HOT FLUID FLUID OUTFLOWING COOL I I5 I I I I I VERTICAL l EXPANSION INFLOWING OUT- OUTFLOWING STEAM FLOWING LIQUID INVENTORS:
RUSSELL C. UEBER PETER VAN MEURS JERE R. BREW LATERALLY EXPANDING OIL SHALE PERMEABILIZATION CROSS REFERENCES TO RELATED APPLICATIONS This application is a continuation-in-part of copending patent application Ser. No. 57,209 filed July 22, 1970, now abandoned.
BACKGROUND OF THE INVENTION The present invention relates to production of hydrocarbons and/or water soluble and/or heat sensitive minerals from underground oil shale formations by controlled circulation of a hot aqueous fluid through said oil shale formation so as to vertically and horizontally expand a permeable zone of rubbled oil shale within said formation by leaching and recovering said miner als from a relatively deep location within the treated area of the formation and thereafter injecting a pyrolyzing fluid into the rubbled oil shale to effect pyrolysis and recovery of hydrocarbons therefrom.
Various methods have been proposed for imparting permeability to underground oil shale formations such as fracturing by hydraulic or explosive means and/or acidization but they have proven to be ineffective and- /or too expensive to use. Thus, oil shale formations which have been fractured on subsequent pyrolysis with pyrolyzing fluid to effect oil recovery, such fractures tend to close unless high pyrolyzing fluid circulation pressures at least equal to the overburden pressure, are maintained and this is difficult to do. Acidizato control.
SUMMARY OF THE INVENTION The present invention is directed to an improved method of recovering hydrocarbons and water-soluble carbonates and/or heat sensitive materials from underground oil shale formations containing substantial amounts of said carbonate and/or minerals by forming a cavern therein by leaching with an aqueous fluid said carbonates and/or minerals and imparting permeability while effecting rubbling of the oil shale in said treated area by contacting and flowing a hot aqueous fluid downward from a relatively shallow depth along a vertical interval of said treated oil shale to cause horizontal expansion and-recovering from a relatively deep depth an aqueous liquid containing dissolved therein watersoluble'carbonates and/or heat sensitive minerals and subsequently injecting a pyrolyzing fluid or solvent to effect recovery of hydrocarbons from the rubbled oil shale.
DESCRIPTION OF THE DRAWING FIG. 1 is a vertical section showing a subterranean oil shale and downhole equipment for practicing the present invention.
FIG. 2 is a schematic illustration of a flow path for circulating fluid in accordance with the present invention.
FIG. 3 is a vertical section showing an alternative arrangement of downhole equipment of the type shown in FIG. 1.
DESCRIPTION OF THE INVENTION The present invention is in part premised on a discovery that, in a cavern in an oil shale that contains a significant amount of heat sensitive minerals and/or water soluble carbonates a hot aqueous fluid can be caused to flow along a path that causes a horizontal expansion of the cavern. In a cavern within such an oil shale, the rate at which a hot aqueous fluid is segregated into layers having increasing densities, has been found to be related to the rate at which heat can be transferred into the walls of the cavern in a manner conducive to the establishing and maintaining of the flow path described above, and the resultant heating and leaching along substantially vertical portions of the walls of such a cavern has been found to cause a horizontal expansionof the cavern.
The term cavern is used to refer to any relatively solids free opening, such asa cave, void, tunnel, borehole, or interconnected fractures, etc., in which the rate of gravity segregation of fluids is not significantly impeded by a lack of permeability.
In the present process, the fluid circulation and cavern expansion operations can be initiated by opening at least a single well into an interval of oil shale that contains heat sensitive minerals and/or water soluble carbonates, inflowing hot fluid into contact with an upper portion of the borehole wall, flowing the hot fluid down along the borehole wall, and removing liquid containing dissolved minerals and/or water-soluble carbonates from a lower portion of the borehole. Alternatively, a plurality of wells can be used to provide flow paths into a horizontally extensive cavern in or adjacent to oil shale that contains heat sensitive minerals and/or water-soluble carbonates and the wells and the cavern can be utilized to cause a concurrent horizontal and vertical expansion of a permeable zone by inflowing hot aqueous fluid into contact with a upper portion of such oil shale, flowing fluid downward along a vertical interval of such oil shale, flowing fluid horizontally along the roof of the cavern, and removing liquid containing dissolved minerals and/or water-soluble carbonates from within the cavern.
As used herein, the term heat sensitive and/or water-soluble carbonate refers to materials that decompose relatively rapidly at a relatively low temperature, such as one between about 250 F to about 700 F to yield carbon dioxide and water. Examples of heat sensitive carbonate minerals include nahcolite, dawsonite, trona, and the like minerals, which are usually inclusive of saline carbonate and/or bicarbonate molecular structures or moities.
In a preferred embodiment of the present invention, a borehole is drilled into a relatively low-lying portion of oil shale which contains or is adjacent to a layer or region that is relatively rich in water soluble mineral.
Such water soluble minerals (generally saline minerals) are frequently encountered in oil shale formations in the United States, such as the Green River formation in Colorado, in the form of beds, lenses, nodules, nodes, veins or the like. Examples of such water soluble minerals include the alkali metal chloride salts such as halite minerals and/or water soluble heat sensitive carbonate minerals such as nahcolite, trona, or the like.
The locations of portions of subterranean oil shales which contain specific mineral components, such as heat sensitive carbonate minerals and/or water soluble minerals, can be determined by means of known geological investigation procedures and equipment. In a preferred embodiment of the present invention, geological investigation procedures are utilized to locate a portion of oil shale that contains heat sensitive carbonate mineral and is underlain by a portion or layer that contains water soluble mineral. The water soluble mineral is solution mined or leached for example, by means of a process of the type described in copending patent application Ser. No. 770,964; filed Oct. 28, 1968, now abandoned, and Ser. No. 860,349; filed Sept. 23, 1969, now abandoned. Those applications describe procedures for utilizing a water soluble mineral-rich portion of an oil shale to form a cavern that can be expanded before or during the recovery of shale oil from the oil shale exposed in and around the cavern. Such a solution mined cavern in or adjacent to an oil shale that contains heat sensitive carbonate mineral can advantageously be utilized as a horizontally extensive cavern that is expanded vertically during the horizontal expansion of a vertically extensive cavernous zone, such as a section of a borehole.
Referring to the drawing, FIG. 1 shows a portion of a well borehole 1 which has been drilled through an overburden 2, comprising successively shallower earth formations, and opened into an oil shale formation 3 that contains a heat sensitive carbonate mineral. The oil shale formation that is placed in fluid communication with a portion of the borehole to be used in practicing the present invention, should be a formation containing a significant proportion, e.g., greater than 5 percent by weight, of heat sensitive carbonate mineral. Borehole 1 is equipped with a string of casing 4, which is bonded to the surrounding earth formations by cement 5.
Separate conduits for conveying fluids between a surface location and, respectively, relatively shallow and relatively deep depths within the oil shale are provided by tubing strings 7 and 8. Alternatively, such conduits may comprise two or more parallel strings of tubing and may be located in two or more well boreholes that intersect or extend into a common cavern within the oilshale. Such conduits can be installed and equipped by means of known procedures and devices and heat insulation (not shown) is preferably installed around at least those of such conduits that are used for the inflowing of hot fluid.
As indicated by FIG. 1, the vertically extensive cavern or opening that is expanded by the present process can comprise the borehole of a well that extends into an interval of oil shale that contains heat sensitive carbonatematerial. Such an interval preferably has a vertical thickness of at least about 100 feet. In the initial stages, such a borehole may have a generally cylindrical form, such as indicated by the dotted line 1a, and may comprise a relatively slender, generally vertical cavern within the oil shale. In operating the process with the equipment shown in FIG. 1, a hot aqueous fluid is flowed into contact with the wall of the cavern by inflowing hot aqueous gas and/or liquid through the annulus within pipe 8 (i.e., the space between pipes 7 and 8) and through adjacent perforations 6 at a relatively shallow depth within the carbonate mineralcontaining portion of the oil shale. The inflowing fluid such as hot water and/or steam flows downward along the face of the vertical interval of oil shale (along the wall of the borehole) and decomposes and dissolves the heat sensitive carbonate mineral material. The dissolving of water soluble material forms a liquid solution 9. This solution, which is usually mixed with at least some gas, such as carbon dioxide and gaseous hydrocarbon,
is out-flowed through pipe 7, which extends to a relatively low level within the borehole. The decomposing and dissolving of carbonate mineral components of the oil shale causes the spalling and caving in of particles 10 of the oil shale and causes a generally horizontal expansion of a rubble-containing cavernous zone of permeability within the oil shale.
Where the oil shale being treated contains a significant proportion of a mineral, such as a halite, which is water soluble in its natural form, the inflowing of hot aqueous fluid can advantageously be preceded by a circulation of aqueous liquid at a relatively low temperature, such as the wellhead temperature, the temperature of the source of the liquid or the like. In such a pretreatment, the circulating liquid may leach out significant portions of distributed layers or particles of the soluble mineral. This increases the surface area of exposed oil shale and/or weakens the support for layers or chunks of the oil shale. such a pretreatment circulation can advantageously be continued while the rate of dissolution is high, e.g., as indicated by the proportion of solute in the outflowing liquid. The so-circulated aqueous liquid can then be gradually or rapidly heated to the temperature selected for the inflowing hot aqueous liquid used to decompose heat sensitive carbonate material, with or without an interruption of the flow through the cavern.
When necessary or desirable the vertical expansion of the cavern can be inhibited by spotting and maintaining a relatively light and cool fluid 13 along the roof of the cavern. Such a fluid is preferably a gas and can in inflowed, or maintained substantially stationary, in and around the annulus within casing 4 (i.e., the space between pipe 8 and casing 4) and the upper portion of borehole 1 (below cement 5) to extend along the roof of the horizontally expanding cavern as the walls of the cavern more radially outward to and beyond the location shown at 1b.
The hot aqueous fluid used in the present cavernenlarging procedure is preferably steam, hot aqueous liquid (hot water) or a mixture of such fluids. The hot fluid is preferably inflowed at a temperature, e.g., at least about 250 F, that is significantly higher than the normal temperature of the subterranean oil shale formation. The heat transported by such a hot fluid converts the heat sensitive carbonate material to carbon dioxide and water vapor within portions of the normally impermeable oil shale matrix. Such a generation of gas causes localized fracturing and/or spalling of the oil shale.
The aqueous liquid component of the inflowing hot fluid dissolves water soluble mineral material and creates additional solid-free void space. This occurs along most, if not all, of the vertical extent of the flow path used in the present process. The spalling and dissolution causes a horizontal expansion of a rubblecontaining cavern. The inflowing hot aqueous fluid can comprise super heated, dry, or wet steam, or a mixture of such a steam with substantially any gas vapor or liquid, such as carbon dioxide, phenols, hydrocarbons, alcohols, halogenated hydrocarbons, acids, or the like, or with substantially any aqueous solution, such as an aqueous acid or base or solution or neutral salt. Where the inflowing fluid is substantially completely gaseous it should contain sufficient steam to provide a significant amount of aqueous liquid as it condenses within.
the cavern.
The inflowing hot aqueous fluid can be heated by means of surface located and/or downhole located, steam generators, water heaters, or the like. Alternatively, or additionally, such heating can be effected or supplemented in an insitu combustion within the oil shale formation. The temperature of the inflowing hot aqueous fluid can range from about 250? F to one sufficient to cause a relatively rapid oil shale pyrolysis, e.g., a temperature of from about 600 to 1000F.
The inflowing aqueous liquid phase of the hot aqueous fluid dissolves naturally water soluble minerals such as nahcolite, trona, halite, or the like, and/or water soluble decomposition products from a heat sensitive carbonate material, such as nahcolite, etc., to create solid-free space within the oil shale. Various water soluble minerals, such as nahocolite (NaI-ICO may dissolve prior to any thermal decomposition, if the pressure is sufficiently high at the temperature of the inflowing fluid. Alternatively, such minerals may be partially or wholly decomposed to gaseous fluids and sodium carbonate before dissolution.
Although the portion of oil shale formation which is treated in accordance with the present invention must contain a significant amount of heat sensitive carbonate material, it may contain sections, or vertical intervals of as much as several tens of feet thick, which are substantially devoid of heat sensitive and/or water soluble minerals. In such heterogeneous regions, the heat sensitive or soluble minerals are converted or dissolved and removed. Portions of the so-converted oil shale materials become incompetent and break into pieces under the existing local stress field. Such pieces, or chunks, of oil shale mineral materials tend to accumulate on top of ledges of oil shale that contains little or no heat sensitive or soluble material. The accumulation of weight from such chunks, together with the existing stress field, cause such ledges to break into pieces and fall to a lower level. The action of converting kerogen into shale oil materials such as gaseous and liquid hydrocarbons enhances such an operation and, where the oil shale is relatively lean with respect to heat sensitive and soluble materials, the use of hot aqueous fluid heat to a kerogen-pyrolyzing temperature is desirable. Also hydrocarbons can be extracted from the rubbled oil shale by solvent means such as by use of phenols, aromatic solvents, e.g., benzene, xylene, etc.
Due to mechanisms such as those mentioned above, the application of the present process causes a generally vertical cavernous zone to grow in a horizontal direction. The rate of growth will vary depending upon the heat sensitive and water soluble mineral content of the particular zone. The outer boundary of the zone will generally be very irregular with portions extending several tens of feet further than others. In order to enhance horizontal growth while injecting a hot aqueous fluid that is predominantly liquid, it is generally desirable to maintain most or all of the rubble-containing cavern full of liquid. Alternatively, when the injected hot aqueous fluid is steam, it is generally preferably to keep much of the rubble-containing kerogen filled with steam and/or gas.
A particularly suitable arrangement of flow paths to be used in the present process is shown in FIG. 2. At least two horizontally separated wells are opened into a region of oil shale that contains heat sensitive carbonate mineral and is located immediately above a layer or zone of oil shale or other earth formation material that is rich in water soluble mineral and/or heat sensitive carbonate mineral. Such wells are used to form an inflow path 14 and an outflow path 15 that are interconnected by a path extending through an areally extensive cavern 6. As indicated by the arrows, hot aqueous fluid is inflowed into contact with oil shale containing heat sensitive carbonate material at a relatively shallow depth, flowed down along a vertical section of such oil shale, flowed along the roof of a horizontally extensive cavern within such oil shale, and, liquid containing dissolved mineral material is removed from within the horizontally extensive cavern. Such a horizontally extensive cavern can advantageously be formed by means of mechanical fracturing, and/or solution mining techniques, for example, by one or more of such techniques described in the above mentioned copending patent applications.
A principle advantage of a flow path of the type shown in FIG. 2 is the heat economy and the fact that much larger volumes of oil shale can be rubbled per unit time than could be achieved by either a horizontal or vertical rubbling by itself. Relative to horizontal rubbling from a single well, the concurrent vertical and horizontal rubbling is capable of providing much higher oil production rates, particularly in the early stages of the process. Such a flow path can be utilized to produce a relatively cool fluid with much of the produced hydrocarbon and injected fluid being outflowed in the liquid phase. I I
A flow path of the type shown in FIG. 2 can be initiated between one or more pairs of wells. Initial communication is preferably achieved by fracturing or dissolving within the layer of water soluble material until fluid injected in one well can be produced from another. Hot aqueous fluid is then injected at the top of an injected well and fluid is produced from within a generally horizontal cavern or flow path through a production well. The upper portion of the injection well will enlarge laterally and the lower portion or rubble-containing cavern will enlarge vertically so that the permeable zone is expanded both laterally and vertically. It is in the lower region of the rubble-containing cavern that heat improvements are made. With such a flow path, the inflowing fluid preferably has a temperature below one at which the pyrolysis of kerogen is rapid. Where it is desired to rubble large volumes of oil shale while removing solid materials and preheating the shale for later pyrolysis, such a use of a relatively low temperature results in significant heat economy. If communication between different patterns of injection and production wells is desired the depth of the location from which liquid is produced can be kept relatively deep within the soluble layer so that the circulating fluid will containue to enlarge the areal extent of the dissolved zone.
Where communication between different well patterns is not desired, the production point and production rate can be adjusted to leave a substantially saturated liquid solution in the soluble layer in order to prevent its further growth.
Such a versatility with respect to the size and shape of the cavernous zones that are formed before and/or during a recovery of shale oil is a unique advantage of the present process. For example, where the oil shale is thick, large amounts of shale oil can be recovered from a series of zones that are vertically extensive but are horizontally spaced so that problems due to subsidence are avoided. For example, wells in a plurality of horizontally separated patterns that each contain one or more wells opening into a layer rich in water soluble minerals can be operated as described in connection with FIG. 2 to form horizontally expanding permeable zones and produce shale oil. The sizes of the permeable zones can be monitored by means of acoustic, electromagnetic the like measurements of the extents of the substantially void space and/or measurements of the volume of fluids that are contained into caverns. The horizontal expansion of the caverns can be controlled to provide an efficient recovery of oil from nonintersecting, generally vertically extensive zones that are spaced so that undisturbed columns capable of supporting the overburden are left between the depleted zones.
During the initial stages of expanding a rubblecontaining cavern in accordance with the present process, it is not necessary and is generally undesirable to use a temperature high enough to decompose a predominant proportion of the fluid-contacted heat sensitive carbonate material. It is preferable to keep the cavern substantially full of aqueous liquid in which the carbonate material is soluble. This tends to provide the best heat economy since it minimizes the decomposition reaction (which is an endothermic reaction that comsumes heat). In order to keep the cavern substantially filled with aqueous liquid it is preferable to maintain the pressure within the cavern above the decomposition pressure of the heat sensitive carbonate material at the temperature within the cavern. In general the pressure within the cavern cannot be kept high enough to prevent such a decomposition during an oil recovering stage. The retorting and hydrocarbon recovery is preferably conducted at a temperature above about 500 F, and at the depths at which oil shale is usually encountered, the pressure in the cavern cannot be high enough to prevent decomposition of heat sensitive carbonate material at such a temperature, without a danger of creating large scale fractures which are extended into locations in which fractures are undesirable.
When one or a plurality of generally vertically extensive permeable zones have been expanded horizontally to substantially the extent desired, the circulation of fluid within throne zones or caverns is preferably adjusted to minimize the rate of horizontal growth and/or maximize the rate of oil recovery. Such an adjustment can be effected by increasing the temperature and/or decreasing the aqueous liquid content of the fluid within the cavern. A higher temperature tends to increase the rate of oil recovery (particularly with respect to the gaseous components of shale oil). Altematively, a decrease in the aqueous liquid content tends to reduce the rate of dissolution of soluble mineral. Where the removal of solid material from the oil shale is confined to a removal of the fluid products of the pyrolysis reaction and/or the CO and water vapor produced by the decomposition of heat sensitive carbonates, the volume of the depleted oil shale tends to be sufficient, relative to the volume of solids that are removed, to terminate the growth of the permeable zone (unless the oil shale is one that contains an exceptionally large proportion of heat sensitive carbonate mineral). The aqueous liquid content of the fluid within the cavern can be reduced by, for example, circulating substantially dry steam, or a mixture of a dry steam and e. g., carbon dioxide, at a rate and temperature at which the outflowing fluid is predominately gaseous and the aqueous liquid lift within the cavern contains a relatively high proportion of inert inorganic solute.
FIG. 3 shows downhole equipment of the type shown in FIG. 1 arranged to effect a downhole separation of the gaseous and liquid phases of the fluid being produced. Particularly when the concentration of heat sensitive carbonate material is relatively high, and/or the temperature of the inflowing hot aqueous fluid is relatively high, a significant amount of gaseous carbon dioxide and water will be formed. However, to the extent that it is feasible, it is desirable to produce a relatively cool liquid phase fluid that contains a significant proportion of produced shale oil hydrocarbon. In the arrangement shown in FIG. 3, borehole 20 is equipped with pipe strings 21, 22 and 23. Some or all of such pipes are preferably thermally insulated, as indicated by coatings 24 on pipes 21 and 22. Pipe 21, through which the hot aqueous fluid is inflowed, opens into the borehole at a relatively shallow depth. Pipe 22 extends to an intermediate depth and is used to outflow fluid that is relatively cool but is predominately gaseous. Pipe 23 extends to a relatively deep depth, is preferably equipped with downhole pumping means (not shown), and is used to outflow fluid that is predominately liquid. The vertical section of borehole between the ends of pipes 22 and 23 serves as a downhole gravity of separation chamber.
Steam or a mixture of steam and hot aqueous liquid (hot water) is inflowed through pipe 21. The inflowing hottest and lightest gas tends to remain above the cooler and heavier gas and in situ generated carbon dioxide. The cooler gases outflow through pipe 22 while the hotter and lighter inflowing gases tend to flow along the walls of the cavern. Where desirable a relatively light and cool gas, such as methane, hydrogen, etc., can be maintained substantially static, or slowly injected, through and around the upper portion of the borehole and cavern.
Once the rubbled oil shale cavern has been established and the heat sensitive minerals and water-soluble carbonates removed as an aqueous solution, the hydrocarbons (oil) can be recovered by suitable means such as by contacting the rubbled oil shale within the cavern with a pyrolyzing fluid to effect decomposition of the kerogens to hydrocarbon which is removed from the formation. .In recovering the hydrocarbons, the pyrolyzing fluid can be injected (FIG. 1) via 7 and recovered via tubing 8 visa versa and in a dual sytem as shown in FIG. 3 the pyrolyzing fluid such as steam can be injected via tubing string 21 and the hydrocarbons recovered via 22 or the process can be reversed.
It is understood that various changes in the detailed described to explain the invention can be made by per sons skilled in the art within the scope of the invention as expressed in the appended claims.
I claim as my invention: 7 1. In a process for expanding a zone of permeability within a subterranean oil shale by forming a permeable zone within a portion that contains heat sensitive carbonate mineral and circulating hot aqueous fluid within the permeable zone, the improvement which comprises:
inflowing hot aqueous fluid into contact with a subterranean portion of oil shale that contains heat sensitive carbonate mineral at a relatively shallow depth, the temperature of said inflowing fluid being high enough to pyrolyze oil shale;
flowing hot aqueous fluid downward along a vertically extensive portion of oil shale that contains heat sensitive carbonate mineral, from said relatively shallow depth to a deeper depth;
outflowing an aqueous solution of mineral material from a relatively deep depth, in order to cause a horizontal expansion of rubble-containing cavemous zone within said oil shale;
adjusting the rate of said fluid inflows and outflows so as to keep a substantial proportion of the rubble containing cavern filled with fluid; and recovering shale oil with said outflowing fluid.
2. In a process for expanding a zone of permeability within a subterranean oil shale by forming a cavern within a portion-that contains heat sensitive carbonate mineral and circulating hot aqueous fluid within the cavern, the improvement which comprises:
inflowing hot aqueous fluid into contact with a subterranean portion of oil shale that contains heat sensitive carbonate mineral at a relatively shallow depth, the temperature of said inflowing fluid being high enough to pyrolyze oil shale; flowing hot aqueous fluid downward along a vertically extensive portion of oil shale that contains heat sensitive carbonate mineral, from said relatively shallow depth to a deeper depth;
outflowing an aqueous solution of mineral material from a relatively deep depth, in order to cause a horizontal expansion of a rubble-containing cavernous zone within said oil shale;
outflowing a substantially gaseous fluid from the rubble-containing cavern at an intermediate depth between the depth of said inflow of hot aqueous fluid and said outflow of aqueous liquid solution; and recovering shale oil with said outflowing fluid.
3. In a process for expanding a zone of permeability within a subterranean oil shale by forming a cavern within a portion that contains heat sensitive carbonate mineral and circulating hot aqueous fluid within the cavern, the improvement which comprises:
inflowing hot aqueous fluid into contact with a subterranean portion of oil shale that contains heat sensitive carbonate mineral at a relatively shallow depth, the temperature of said inflowing fluid being high enough to pyrolyze oil shale;
flowing a mixture of a hot aqueous fluid, gaseous carbon dioxide and hydrocarbon downward along a vertically extensive portion of oil shale that contains heat sensitive carbonate mineral, from said relatively shallow depth to a deeper depth;
outflowing an aqueous solution of mineral material from a relatively deep depth, in order to cause a horizontal expansion of a rubble-containing cavernous zone within said oil shale; and
recovering shale oil with said outflowing fluid.
4. A process of expanding a fluid permeable opening within a subterranean oil shale formation, comprising:
establishing separate paths of fluid communication between a surface location and upper and lower portions of a relatively solids-free opening within a subterranean oil shale formation that contains heat sensitive carbonate material;
inflowing relatively hot and relatively low density aqueous fluid into contact with the oil shale around the upper portion of said opening at a temperature sufiicient to cause a localized removal of solid material from the oil shale;
removing cooler and heavier fluid from the lower portion of the opening within said oil shale formation at a rate correlated with the rate of fluid inflow to maintain a layer of relatively hot and low density aqueous fluid above a layer of relatively cooler and higher density aqueous solution of mineral material; and
continuing said fluid circulation to cause a generally horizontal expansion of the opening within said oil shale formation due to a decomposition dissolution of solid components of the oil shale.
5. The process of claim 4 in which said subterranean oil shale formation contains at least about 5 percent by weight of heat sensitive carbonate material.
6. The process of claim 4 in which:
said solids-free opening and at least one of said paths of fluid communication is extended into an areally extensive opening within an adjacent underlying zone that is rich in water soluble mineral; and said fluid circulation is adjusted to cause a generally vertical expansion of said underlying opening concurrent with said generally horizontal expansion.

Claims (5)

  1. 2. In a process for expanding a zone of permeability within a subterranean oil shale by forming a cavern within a portion that contains heat sensitive carbonate mineral and circulating hot aqueous fluid within the cavern, the improvement which comprises: inflowing hot aqueous fluid into contact with a subterranean portion of oil shale that contains heat sensitive carbonate mineral at a relatively shallow depth, the temperature of said inflowing fluid being high enough to pyrolyze oil shale; flowing hot aqueous fluid downward along a vertically extensive portion of oil shale that contains heat sensitive carbonate mineral, from said relatively shallow depth to a deeper depth; outflowing an aqueous solution of mineral material from a relatively deep depth, in order to cause a horizontal expansion of a rubble-containing cavernous zone within said oil shale; outflowing a substantially gaseous fluid from the rubble-containing cavern at an intermediate depth between the depth of said inflow of hot aqueous fluid and said outflow of aqueous liquid solution; and recovering shale oil with said outflowing fluid.
  2. 3. In a process for expanding a zone of permeability within a subterranean oil shale by forming a cavern within a portion that contains heat sensitive carbonate mineral and circulating hot aqueous fluid within the cavern, the improvement which comprises: inflowing hot aqueous fluid into contact with a subterranean portion of oil shale that contains heat sensitive carbonate mineral at a relatively shallow depth, the temperature of said inflowing fluid being high enough to pyrolyze oil shale; flowing a mixture of a hot aqueous fluid, gaseous carbon dioxide and hydrocarbon downward along a vertically extensive portion of oil shale that contains heat sensitive carbonate mineral, from said relatively shallow depth to a deeper depth; outflowing an aqueous solution of mineral material from a relatively deep depth, in order to cause a horizontal expansion of a rubble-containing cavernous zone within said oil shale; and recovering shale oil with said outflowing fluid.
  3. 4. A process of expanding a fluid permeable opening within a subterranean oil shale formation, comprising: establishing separate paths of fluid communication between a surface location and upper and lower portions of a relatively solids-free opening within a subterranean oil shale formation that contains heat sensitive carbonate material; inflowing relatively hot and relatively low density aqueous fluid into contact with the oil shale around the upper portion of said opening at a temperature sufficient to cause a localized removal of solid material from the oil shale; removing cooler and heavier fluid from the lower portion of the opening within said oil shale formation at a rate correlated with the rate of fluid inflow to maintain a layer of relatively hot and low density aqueous fluid above a layer of relatively cooler and higher density aqueous solution of mineral material; and continuing said fluid circulation to cause a generally horizontal expansion of the opening within said oil shale formation due to a decomposition dissolution of solid components of the oil shale.
  4. 5. The process of claim 4 in which said subterranean oil shale formation contains at least about 5 percent by weight of heat sensitive carbonate material.
  5. 6. The process of claim 4 in which: said solids-free opening and at least one of said paths of fluid communication is extended into an areally extensive opening within an adjacent underlying zone that is rich in water soluble mineral; and said fluid circulation is adjusted to cause a generally vertical expansion of said underlying opening concurrent with said generally horizontal expansion.
US00252448A 1972-05-11 1972-05-11 Laterally expanding oil shale permeabilization Expired - Lifetime US3759328A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25244872A 1972-05-11 1972-05-11

Publications (1)

Publication Number Publication Date
US3759328A true US3759328A (en) 1973-09-18

Family

ID=22956046

Family Applications (1)

Application Number Title Priority Date Filing Date
US00252448A Expired - Lifetime US3759328A (en) 1972-05-11 1972-05-11 Laterally expanding oil shale permeabilization

Country Status (1)

Country Link
US (1) US3759328A (en)

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880238A (en) * 1974-07-18 1975-04-29 Shell Oil Co Solvent/non-solvent pyrolysis of subterranean oil shale
US3888307A (en) * 1974-08-29 1975-06-10 Shell Oil Co Heating through fractures to expand a shale oil pyrolyzing cavern
US4026360A (en) * 1976-08-12 1977-05-31 Shell Oil Company Hydrothermally forming a flow barrier in a leached subterranean oil shale formation
US4059308A (en) * 1976-11-15 1977-11-22 Trw Inc. Pressure swing recovery system for oil shale deposits
US4065183A (en) * 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4083604A (en) * 1976-11-15 1978-04-11 Trw Inc. Thermomechanical fracture for recovery system in oil shale deposits
US4545891A (en) * 1981-03-31 1985-10-08 Trw Inc. Extraction and upgrading of fossil fuels using fused caustic and acid solutions
US4688637A (en) * 1987-02-27 1987-08-25 Theis Ralph W Method for induced flow recovery of shallow crude oil deposits
US4815790A (en) * 1988-05-13 1989-03-28 Natec, Ltd. Nahcolite solution mining process
US5059307A (en) * 1981-03-31 1991-10-22 Trw Inc. Process for upgrading coal
US5085764A (en) * 1981-03-31 1992-02-04 Trw Inc. Process for upgrading coal
US5588713A (en) * 1995-12-20 1996-12-31 Stevenson; Tom D. Process for making sodium bicarbonate from Nahcolite-rich solutions
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US20020038069A1 (en) * 2000-04-24 2002-03-28 Wellington Scott Lee In situ thermal processing of a coal formation to produce a mixture of olefins, oxygenated hydrocarbons, and aromatic hydrocarbons
US20030102124A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal processing of a blending agent from a relatively permeable formation
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US20050051327A1 (en) * 2003-04-24 2005-03-10 Vinegar Harold J. Thermal processes for subsurface formations
US7207395B2 (en) 2004-01-30 2007-04-24 Cdx Gas, Llc Method and system for testing a partially formed hydrocarbon well for evaluation and well planning refinement
US7222670B2 (en) 2004-02-27 2007-05-29 Cdx Gas, Llc System and method for multiple wells from a common surface location
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US7264048B2 (en) 2003-04-21 2007-09-04 Cdx Gas, Llc Slot cavity
US7360595B2 (en) * 2002-05-08 2008-04-22 Cdx Gas, Llc Method and system for underground treatment of materials
US7571771B2 (en) 2005-05-31 2009-08-11 Cdx Gas, Llc Cavity well system
US7640987B2 (en) 2005-08-17 2010-01-05 Halliburton Energy Services, Inc. Communicating fluids with a heated-fluid generation system
US7644993B2 (en) 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US8200072B2 (en) 2002-10-24 2012-06-12 Shell Oil Company Temperature limited heaters for heating subsurface formations or wellbores
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US8291974B2 (en) 1998-11-20 2012-10-23 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8297350B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8333245B2 (en) 2002-09-17 2012-12-18 Vitruvian Exploration, Llc Accelerated production of gas from a subterranean zone
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
CN101313126B (en) * 2005-10-24 2013-01-16 国际壳牌研究有限公司 Solution mining systems and methods for treating hydrocarbon containing formations
US8376039B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8376052B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for surface production of gas from a subterranean zone
US8434568B2 (en) 1998-11-20 2013-05-07 Vitruvian Exploration, Llc Method and system for circulating fluid in a well system
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US10487636B2 (en) 2017-07-27 2019-11-26 Exxonmobil Upstream Research Company Enhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
US10894743B2 (en) * 2017-12-27 2021-01-19 Saudi Arabian Oil Company Method for enhancement of mechanical strength and CO2 storage in cementitious products
US11002123B2 (en) 2017-08-31 2021-05-11 Exxonmobil Upstream Research Company Thermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
US11142681B2 (en) 2017-06-29 2021-10-12 Exxonmobil Upstream Research Company Chasing solvent for enhanced recovery processes
US11187044B2 (en) * 2019-12-10 2021-11-30 Saudi Arabian Oil Company Production cavern
CN113969771A (en) * 2020-07-23 2022-01-25 中国石油天然气股份有限公司 Low-energy-consumption shutoff type hollow rod hot water circulation pipe column
US11261725B2 (en) 2017-10-24 2022-03-01 Exxonmobil Upstream Research Company Systems and methods for estimating and controlling liquid level using periodic shut-ins
US11326401B2 (en) * 2020-03-18 2022-05-10 Saudi Arabian Oil Company Tool and method for forming a cavern for hydrocarbon production

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2969226A (en) * 1959-01-19 1961-01-24 Pyrochem Corp Pendant parting petro pyrolysis process
US2979317A (en) * 1959-08-12 1961-04-11 Fmc Corp Solution mining of trona
US3050290A (en) * 1959-10-30 1962-08-21 Fmc Corp Method of recovering sodium values by solution mining of trona
US3309140A (en) * 1962-11-28 1967-03-14 Utah Construction & Mining Co Leaching of uranium ore in situ
US3405974A (en) * 1966-02-21 1968-10-15 Intermountain Res & Dev Corp Process of underground salt recovery
US3455383A (en) * 1968-04-24 1969-07-15 Shell Oil Co Method of producing fluidized material from a subterranean formation
US3501201A (en) * 1968-10-30 1970-03-17 Shell Oil Co Method of producing shale oil from a subterranean oil shale formation
US3516495A (en) * 1967-11-29 1970-06-23 Exxon Research Engineering Co Recovery of shale oil
US3572838A (en) * 1969-07-07 1971-03-30 Shell Oil Co Recovery of aluminum compounds and oil from oil shale formations

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2969226A (en) * 1959-01-19 1961-01-24 Pyrochem Corp Pendant parting petro pyrolysis process
US2979317A (en) * 1959-08-12 1961-04-11 Fmc Corp Solution mining of trona
US3050290A (en) * 1959-10-30 1962-08-21 Fmc Corp Method of recovering sodium values by solution mining of trona
US3309140A (en) * 1962-11-28 1967-03-14 Utah Construction & Mining Co Leaching of uranium ore in situ
US3405974A (en) * 1966-02-21 1968-10-15 Intermountain Res & Dev Corp Process of underground salt recovery
US3516495A (en) * 1967-11-29 1970-06-23 Exxon Research Engineering Co Recovery of shale oil
US3455383A (en) * 1968-04-24 1969-07-15 Shell Oil Co Method of producing fluidized material from a subterranean formation
US3501201A (en) * 1968-10-30 1970-03-17 Shell Oil Co Method of producing shale oil from a subterranean oil shale formation
US3572838A (en) * 1969-07-07 1971-03-30 Shell Oil Co Recovery of aluminum compounds and oil from oil shale formations

Cited By (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880238A (en) * 1974-07-18 1975-04-29 Shell Oil Co Solvent/non-solvent pyrolysis of subterranean oil shale
US3888307A (en) * 1974-08-29 1975-06-10 Shell Oil Co Heating through fractures to expand a shale oil pyrolyzing cavern
US4026360A (en) * 1976-08-12 1977-05-31 Shell Oil Company Hydrothermally forming a flow barrier in a leached subterranean oil shale formation
US4059308A (en) * 1976-11-15 1977-11-22 Trw Inc. Pressure swing recovery system for oil shale deposits
US4065183A (en) * 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4083604A (en) * 1976-11-15 1978-04-11 Trw Inc. Thermomechanical fracture for recovery system in oil shale deposits
US4545891A (en) * 1981-03-31 1985-10-08 Trw Inc. Extraction and upgrading of fossil fuels using fused caustic and acid solutions
US5059307A (en) * 1981-03-31 1991-10-22 Trw Inc. Process for upgrading coal
US5085764A (en) * 1981-03-31 1992-02-04 Trw Inc. Process for upgrading coal
US4688637A (en) * 1987-02-27 1987-08-25 Theis Ralph W Method for induced flow recovery of shallow crude oil deposits
US4815790A (en) * 1988-05-13 1989-03-28 Natec, Ltd. Nahcolite solution mining process
US5588713A (en) * 1995-12-20 1996-12-31 Stevenson; Tom D. Process for making sodium bicarbonate from Nahcolite-rich solutions
US8464784B2 (en) 1998-11-20 2013-06-18 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8469119B2 (en) 1998-11-20 2013-06-25 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US9551209B2 (en) 1998-11-20 2017-01-24 Effective Exploration, LLC System and method for accessing subterranean deposits
US8511372B2 (en) 1998-11-20 2013-08-20 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US8505620B2 (en) 1998-11-20 2013-08-13 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8479812B2 (en) 1998-11-20 2013-07-09 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8813840B2 (en) 1998-11-20 2014-08-26 Efective Exploration, LLC Method and system for accessing subterranean deposits from the surface and tools therefor
US8434568B2 (en) 1998-11-20 2013-05-07 Vitruvian Exploration, Llc Method and system for circulating fluid in a well system
US8376052B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for surface production of gas from a subterranean zone
US8376039B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8291974B2 (en) 1998-11-20 2012-10-23 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8297350B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US8297377B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8316966B2 (en) 1998-11-20 2012-11-27 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8371399B2 (en) 1998-11-20 2013-02-12 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020084074A1 (en) * 2000-04-24 2002-07-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020077515A1 (en) * 2000-04-24 2002-06-20 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020057905A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020038069A1 (en) * 2000-04-24 2002-03-28 Wellington Scott Lee In situ thermal processing of a coal formation to produce a mixture of olefins, oxygenated hydrocarbons, and aromatic hydrocarbons
US20020056551A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020043365A1 (en) * 2000-04-24 2002-04-18 Berchenko Ilya Emil In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020040780A1 (en) * 2000-04-24 2002-04-11 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a selected mixture
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020038711A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US20030102130A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation with quality control
US7040397B2 (en) 2001-04-24 2006-05-09 Shell Oil Company Thermal processing of an oil shale formation to increase permeability of the formation
US20030209348A1 (en) * 2001-04-24 2003-11-13 Ward John Michael In situ thermal processing and remediation of an oil shale formation
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030102124A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal processing of a blending agent from a relatively permeable formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US20030102125A1 (en) * 2001-04-24 2003-06-05 Wellington Scott Lee In situ thermal processing of a relatively permeable formation in a reducing environment
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US7100994B2 (en) * 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7360595B2 (en) * 2002-05-08 2008-04-22 Cdx Gas, Llc Method and system for underground treatment of materials
US8333245B2 (en) 2002-09-17 2012-12-18 Vitruvian Exploration, Llc Accelerated production of gas from a subterranean zone
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8200072B2 (en) 2002-10-24 2012-06-12 Shell Oil Company Temperature limited heaters for heating subsurface formations or wellbores
US7264048B2 (en) 2003-04-21 2007-09-04 Cdx Gas, Llc Slot cavity
US20050051327A1 (en) * 2003-04-24 2005-03-10 Vinegar Harold J. Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US7207395B2 (en) 2004-01-30 2007-04-24 Cdx Gas, Llc Method and system for testing a partially formed hydrocarbon well for evaluation and well planning refinement
US7222670B2 (en) 2004-02-27 2007-05-29 Cdx Gas, Llc System and method for multiple wells from a common surface location
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US7571771B2 (en) 2005-05-31 2009-08-11 Cdx Gas, Llc Cavity well system
US7640987B2 (en) 2005-08-17 2010-01-05 Halliburton Energy Services, Inc. Communicating fluids with a heated-fluid generation system
CN101313126B (en) * 2005-10-24 2013-01-16 国际壳牌研究有限公司 Solution mining systems and methods for treating hydrocarbon containing formations
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7644993B2 (en) 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US8641150B2 (en) 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US9347302B2 (en) 2007-03-22 2016-05-24 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US9739122B2 (en) 2014-11-21 2017-08-22 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation
US11142681B2 (en) 2017-06-29 2021-10-12 Exxonmobil Upstream Research Company Chasing solvent for enhanced recovery processes
US10487636B2 (en) 2017-07-27 2019-11-26 Exxonmobil Upstream Research Company Enhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
US11002123B2 (en) 2017-08-31 2021-05-11 Exxonmobil Upstream Research Company Thermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
US11261725B2 (en) 2017-10-24 2022-03-01 Exxonmobil Upstream Research Company Systems and methods for estimating and controlling liquid level using periodic shut-ins
US10894743B2 (en) * 2017-12-27 2021-01-19 Saudi Arabian Oil Company Method for enhancement of mechanical strength and CO2 storage in cementitious products
US11187044B2 (en) * 2019-12-10 2021-11-30 Saudi Arabian Oil Company Production cavern
US11326401B2 (en) * 2020-03-18 2022-05-10 Saudi Arabian Oil Company Tool and method for forming a cavern for hydrocarbon production
CN113969771A (en) * 2020-07-23 2022-01-25 中国石油天然气股份有限公司 Low-energy-consumption shutoff type hollow rod hot water circulation pipe column

Similar Documents

Publication Publication Date Title
US3759328A (en) Laterally expanding oil shale permeabilization
US3967853A (en) Producing shale oil from a cavity-surrounded central well
US3739851A (en) Method of producing oil from an oil shale formation
US3804172A (en) Method for the recovery of oil from oil shale
US3741306A (en) Method of producing hydrocarbons from oil shale formations
US3888307A (en) Heating through fractures to expand a shale oil pyrolyzing cavern
US3804169A (en) Spreading-fluid recovery of subterranean oil
US3759574A (en) Method of producing hydrocarbons from an oil shale formation
US4059308A (en) Pressure swing recovery system for oil shale deposits
US3695354A (en) Halogenating extraction of oil from oil shale
US4065183A (en) Recovery system for oil shale deposits
US4815790A (en) Nahcolite solution mining process
US3513913A (en) Oil recovery from oil shales by transverse combustion
US3501201A (en) Method of producing shale oil from a subterranean oil shale formation
US3515213A (en) Shale oil recovery process using heated oil-miscible fluids
US3513914A (en) Method for producing shale oil from an oil shale formation
US3502372A (en) Process of recovering oil and dawsonite from oil shale
US3779601A (en) Method of producing hydrocarbons from an oil shale formation containing nahcolite
US10655441B2 (en) Stimulation of light tight shale oil formations
US3342258A (en) Underground oil recovery from solid oil-bearing deposits
US4083604A (en) Thermomechanical fracture for recovery system in oil shale deposits
US4185693A (en) Oil shale retorting from a high porosity cavern
US3700280A (en) Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US3537528A (en) Method for producing shale oil from an exfoliated oil shale formation
US3516495A (en) Recovery of shale oil